Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(40): e2123231119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161910

ABSTRACT

ß-Arrestin 1 (ARRB1) has been recognized as a multifunctional adaptor protein in the last decade, beyond its original role in desensitizing G protein-coupled receptor signaling. Here, we identify that ARRB1 plays essential roles in mediating gastric cancer (GC) cell metabolism and proliferation, by combining cohort analysis and functional investigation using patient-derived preclinical models. Overexpression of ARRB1 was associated with poor outcome of GC patients and knockdown of ARRB1 impaired cell proliferation both ex vivo and in vivo. Intriguingly, ARRB1 depicted diverse subcellular localizations during a passage of organoid cultures (7 d) to exert dual functions. Further analysis revealed that nuclear ARRB1 binds with transcription factor E2F1 triggering up-regulation of proliferative genes, while cytoplasmic ARRB1 modulates metabolic flux by binding with the pyruvate kinase M2 isoform (PKM2) and hindering PKM2 tetramerization, which reduces pyruvate kinase activity and leads to cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis. As ARRB1 localization was shown mostly in the cytoplasm in human GC samples, therapeutic potential of the ARRB1-PKM2 axis was tested, and we found tumor proliferation could be attenuated by the PKM2 activator DASA-58, especially in ARRB1high organoids. Together, the data in our study highlight a spatiotemporally dependent role of ARRB1 in mediating GC cell metabolism and proliferation and implies reactivating PKM2 may be a promising therapeutic strategy in a subset of GC patients.


Subject(s)
Pyruvate Kinase , Stomach Neoplasms , beta-Arrestin 1 , Cell Line, Tumor , Cell Proliferation/physiology , E2F1 Transcription Factor/metabolism , Glycolysis/physiology , Humans , Protein Isoforms/genetics , Pyruvate Kinase/metabolism , Receptors, G-Protein-Coupled/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism
2.
J Am Chem Soc ; 146(1): 627-634, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38133431

ABSTRACT

The self-healing behavior has been extensively used in intelligent sensing systems capable of molecular recognition. However, most rigid crystalline frameworks, once collapsed under external stimuli like pressure, heat, or vacuum, could hardly recover to their crystalline phases under ambient conditions. Here, we report the self-healing of a new microporous hydrogen-bonded organic framework, FDU-HOF-3 (FDU = Fudan University), for ammonia (NH3) capture and compared it with the established mesoporous HOF-101. With the introduction of low-concentration NH3 into the pores, the HOFs became disordered but were then simply heated under a vacuum to return to their original crystalline states after NH3 removal. Close characterizations revealed that the repeatable self-healing behavior of these HOFs was achieved due to the COOH-NH3 acid-base interactions accompanied by the breaking and regeneration of complementary COOH-COOH hydrogen bonds. FDU-HOF-3 showed a record-capturing capability for low-concentration NH3 (8.13 mmol/g at 25 mbar) among all HOFs and displayed a quick photocurrent decrease after exposure to 250 ppm NH3 for less than 10 s. These self-healing HOFs were used to capture and release NH3 for over 10 cycles without any decrease in the adsorption capacities.

3.
Environ Res ; 251(Pt 1): 118578, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38423498

ABSTRACT

Biochar produced from bio-wastes has been widely used to promote the performance of anaerobic digestion. Waste activated sludge (WAS) is considered as a kind of popular precursor for biochar preparation, but the abundant resources in WAS were neglected previously. In this study, the roles of biochar prepared from raw, pretreated, and fermented sludge on anaerobic digestion were investigated. That is, parts of carbon sources and nutrients like polysaccharides, proteins, and phosphorus were firstly recovered after sludge pretreatment or fermentation, and then the sludge residuals were used as raw material to prepare biochar. The methane yield improved by 22.1% with adding the biochar (AK-BC) prepared by sludge residual obtained from alkaline pretreatment. Mechanism study suggested that the characteristics of AK-BC like specific surface area and defect levels were updated. Then, the conversion performance of intermediate metabolites and electro-activities of extracellular polymeric substances were up-regulated. As a result, the activity of electron transfer was increased with the presence of AK-BC, with increase ratio of 21.4%. In addition, the electroactive microorganisms like Anaerolineaceae and Methanosaeta were enriched with the presence of AK-BC, and the potential direct interspecies electron transfer was possibly established. Moreover, both aceticlastic and CO2-reducing methanogenesis pathways were improved by up-regulating related enzymes. Therefore, the proposed strategy can not only obtain preferred biochar but also recover abundant resources like carbon source, nutrients, and bioenergy.


Subject(s)
Charcoal , Methane , Sewage , Charcoal/chemistry , Sewage/chemistry , Sewage/microbiology , Anaerobiosis , Methane/metabolism , Waste Disposal, Fluid/methods , Alkalies/chemistry , Bioreactors
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 619-624, 2024 Jun 15.
Article in Zh | MEDLINE | ID: mdl-38926379

ABSTRACT

OBJECTIVES: To assess the effectiveness and safety of prone positioning in the treatment of neonatal respiratory distress syndrome (NRDS) using invasive respiratory support. METHODS: A prospective study was conducted from June 2020 to September 2023 at Suining County People's Hospital, involving 77 preterm infants with gestational ages less than 35 weeks requiring invasive respiratory support for NRDS. The infants were randomly divided into a supine group (37 infants) and a prone group (40 infants). Infants in the prone group were ventilated in the prone position for 6 hours followed by 2 hours in the supine position, continuing in this cycle until weaning from the ventilator. The effectiveness and safety of the two approaches were compared. RESULTS: At 6 hours after enrollment, the prone group showed lower arterial blood carbon dioxide levels, inspired oxygen concentration, oxygenation index, rates of tracheal intubation bacterial colonization, and Neonatal Pain, Agitation and Sedation Scale scores compared to the supine group (P<0.05). There were no significant differences between the groups in terms of pH, arterial oxygen pressure, positive end-expiratory pressure, duration of mechanical ventilation, accidental extubation, ventilator-associated pneumonia, air leak syndrome, skin pressure sores, feeding intolerance, and grades II-IV intraventricular hemorrhage (P>0.05). CONCLUSIONS: Compared to supine positioning, prone ventilation effectively improves oxygenation, increases comfort, and reduces tracheal intubation bacterial colonization in neonates requiring mechanical ventilation for NRDS, without significantly increasing adverse reactions.


Subject(s)
Respiration, Artificial , Respiratory Distress Syndrome, Newborn , Humans , Prone Position , Infant, Newborn , Respiratory Distress Syndrome, Newborn/therapy , Male , Female , Prospective Studies , Respiration, Artificial/methods
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 188-193, 2024 Feb 15.
Article in Zh | MEDLINE | ID: mdl-38436318

ABSTRACT

OBJECTIVES: To study the in vitro expression of three phenylalanine hydroxylase (PAH) mutants (p.R243Q, p.R241C, and p.Y356X) and determine their pathogenicity. METHODS: Bioinformatics techniques were used to predict the impact of PAH mutants on the structure and function of PAH protein. Corresponding mutant plasmids of PAH were constructed and expressed in HEK293T cells. Quantitative reverse transcription polymerase chain reaction was used to measure the mRNA expression levels of the three PAH mutants, and their protein levels were assessed using Western blot and enzyme-linked immunosorbent assay. RESULTS: Bioinformatics analysis predicted that all three mutants were pathogenic. The mRNA expression levels of the p.R243Q and p.R241C mutants in HEK293T cells were similar to the mRNA expression level of the wild-type control (P>0.05), while the mRNA expression level of the p.Y356X mutant significantly decreased (P<0.05). The PAH protein expression levels of all three mutants were significantly reduced compared to the wild-type control (P<0.05). The extracellular concentration of PAH protein was reduced in the p.R241C and p.Y356X mutants compared to the wild-type control (P<0.05), while there was no significant difference between the p.R243Q mutant and the wild type control (P>0.05). CONCLUSIONS: p.R243Q, p.R241C and p.Y356X mutants lead to reduced expression levels of PAH protein in eukaryotic cells, with p.R241C and p.Y356X mutants also affecting the function of PAH protein. These three PAH mutants are to be pathogenic.


Subject(s)
Phenylalanine Hydroxylase , Humans , HEK293 Cells , Phenylalanine Hydroxylase/genetics , Blotting, Western , Computational Biology , RNA, Messenger
6.
Lancet Oncol ; 24(10): 1134-1146, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37797632

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors targeting PD-1 or CTLA-4 individually have shown substantial clinical benefits in the treatment of malignancies. We aimed to assess the safety and antitumour activity of cadonilimab monotherapy, a bispecific PD-1/CTLA-4 antibody, in patients with advanced solid tumours. METHODS: This multicentre, open-label, phase 1b/2 trial was conducted across 30 hospitals in China. Patients aged 18 years or older with histologically or cytologically confirmed, unresectable advanced solid tumours, unsuccessful completion of at least one previous systemic therapy, and an Eastern Cooperative Oncology Group performance status of 0 or 1 were eligible for inclusion. Patients who had previously received anti-PD-1, anti-PD-L1, or anti-CTLA-4 treatment were not eligible for inclusion. In the dose escalation phase of phase 1b, patients received intravenous cadonilimab at 6 mg/kg and 10 mg/kg every 2 weeks. In the dose expansion phase of phase 1b, cadonilimab at 6 mg/kg and a fixed dose of 450 mg were given intravenously every 2 weeks. In phase 2, cadonilimab at 6 mg/kg was administered intravenously every 2 weeks in three cohorts: patients with cervical cancer, oesophageal squamous cell carcinoma, and hepatocellular carcinoma. The primary endpoints were the safety of cadonilimab in phase 1b and objective response rate in phase 2, based on the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1. The safety analysis was done in all patients who received at least one dose of cadonilimab. Antitumour activity was assessed in the full analysis set for the cervical cancer cohort, and in all patients with measurable disease at baseline and who received at least one dose of cadonilimab in the oesophageal squamous cell carcinoma and hepatocellular carcinoma cohorts. The study is registered on ClinicalTrial.gov, NCT03852251, and closed to new participants; follow-up has been completed. FINDINGS: Between Jan 18, 2019, and Jan 8, 2021, 240 patients (83 [43 male and 40 female] in phase 1b and 157 in phase 2) were enrolled. Phase 2 enrolled 111 female patients with cervical cancer, 22 patients with oesophageal squamous cell carcinoma (15 male and seven female), and 24 patients with hepatocellular carcinoma (17 male and seven female). During dose escalation, no dose-limiting toxicities occurred. Grade 3-4 treatment-related adverse events occurred in 67 (28%) of 240 patients; the most frequent grade 3 or worse treatment-related adverse events were anaemia (seven [3%]), increased lipase (four [2%]), decreased bodyweight (three [1%]), decreased appetite (four [2%]), decreased neutrophil count (three [1%]), and infusion-related reaction (two [1%]). 17 (7%) patients discontinued treatment due to treatment-related adverse events. 54 (23%) of 240 patients reported serious treatment-related adverse events, including five patients who died (one due to myocardial infarction; cause unknown for four). In phase 2, in the cervical cancer cohort, with a median follow-up of 14·6 months (IQR 13·1-17·5), the objective response rate was 32·3% (32 of 99; 95% CI 23·3-42·5). In the oesophageal squamous cell carcinoma cohort, with a median follow-up of 17·9 months (IQR 4·0-15·1), the objective response rate was 18·2% (four of 22; 95% CI 5·2-40·3). In the hepatocellular carcinoma cohort, with a median follow-up of 19·6 months (IQR 8·7-19·8), the objective response rate was 16·7% (four of 24; 95% CI 4·7-37·4). INTERPRETATION: Cadonilimab showed an encouraging tumour response rate, with a manageable safety profile, suggesting the potential of cadonilimab for the treatment of advanced solid tumours. FUNDING: Akeso Biopharma. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Hepatocellular , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Liver Neoplasms , Uterine Cervical Neoplasms , Humans , Male , Female , Carcinoma, Hepatocellular/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Uterine Cervical Neoplasms/drug therapy , CTLA-4 Antigen , Programmed Cell Death 1 Receptor , Empathy , Antibodies, Monoclonal, Humanized , Antineoplastic Agents, Immunological/adverse effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/chemically induced , Liver Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
7.
J Am Chem Soc ; 145(40): 22158-22167, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37779473

ABSTRACT

Li-SOCl2 batteries possess ultrahigh energy densities and superior safety features at a wide range of operating temperatures. However, the Li-SOCl2 battery system suffers from poor reversibility due to the sluggish kinetics of SOCl2 reduction during discharging and the oxidation of the insulating discharge products during charging. To achieve a high-power rechargeable Li-SOCl2 battery, herein we introduce the molecular catalyst I2 into the electrolyte to tailor the charging and discharging reaction pathways. The as-assembled rechargeable cell exhibits superior power density, sustaining an ultrahigh current density of 100 mA cm-2 during discharging and delivering a reversible capacity of 1 mAh cm-2 for 200 cycles at a current density of 2 mA cm-2 and 6 mAh cm-2 for 50 cycles at a current density of 5 mA cm-2. Our results reveal the molecular catalyst-mediated reaction mechanisms that fundamentally alter the rate-determining steps of discharging and charging in Li-SOCl2 batteries and highlight the viability of transforming a primary high-energy battery into a high-power rechargeable system, which has great potential to meet the ever-increasing demand of energy-storage systems.

8.
Proteome Sci ; 21(1): 14, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37740172

ABSTRACT

BACKGROUND: Our previous work shows that increased matrix stiffness not only alters malignant characteristics of hepatocellular carcinoma (HCC) cells, but also attenuates metformin efficacy in treating HCC cells. Here, we identified differential membrane proteins related to matrix stiffness-mediated metformin resistance for better understand therapeutic resistance of metformin in HCC. METHODS: Differential membrane proteins in HCC cells grown on different stiffness substrates before and after metformin intervention were screened and identified using isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with the liquid chromatography-tandem mass spectrometry (LC-MS/MS), then bioinformatic analysis were applied to determine candidate membrane protein and their possible signaling pathway. RESULTS: A total of 5159 proteins were identified and 354 differential membrane proteins and membrane associated proteins, which might be associated with matrix stiffness-mediated metformin resistance were discovered. Then 94 candidate membrane proteins including 21 up-regulated protein molecules and 73 down-regulated protein molecules were further obtained. Some of them such as Annexin A2 (ANXA2), Filamin-A (FLNA), Moesin (MSN), Myosin-9 (MYH9), Elongation factor 2 (eEF2), and Tax1 binding Protein 3 (TAX1BP3) were selected for further validation. Their expressions were all downregulated in HCC cells grown on different stiffness substrates after metformin intervention. More importantly, the degree of decrease was obviously weakened on the higher stiffness substrate compared with that on the lower stiffness substrate, indicating that these candidate membrane proteins might contribute to matrix stiffness-mediated metformin resistance in HCC. CONCLUSIONS: There was an obvious change in membrane proteins in matrix stiffness-mediated metformin resistance in HCC cells. Six candidate membrane proteins may reflect the response of HCC cells under high stiffness stimulation to metformin intervention, which deserve to be investigated in the future.

9.
Mol Pharm ; 20(7): 3672-3682, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37212215

ABSTRACT

Real-time monitoring of the biological behavior of extracellular vesicles (EVs) in vivo is limited, which hinders its application in biomedicine and clinical translation. A noninvasive imaging strategy could provide us with useful information on EVs' distribution, accumulation and homing in vivo, and pharmacokinetics. In this study, the long half-life radionuclide iodine-124 (124I) was used to directly label umbilical cord mesenchymal stem cell-derived EVs. The resulting probe, namely, 124I-MSC-EVs, was manufactured and ready to use within 1 min. 124I-labeled MSC-EVs had high radiochemical purity (RCP, >99.4%) and stable in 5% human serum album (HSA) with RCP > 95% for 96 h. We demonstrated efficient intracellular internalization of 124I-MSC-EVs in two prostate cancer cell lines (22RV1 and DU145 cell). The uptake rates of 124I-MSC-EVs in human prostate cancer cell lines 22RV1 and DU145 cells were 10.35 ± 0.78 and 2.56 ± 0.21 (AD%) at 4 h. The promising cellular data has prompted us to investigate the biodistribution and in vivo tracking capability of this isotope-based labeling technique in tumor bearing animals. Using positron emission tomography (PET) technology, we showed that the signal from intravenously injected 124I-MSC-EVs mainly accumulated in the heart, liver, spleen, lung, and kidney in healthy kun ming (KM) mice, and the biodistribution study was similar to the imaging results. In the 22RV1 xenograft model, 124I-MSC-EVs accumulated significantly in the tumor after administration, and with the optimal image acquired at 48 h postinjection, the maximum of standard uptake value (SUVmax) of the tumor was 3-fold higher than that of DU145. Taken together, the probe has a high application prospect in immuno-PET imaging of EVs. Our technique provides a powerful and convenient tool for understanding the biological behavior and pharmacokinetic characteristics of EVs in vivo and facilitates the acquirement of comprehensive and objective data for future clinical studies of EVs.


Subject(s)
Extracellular Vesicles , Iodine , Prostatic Neoplasms , Male , Humans , Animals , Mice , Iodine/metabolism , Tissue Distribution , Isotope Labeling , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Extracellular Vesicles/metabolism
10.
Environ Res ; 233: 116084, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37217125

ABSTRACT

The loss and negative impacts of nitrogen from fertilized soils remain a global challenge in agricultural field. Ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) leaching, together with volatile ammonia loss are the main pathways of nitrogen loss. To improve nitrogen availability, alkaline biochar with improved adsorption capacities is a promising soil amendment. This study was objected to investigate the effects of alkaline biochar (ABC, pH 8.68) on nitrogen mitigation, the effects on nitrogen loss, and the interactions among the mixed soils (biochar, nitrogen fertilizer, and soil) under both pot and field experiments. From pot experiments, ABC addition resulted in the poor reservation of NH4+-N which converted to volatile NH3 under higher alkaline environments, mainly occurring in the first 3 days. But after, NO3--N could be largely retained in surface soil by ABC addition. The reservation of NO3--N by ABC offsets the loss of volatile NH3, and ABC ultimately showed positive reservations of nitrogen with fertilization. In the field experiment, the addition of urea inhibitor (UI) addition could inhibit the volatile NH3 loss caused by ABC mainly in the first week. The long-term operation demonstrated that ABC supported persistent effectiveness in reducing N loss, while UI treatment temporarily delayed the N loss through inhibition of fertilizer hydrolysis. Therefore, the addition of both ABC and UI contributed to reserve soil N in layers (0-50 cm) suitable for crop growth thus improving crops growth.


Subject(s)
Fertilizers , Soil , Fertilizers/analysis , Nitrogen/analysis , Agriculture
11.
Anaerobe ; 79: 102691, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592651

ABSTRACT

OBJECTIVES: Carbapenem-resistant Bacteroides fragilis has emerged globally and cfiA is the key underlying factor. However, the prevalence of cfiA-positive carbapenem-resistant B. fragilis varies among countries. Therefore, we investigated the prevalence of cfiA-positive B. fragilis clinical isolates in a tertiary hospital in China. METHODS: Carbapenem-resistant cfiA-positive B. fragilis isolates were identified using polymerase chain reaction. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify the characteristic mass spectra of cfiA-positive B. fragilis. RESULTS: The prevalence of cfiA among 153 B. fragilis isolates was 22.2% (34/153), when 20.6% (7/34) cfiA-positive B. fragilis strains were isolated from pediatric patients. Twenty-one carbapenem-resistant B. fragilis isolates were identified and were all positive with cfiA gene. Two characteristic peaks (4825 and 9642 Da) were identified using MALDI-TOF MS, and the sensitivity, specificity, and both the positive and negative predictive values of these two peaks were 100%. A new peak shift from 9627 Da for cfiA-negative isolates to 9642 Da for cfiA-positive isolates was observed. CONCLUSIONS: A high prevalence of cfiA was observed among B.fragilis isolates in this study, especially those isolated from pediatric patients. Characteristic MS spectra can accurately discriminate cfiA-positive and -negative B. fragilis isolates and can contribute to the rapid screening of cfiA-positive B. fragilis isolates in clinical laboratories.


Subject(s)
Bacterial Infections , Bacteroides Infections , Humans , Child , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/analysis , beta-Lactamases/genetics , Bacteroides fragilis , Prevalence , Carbapenems/pharmacology , Hospitals, Teaching , China/epidemiology , Bacteroides Infections/epidemiology , Microbial Sensitivity Tests
12.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569566

ABSTRACT

Carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) are established prognostic biomarkers for patients with gastric cancer. However, their potential as predictive markers for neoadjuvant chemotherapy (NACT) efficacy has not been fully elucidated. METHODS: We conducted a retrospective analysis to determine values of CEA and CA19-9 prior to NACT (pre-NACT) and after NACT (post-NACT) in 399 patients with locally advanced gastric cancer (LAGC) who received intended NACT and surgery. RESULTS: Among the 399 patients who underwent NACT plus surgery, 132 patients (33.1%) had elevated pre-NACT CEA/CA19-9 values. Furthermore, either pre-NACT or post-NACT CEA /CA19-9 levels were significantly associated with prognosis (p = 0.0023) compared to patients with non-elevated levels. Moreover, among the patients, a significant proportion (73/132, 55.3%) achieved normalized CEA/CA19-9 following NACT, which is a strong marker of a favorable treatment response and survival benefits. In addition, the patients with normalized CEA/CA19-9 also had a prolonged survival compared to those who underwent surgery first (p = 0.0140), which may be attributed to the clearance of micro-metastatic foci. Additionally, the magnitude of CEA/CA19-9 changes did not exhibit a statistically significant prognostic value. CONCLUSIONS: Normalization of CEA/CA19-9 is a strong biomarker for the effectiveness of treatment, and can thus be exploited to prolong the long-term survival of patients with LAGC.


Subject(s)
Carcinoembryonic Antigen , Stomach Neoplasms , Humans , CA-19-9 Antigen , Stomach Neoplasms/pathology , Neoadjuvant Therapy , Retrospective Studies , Biomarkers, Tumor , Carbohydrates
13.
Molecules ; 28(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36903421

ABSTRACT

The weak bonding energy and flexibility of hydrogen bonds can hinder the long-term use of hydrogen-bonded organic framework (HOF) materials under harsh conditions. Here we invented a thermal-crosslinking method to form polymer materials based on a diamino triazine (DAT) HOF (FDU-HOF-1), containing high-density hydrogen bonding of N-H⋯N. With the increase of temperature to 648 K, the formation of -NH- bonds between neighboring HOF tectons by releasing NH3 was observed based on the disappearance of the characteristic peaks of amino groups on FDU-HOF-1 in the Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (ss-NMR). The variable temperature PXRD indicated the formation of a new peak at 13.2° in addition to the preservation of the original diffraction peaks of FDU-HOF-1. The water adsorption, acid-base stability (12 M HCl to 20 M NaOH) and solubility experiments concluded that the thermally crosslinked HOFs (TC-HOFs) are highly stable. The membranes fabricated by TC-HOF demonstrate the permeation rate of K+ ions as high as 270 mmol m-2 h-1 as well as high selectivity of K+/Mg2+ (50) and Na+/Mg2+ (40), which was comparable to Nafion membranes. This study provides guidance for the future design of highly stable crystalline polymer materials based on HOFs.

14.
Angew Chem Int Ed Engl ; 62(43): e202311482, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37675976

ABSTRACT

Detecting CO2 in complex gas mixtures is challenging due to the presence of competitive gases in the ambient atmosphere. Photoelectrochemical (PEC) techniques offer a solution, but material selection and specificity remain limiting. Here, we constructed a hydrogen-bonded organic framework material based on a porphyrin tecton decorated with diaminotriazine (DAT) moieties. The DAT moieties on the porphyrin molecules not only facilitate the formation of complementary hydrogen bonds between the tectons but also function as recognition sites in the resulting porous HOF materials for the selective adsorption of CO2 . In addition, the in-plane growth of FDU-HOF-2 into anisotropic molecular sheets with large areas of up to 23000 µm2 and controllable thickness between 0.298 and 2.407 µm were realized in yields of over 89 % by a simple solution-processing method. The FDU-HOF-2 can be directly grown and deposited onto different substrates including silica, carbon, and metal oxides by self-assembly in situ in formic acid. As a proof of concept, a screen-printing electrode deposited with FDU-HOF-2 was fabricate as a label-free photoelectrochemical (PEC) sensor for CO2 detection. Such a signal-off PEC sensor exhibits low detection limit for CO2 (2.3 ppm), reusability (at least 30 cycles), and long-term working stability (at least 30 days).

15.
J Cell Mol Med ; 26(8): 2230-2250, 2022 04.
Article in English | MEDLINE | ID: mdl-35194922

ABSTRACT

With the emergence of the molecular era and retreat of the histology epoch in malignant glioma, it is becoming increasingly necessary to research diagnostic/prognostic/therapeutic biomarkers and their related regulatory mechanisms. While accumulating studies have investigated coding gene-associated biomarkers in malignant glioma, research on comprehensive coding and noncoding RNA-associated biomarkers is lacking. Furthermore, few studies have illustrated the cross-talk signalling pathways among these biomarkers and mechanisms in detail. Here, we identified DEGs and ceRNA networks in malignant glioma and then constructed Cox/Lasso regression models to further identify the most valuable genes through stepwise refinement. Top-down comprehensive integrated analysis, including functional enrichment, SNV, immune infiltration, transcription factor binding site, and molecular docking analyses, further revealed the regulatory maps among these genes. The results revealed a novel and accurate model (AUC of 0.91 and C-index of 0.84 in the whole malignant gliomas, AUC of 0.90 and C-index of 0.86 in LGG, and AUC of 0.75 and C-index of 0.69 in GBM) that includes twelve ncRNAs, 1 miRNA and 6 coding genes. Stepwise logical reasoning based on top-down comprehensive integrated analysis and references revealed cross-talk signalling pathways among these genes that were correlated with the circadian rhythm, tumour immune microenvironment and cellular senescence pathways. In conclusion, our work reveals a novel model where the newly identified biomarkers may contribute to a precise diagnosis/prognosis and subclassification of malignant glioma, and the identified cross-talk signalling pathways would help to illustrate the noncoding RNA-associated epigenetic regulatory mechanisms of glioma tumorigenesis and aid in targeted therapy.


Subject(s)
Brain Neoplasms , Glioma , MicroRNAs , RNA, Long Noncoding , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Docking Simulation , RNA, Long Noncoding/genetics , Tumor Microenvironment/genetics
16.
Mol Cancer ; 21(1): 216, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510184

ABSTRACT

At present, there is no validated marker to identify the subpopulation of patients with advanced gastric cancer (AGC) who might benefit from neoadjuvant chemotherapy (NACT). In view of this clinical challenge, the identification of non-invasive biomarkers for efficacy prediction of NACT in patients with AGC is imperative. Herein, we aimed to develop a non-invasive, liquid-biopsy-based assay by using an exosome-derived RNAs model based on multi-omics characteristics of RNAs. We firstly used a multi-omics strategy to characterize the mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) profiles of circulating exosome enriched fractions in responders to NACT paired with non-responders, using RNA sequencing. Finally, numerous miRNAs, mRNAs and lncRNAs were identified to be associated with the response to NACT in patients with AGC, and it was validated in an independent cohort with promising AUC values. Furthermore, we established a 6-exosome-RNA panel that could robustly identified responders from non-responders treated with fluorouracil-based neoadjuvant chemotherapy.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Humans , Neoadjuvant Therapy , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , RNA, Long Noncoding/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Liquid Biopsy
17.
BMC Cancer ; 22(1): 457, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35473609

ABSTRACT

BACKGROUND: Glioma is one of the main causes of cancer-related mortality worldwide and is associated with high heterogeneity. However, the key players determining the fate of glioma remain obscure. In the present study, we shed light on tumor metabolism and aimed to investigate the role of tryptophan hydroxylase 1 (TPH-1) in the advancement of glioma. METHOD: Herein, the levels of TPH-1 expression in glioma tissues were evaluated using The Cancer Genome Atlas (TCGA) database. Further, the proliferative characteristics and migration ability of TPH-1 overexpressing LN229/T98G cells were evaluated. Additionally, we performed a cytotoxicity analysis using temozolomide (TMZ) in these cells. We also examined the tumor growth and survival time in a mouse model of glioma treated with chemotherapeutic agents and a TPH-1 inhibitor. RESULTS: The results of both clinical and experimental data showed that excess TPH-1 expression resulted in sustained glioma progression and a dismal overall survival in these patients. Mechanistically, TPH-1 increased the production of serotonin in glioma cells. The elevated serotonin levels then augmented the NF-κB signaling pathway through the upregulation of the L1-cell adhesion molecule (L1CAM), thereby contributing to cellular proliferation, invasive migration, and drug resistance. In vivo experiments demonstrated potent antitumor effects, which benefited further from the synergistic combination of TMZ and LX-1031. CONCLUSION: Taken together, these data suggested that TPH-1 facilitated cellular proliferation, migration, and chemoresistance in glioma through the serotonin/L1CAM/NF-κB pathway. By demonstrating the link of amino acid metabolic enzymes with tumor development, our findings may provide a potentially viable target for therapeutic manipulation aimed at eradicating glioma.


Subject(s)
Brain Neoplasms , Glioma , Neural Cell Adhesion Molecule L1 , Tryptophan Hydroxylase/metabolism , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Humans , Mice , NF-kappa B/metabolism , Serotonin/pharmacology , Signal Transduction , Temozolomide/pharmacology , Temozolomide/therapeutic use , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/pharmacology
18.
J Environ Manage ; 301: 113857, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34626946

ABSTRACT

A new type of binder was developed by grafting casein and ß-glucan to investigate its effect on tailings erosion and plant growth. 6% casein and 2% ß-glucan were recommended as the best ratio of the new biopolymer binder, which had the best effect on the soil utilization of iron tailings. The infrared analysis of the new binder demonstrated that casein and ß-glucan reacted adequately as raw materials. The results of physichemical properties and loss prevention of iron tailings showed that the binder-treated soils demonstrated lower erodibility compared with untreated iron tailings. The particle size of the tailings was increased after the addition of the binder. In treated soil, the content of soil organic matter increased significantly, which provided sufficient nutrients for the plants growing. Compared with natural tailings without binder, plant height, fresh weight, chlorophyll content, and enzyme activity (POD and SOD) were also significantly increased. This study overcame the current defects of biopolymer in soil improvement and provided an environmentally friendly method to prevent the loss of iron tailings and promote its soil utilization efficiency.


Subject(s)
Soil Pollutants , Biopolymers , Iron/analysis , Plant Development , Soil , Soil Pollutants/analysis
19.
Int Heart J ; 63(5): 821-827, 2022.
Article in English | MEDLINE | ID: mdl-36184543

ABSTRACT

N-terminal pro-B-type natriuretic peptide (NT-proBNP) is suggested to be altered in patients with systolic heart failure or acute coronary syndrome. We explored the relationship between left ventricular ejection fraction (LVEF) and levels of NT-proBNP in patients with unstable angina and type 2 diabetes mellitus and preserved LVEF.Patients with unstable angina were divided into normal glucose tolerance (controls) and type 2 diabetes mellitus groups. The plasma NT-proBNP concentration was measured in these patients within 30 minute of admission for a comparative study. The severity of coronary arterial lesions was evaluated using Syntax scores. Results: NT-proBNP levels were not significantly different in patients with unstable angina and type 2 diabetes mellitus (median [quartiles]: 167.0 [66.1, 623.3] pg/mL) from those of controls (116.0 [69.8, 233.0], P = 0.278). Subsequent analyses indicated that ln (NT-proBNP) was positively associated with the following parameters: left ventricular end-diastolic diameter (r = 0.495, P = 0.019), left ventricular end-systolic diameter (r = 0.648, P = 0.001), and Syntax score (r = 0.567, P = 0.006); ln (NT-proBNP) was negatively associated with LVEF (r = -0.652, P = 0.001) in patients with unstable angina and type 2 diabetes mellitus. In multiple linear regression analysis, ln (NT-proBNP) levels were significantly independently correlated with the LVEF and Syntax score. However, no correlation was observed between ln (NT-proBNP) and each parameter in patients with unstable angina and normal glucose tolerance (controls).The NT-proBNP level is independently correlated with the LVEF in patients with unstable angina and type 2 diabetes mellitus and preserved LVEF.


Subject(s)
Diabetes Mellitus, Type 2 , Natriuretic Peptide, Brain , Angina, Unstable , Biomarkers , Diabetes Mellitus, Type 2/complications , Glucose , Humans , Peptide Fragments , Stroke Volume , Ventricular Function, Left
20.
Angew Chem Int Ed Engl ; 61(27): e202202089, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35460153

ABSTRACT

Rational synthesis of hydrogen-bonded organic frameworks (HOFs) with predicted structure has been a long-term challenge. Herein, by using the efficient, simple, low-cost, and scalable mechanosynthesis, we demonstrate that reticular chemistry is applicable to HOF assemblies based on building blocks with different geometry, connectivity, and functionality. The obtained crystalline HOFs show uniform nano-sized morphology, which is challenging or unachievable for conventional solution-based methods. Furthermore, the one-pot mechanosynthesis generated a series of Pd@HOF composites with noticeably different CO oxidation activities. In situ DRIFTS studies indicate that the most efficient composite, counterintuitively, shows the weakest CO affinity to Pd sites while the strongest CO affinity to HOF matrix, revealing the vital role of porous matrix to the catalytic performance. This work paves a new avenue for rational synthesis of HOF and HOF-based composites for broad application potential.

SELECTION OF CITATIONS
SEARCH DETAIL