Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Country/Region as subject
Language
Publication year range
1.
Plant Divers ; 46(2): 194-205, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38807911

ABSTRACT

Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide polymorphisms (SNPs) and complete plastomes to examine genomic divergence and hybridization in Gentiana aristata, which is endemic to the Qinghai-Tibet Plateau (QTP) region. Genetic clustering revealed that G. aristata is characterized by geographic genetic structures with five clusters (West, East, Central, South and North). The West cluster has a specific morphological character (i.e., blue corolla) and higher values of FST compared to the remaining clusters, likely the result of the geological barrier formed by the Yangtze River. The West cluster diverged from the other clusters in the Early Pliocene; these remaining clusters diverged from one another in the Early Quaternary. Phylogenetic reconstructions based on SNPs and plastid data revealed substantial cyto-nuclear conflicts. Genetic clustering and D-statistics demonstrated rampant hybridization between the Central and North clusters, along the Bayankala Mountains, which form the geological barrier between the Central and North clusters. Species distribution modeling demonstrated the range of G. aristata expanded since the Last Interglacial period. Our findings provide genetic and morphological evidence of cryptic diversity in G. aristata, and identified rampant hybridization between genetic clusters along a geological barrier. These findings suggest that geological barriers and climatic fluctuations have an important role in triggering diversification as well as hybridization, indicating that cryptic diversity and hybridization are essential factors in biodiversity formation within the QTP region.

2.
Int. microbiol ; 26(2): 231-242, May. 2023. graf, ilus
Article in English | IBECS (Spain) | ID: ibc-220218

ABSTRACT

Fungi capable of producing fruit bodies are essential food and medicine resources. Despite recent advances in the study of microbial communities in mycorrhizospheres, little is known about the bacterial communities contained in fruit bodies. Using high-throughput sequencing, we investigated the bacterial communities in four species of mushrooms located on the alpine meadow and saline-alkali soil of the Qinghai-Tibet Plateau (QTP). Proteobacteria (51.7% on average) and Actinobacteria (28.2% on average) were the dominant phyla in all of the sampled fairy ring fruit bodies, and Acidobacteria (27.5% on average) and Proteobacteria (25.7% on average) dominated their adjacent soils. For the Agria. Bitorquis, Actinobacteria was the dominant phylum in its fruit body (67.5% on average) and adjacent soils (65.9% on average). The alpha diversity (i.e., Chao1, Shannon, Richness, and Simpson indexes) of the bacterial communities in the fruit bodies were significantly lower than those in the soil samples. All of the fungi shared more than half of their bacterial phyla and 16.2% of their total operational taxonomic units (OTUs) with their adjacent soil. Moreover, NH4+ and pH were the key factors associated with bacterial communities in the fruit bodies and soils, respectively. These results indicate that the fungi tend to create a unique niche that selects for specific members of the bacterial community. Using culture-dependent methods, we also isolated 27 bacterial species belonging to three phyla and five classes from fruit bodies and soils. The strains isolated will be useful for future research on interactions between mushroom-forming fungi and their bacterial endosymbionts.(AU)


Subject(s)
Humans , Fungi , Bacteria/classification , Soil Characteristics , High-Throughput Nucleotide Sequencing , Microbial Interactions , Mycorrhizae , China , Soil
SELECTION OF CITATIONS
SEARCH DETAIL