Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Proc Natl Acad Sci U S A ; 120(20): e2218739120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155879

ABSTRACT

Carbon-based nanomaterials (CNMs) have recently been found in humans raising a great concern over their adverse roles in the hosts. However, our knowledge of the in vivo behavior and fate of CNMs, especially their biological processes elicited by the gut microbiota, remains poor. Here, we uncovered the integration of CNMs (single-walled carbon nanotubes and graphene oxide) into the endogenous carbon flow through degradation and fermentation, mediated by the gut microbiota of mice using isotope tracing and gene sequencing. As a newly available carbon source for the gut microbiota, microbial fermentation leads to the incorporation of inorganic carbon from the CNMs into organic butyrate through the pyruvate pathway. Furthermore, the butyrate-producing bacteria are identified to show a preference for the CNMs as their favorable source, and excessive butyrate derived from microbial CNMs fermentation further impacts on the function (proliferation and differentiation) of intestinal stem cells in mouse and intestinal organoid models. Collectively, our results unlock the unknown fermentation processes of CNMs in the gut of hosts and underscore an urgent need for assessing the transformation of CNMs and their health risk via the gut-centric physiological and anatomical pathways.


Subject(s)
Gastrointestinal Microbiome , Nanostructures , Nanotubes, Carbon , Humans , Animals , Mice , Gastrointestinal Microbiome/physiology , Nanotubes, Carbon/adverse effects , Fermentation , Butyrates/metabolism
2.
J Am Chem Soc ; 145(16): 8979-8987, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37067179

ABSTRACT

Conductive metal-organic frameworks (c-MOFs) with outstanding electrical conductivities and high charge carrier mobilities are promising candidates for electronics and optoelectronics. However, the poor solubility of planar ligands greatly hinders the synthesis and widespread applications of c-MOFs. Nonplanar ligands with excellent solubility in organic solvents are ideal alternatives to construct c-MOFs. Herein, contorted hexabenzocoronene (c-HBC) derivatives with good solubility are adopted to synthesize c-MOFs. Three c-MOFs (c-HBC-6O-Cu, c-HBC-8O-Cu, and c-HBC-12O-Cu) with substantially different geometries and packing modes have been synthesized using three multitopic catechol-based c-HBC ligands with different symmetries and coordination numbers, respectively. With more metal coordination centers and increased charge transport pathways, c-HBC-12O-Cu exhibits the highest intrinsic electrical conductivity of 3.31 S m-1. Time-resolved terahertz spectroscopy reveals high charge carrier mobilities in c-HBC-based c-MOFs, ranging from 38 to 64 cm2 V-1 s-1. This work provides a systematic and modular approach to fine-tune the structure and enrich the c-MOF family with excellent charge transport properties using nonplanar and highly soluble ligands.

3.
J Am Chem Soc ; 145(34): 19086-19097, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37596995

ABSTRACT

Metal oxide nanozymes have emerged as the most efficient and promising candidates to mimic antioxidant enzymes for treatment of oxidative stress-mediated pathophysiological disorders, but the current effectiveness is unsatisfactory due to insufficient catalytic performance. Here, we report for the first time an intrinsic strain-mediated ultrathin ceria nanoantioxidant. Surface strain in ceria with variable thicknesses and coordinatively unsaturated Ce sites was investigated by theoretical calculation analysis and then was validated by preparing ∼1.2 nm ultrathin nanoplates with ∼3.0% tensile strain in plane/∼10.0% tensile strain out of plane. Compared with nanocubes, surface strain in ultrathin nanoplates could enhance the covalency of the Ce-O bond, leading to increasing superoxide dismutase (SOD)-mimetic activity by ∼2.6-fold (1533 U/mg, in close proximity to that of natural SOD) and total antioxidant activity by ∼2.5-fold. As a proof of concept, intrinsic strain-mediated ultrathin ceria nanoplates could boost antioxidation for improved ischemic stroke treatment in vivo, significantly better than edaravone, a commonly used clinical drug.


Subject(s)
Antioxidants , Ischemic Stroke , Humans , Antioxidants/pharmacology , Catalysis , Oxides , Superoxide Dismutase
4.
Nano Lett ; 22(24): 10003-10009, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36480450

ABSTRACT

Functional nanomaterials offer an attractive strategy to mimic the catalysis of natural enzymes, which are collectively called nanozymes. Although the development of nanozymes shows a trend of diversification of materials with enzyme-like activity, most nanozymes have been discovered via trial-and-error methods, largely due to the lack of predictive descriptors. To fill this gap, this work identified eg occupancy as an effective descriptor for spinel oxides with peroxidase-like activity and successfully predicted that the eg value of spinel oxide nanozymes with the highest activity is close to 0.6. The LiCo2O4 with the highest activity, which is finally predicted, has achieved more than an order of magnitude improvement in activity. Density functional theory provides a rationale for the reaction path. This work contributes to the rational design of high performance nanozymes by using activity descriptors and provides a methodology to identify other descriptors for nanozymes.


Subject(s)
Nanostructures , Oxides , Aluminum Oxide , Magnesium Oxide , Catalysis
5.
Angew Chem Int Ed Engl ; 62(41): e202306185, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37507837

ABSTRACT

Prussian blue (PB) has emerged as a promising cathode material in aqueous batteries. It possesses two distinct redox centers, and the potassium ions (K+ ) are unevenly distributed throughout the compound, adding complexity to the interpretation of the K+ insertion/de-insertion kinetic mechanism. Traditional ensemble-averaged measurements are limited in uncovering the precise kinetic information of the PB particles, as the results are influenced by the construction of the porous composite electrode and the redox behavior from different particles. In this study, the electrochemical processes of individual PB particles were investigated using nano-impact electrochemistry. By varying the potentials, different types of transient current signals were obtained that revealed the kinetic mechanism of each oxidation/reduction reaction in combination with theoretical simulation. Additionally, a partially contradictory conclusion between single-particle analysis and the ensemble-averaged measurement was discussed. These findings contribute to a better understanding of the electrochemical processes of cathode materials with multiple redox centers, which facilitates the development of effective strategies to optimize these materials.

6.
Angew Chem Int Ed Engl ; 62(10): e202216795, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36627239

ABSTRACT

Targeted synthesis of kagome (kgm) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric "two-in-one" monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60 @m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.

7.
Angew Chem Int Ed Engl ; 61(25): e202116170, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35238141

ABSTRACT

We present a facile route towards a dual single-atom nanozyme composed of Zn and Mo, which utilizes the non-covalent nano-assembly of polyoxometalates, supramolecular coordination complexes as the metal-atom precursor, and a macroscopic amphiphilic aerogel as the supporting substrate. The dual single-atoms of Zn and Mo have a high content (1.5 and 7.3 wt%, respectively) and exhibit a synergistic effect and a peroxidase-like activity. The Zn/Mo site was identified as the main active center by X-ray absorption fine structure spectroscopy and density functional theory calculation. The detection of versatile analytes, including intracellular H2 O2 , glucose in serum, cholesterol, and ascorbic acid in commercial beverages was achieved. The nanozyme has an outstanding stability and maintained its performance after one year's storage. This study develops a new peroxidase-like nanozyme and provides a robust synthetic strategy for single-atom catalysts by utilizing an aerogel as a facile substrate that is capable of stabilizing various metal atoms.


Subject(s)
Antioxidants , Peroxidase , Catalysis , Peroxidase/chemistry , Peroxidases , Zinc
8.
Phys Chem Chem Phys ; 23(2): 1031-1037, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33346266

ABSTRACT

Mussel foot proteins (MFPs) strongly adhere to both hydrophilic and hydrophobic surfaces under wet conditions. This water-resistant adhesion of MFP is ascribed to catechol (1,2-dihydroxybenzene) which is highly contained in the MFP. Currently, little is known about the molecular details of the underwater adhesion of catechol onto a nonpolar hydrophobic surface. By using the density functional theory, we investigate the adhesion of catechol onto a wet graphite surface. We unveil the molecular geometry and energy in the course of the wet adhesion of catechol. Catechol adheres through π-π stacking with the underlying graphite. The surrounding water molecules further strengthen the adhesion by forming hydrogen bonds with catechol. In addition, a significant charge transfer has been observed from wet graphite to the catechol. Consequently, catechol adheres onto the present hydrophobic surface as strongly as onto a hydrophilic silica surface.

9.
Angew Chem Int Ed Engl ; 59(9): 3618-3623, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31828919

ABSTRACT

While dehydrogenases play crucial roles in tricarboxylic acid (TCA) cycle of cell metabolism, which are extensively explored for biomedical and chemical engineering uses, it is a big challenge to overcome the shortcomings (low stability and high costs) of recombinant dehydrogenases. Herein, it is shown that two-dimensional (2D) SnSe is capable of mimicking native dehydrogenases to efficiently catalyze hydrogen transfer from 1-(R)-2-(R')-ethanol groups. In contrary to susceptible native dehydrogenases, lactic dehydrogenase (LDH) for instance, SnSe is extremely tolerant to reaction condition changes (pH, temperature, and organic solvents) and displays extraordinary reusable capability. Structure-activity analysis indicates that the single-atom structure, Sn vacancy, and hydrogen binding affinity of SnSe may be responsible for their catalytic activity. Overall, this is the first report of a 2D SnSe nanozyme to mimic key dehydrogenases in cell metabolism.


Subject(s)
Biomimetic Materials/chemistry , Nanostructures/chemistry , Selenium/chemistry , Tin/chemistry , Biomimetic Materials/metabolism , Catalysis , Hydrogen-Ion Concentration , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Temperature , Thermodynamics
11.
Chemistry ; 24(62): 16692-16698, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30221415

ABSTRACT

The small Sc3 N cluster has only been found in such small cages as C2n (2n=68, 78, 80, 82), whereas the large M3 N (M=Y, Gd, Tb, Tm) clusters choose those larger cages C2n (2n=82-88). Herein, concrete experimental evidence is presented to establish the size effect of the internal metallic cluster on selecting the outer cage of endohedral metallofullerenes (EMFs) by using a medium-sized metal, lutetium, which possesses an ionic radius between Sc and Gd. A series of lutetium-containing EMFs have been obtained and their structures are unambiguously determined as Lu3 N@Ih (7)-C80 , Lu3 N@D5h (6)-C80 , Lu3 N@C2v (9)-C82 , Lu3 N@Cs (51365)-C84 , Lu3 N@D3 (17)-C86 , and Lu3 N@D2 (35)-C88 by single-crystal X-ray diffraction crystallography. It was confirmed that the encaged Lu3 N cluster always adopts a planar geometry in Lu3 N@C80-88 isomers to ensure substantial metal-cage/metal-nitrogen interactions. As a result, the Lu3 N cluster selects the C2v (9)-C82 cage, which also encapsulates Sc3 N, instead of the Cs (39663)-C82 cage which is more suitable for M3 N (M=Y, Gd, Tb, Tm). However, different from Sc3 N, Lu3 N can also template the C84-88 cages which are absent for Sc3 N-containing EMFs, confirming clearly the size effect of the internal cluster on selecting the outer cage.

12.
J Phys Chem A ; 122(41): 8183-8190, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30244577

ABSTRACT

Fullerenols possess excellent antioxidant activity, in which they can scavenge all of the major physiologically relevant reactive oxygen species (ROS). However, the underlying ROS-scavenging mechanisms of C60 fullerenols are not completely understood. Using density functional theory calculations, we investigated •OH-, O2•--, and H2O2-scavenging mechanisms of C60 fullerenols and the correlations between hydroxyl distributions and radical-scavenging ability. For scavenging •OH and O2•-, H• donation and electron transfer via hydrogen bonds, respectively, are the dominant mechanisms for C60 fullerenols. Although the obtained fullerenols simultaneously contain radicals and anions, there is an isolated OH anion which possesses the activity of eliminating H2O2. The •OH-scavenging activity depends on the distribution of hydroxyls according to the calculations for ten C60(OH)24 isomers. Fullerenols, in which the distribution of hydroxyls leads to low redox potential (ε) values, possess high scavenging activity. For the nonmagnetic fullerenols, activity relies on the number of sp2 substructures, in which the greater their number is, the lower the activity of the fullerenols. The results will be of fundamental importance in understanding the antioxidant activities of fullerenols.

13.
J Phys Chem A ; 122(12): 3115-3119, 2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29513535

ABSTRACT

The opening of the five-membered ring is the essential step for phthalimide and its derivatives to be used as the reactants in many chemical synthetic routes. Reportedly, such ring opening follows the concerted mechanism in methanol solvent, which, however, has an unreasonably high energy barrier (36.3 kcal mol-1 at the M06-2X/6-311++G(d,p) level of theory). By density functional theory calculations, we report that this ring opening prefers the alternatively stepwise mechanism. The stepwise mechanism has a much lower energy barrier (21.0 kcal mol-1 at the same level of theory) and thus is much more completive than the concerted one. The stepwise mechanism should be considered as the dominant mechanism responsible for the phthalimide ring opening when studying the kinetics of the relevant synthetic reactions in the future.

14.
Inorg Chem ; 56(5): 2490-2495, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28186737

ABSTRACT

Because of the lack of strong π-interaction in their bonds connecting building units, most of the metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) achieved so far are insulators or wide-bandgap semiconductors. The design of metal-like frameworks based on known chemical components is a challenge. This work reports that aryl borons can be linked together through isocyanides to form stable and easily accessible low-dimensional boronic-organic frameworks (BOFs). Particularly, the boron atoms in the BOFs behave like transition metals, forming the combined σ-donation and π-backdonation bonds instead of the usual electron-sharing bonds with the isocyanide linkers. This peculiar bonding endows BOFs with semimetal and narrow-bandgap semiconductor features, which are different from MOFs and COFs and may be found to be useful in future nanoelectronics. The results open a door to integrating the knowledge of the donor-acceptor chemistry in the main group into materials science.

15.
J Phys Chem A ; 121(13): 2688-2697, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28306260

ABSTRACT

The recent experimental realization of compound Tripp-B(CO)2 (denoted as 2a), where Tripp is 2,6-di(2,4,6-triisopropylphenyl)-phenyl), breaks through conventional knowledge that only transition metals can bind more than one CO to form multicarbonyl adducts. Compound 2a is stable in air but liberates CO under light. The B-CO bonds of 2a are considered to be similar to donor-acceptor bonds of transition metal complexes. To address the formation mechanism and chemical bonding of this novel type of boron compounds, we present a density functional theory study on the formation and photolysis of 2a and similar compounds. The results suggest that the formation of 2a is facile by three consecutive additions of CO to the terminal borylene metal complex, that is, the boron source of the synthesis. These CO additions can be practically accomplished via two different paths: CO direct addition and CO migration followed by addition. Such mechanisms can be excellently rationalized by the donor-acceptor bonding model of the terminal borylene complex, which in turn suggests that using donor-acceptor bonds for 2a is natural for understanding the mechanisms. Liberation of CO from 2a and its similar compounds has higher energy barriers at the ground states than that at the triplet states by 40 kcal/mol. These energy barriers explain the experimentally observed air stability and photolysis of these compounds. The results for the first time provide mechanistic insights for the unprecedented chemical processes; they allow evaluation of the applicability of donor-acceptor bonding in main-group compounds from the new perspective of chemical reactions.

16.
Inorg Chem ; 55(16): 7962-8, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27447742

ABSTRACT

A new europium complex coordinated between a Eu(III) ion and an unsymmetrical diarylperfluorocyclopentene yields a light-controlled diarylethene-europium dyad, DAE@TpyEu(tta)3, whose photophysical properties can be reversibly switched by optical stimuli. When DAE@TpyEu(tta)3 is exposed to 365 nm UV light, an efficient intramolecular photochromic fluorescence resonance energy transfer (pc-FRET) occurs between the emission of the Eu(3+) donor (D) and the absorption of the diarylethene acceptor (A) in closed-form DAE@TpyEu(tta)3 accompanied by luminescence quenching. However, the pc-FRET process could be effectively inhibited by visible light (λ > 600 nm) irradiation, and the lanthanide emission of DAE@TpyEu(tta)3 is rapidly recovered. Furthermore, this luminescent lanthanide molecular switch could serve as a highly reliable and sensitive "turn on" fluorescent marker in living cells irradiated by red light without any optical interference.

18.
J Am Chem Soc ; 137(50): 15882-91, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26642084

ABSTRACT

Metal and alloy nanomaterials have intriguing oxidase- and superoxide dismutation-like (SOD-like) activities. However, origins of these activities remain to be studied. Using density functional theory (DFT) calculations, we investigate mechanisms of oxidase- and SOD-like properties for metals Au, Ag, Pd and Pt and alloys Au4-xMx (x = 1, 2, 3; M = Ag, Pd, Pt). We find that the simple reaction-dissociation of O2-supported on metal surfaces can profoundly account for the oxidase-like activities of the metals. The activation (Eact) and reaction energies (Er) calculated by DFT can be used to effectively predict the activity. As verification, the calculated activity orders for series of metal and alloy nanomaterials are in excellent agreement with those obtained by experiments. Briefly, the activity is critically dependent on two factors, metal compositions and exposed facets. On the basis of these results, an energy-based model is proposed to account for the activation of molecular oxygen. As for SOD-like activities, the mechanisms mainly consist of protonation of O2(•-) and adsorption and rearrangement of HO2(•) on metal surfaces. Our results provide atomistic-level insights into the oxidase- and SOD-like activities of metals and pave a way to the rational design of mimetic enzymes based on metal nanomaterials. Especially, the O2 dissociative adsorption mechanism will serve as a general way to the activation of molecular oxygen by nanosurfaces and help understand the catalytic role of nanomaterials as pro-oxidants and antioxidants.


Subject(s)
Gold/pharmacology , Oxidoreductases/metabolism , Oxygen/metabolism , Palladium/pharmacology , Platinum/pharmacology , Silver/pharmacology , Superoxide Dismutase/metabolism
19.
Chemistry ; 21(3): 960-4, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25413871

ABSTRACT

Nanocarbon oxides have been proved to possess great peroxidase-like activity, catalyzing the oxidation of many peroxidase substrates, such as 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine dihydrochloride (OPD), accompanied by a significant color change. This chromogenic reaction is widely used to detect glucose and occult blood. The chromogenic reaction was intensively investigated with density functional theory and molecular-level insights into the nature of peroxidase-like activity were gained. A radical mechanism was unraveled and the carboxyl groups of nanocarbon oxides were identified as the reactive sites. Aromatic domains connected with the carboxyl groups were critical to the peroxidase-like activity.


Subject(s)
Nanotubes, Carbon/chemistry , Oxides/chemistry , Benzidines/chemistry , Benzidines/metabolism , Catalysis , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Peroxidase/chemistry , Peroxidase/metabolism , Phenylenediamines/chemistry , Phenylenediamines/metabolism , Thermodynamics
20.
J Nanosci Nanotechnol ; 14(7): 5370-4, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24758033

ABSTRACT

A new electron transfer dyad, covalently linked C70-corrole, was prepared via C70 and 10-(4-Formylaryl)-5,15-bis(pentafluorophenyl). The structures and the properties of the new material were investigated by HPLC, MALDI-TOF-MS, UV-Vis-NIR spectroscopy, NMR, fluorescence analysis and CV/DPV. The free-energy of C70-corrole calculated by employing the redox potentials and singlet excited-state energy suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity, which agreed with the results of the theoretical calculation.

SELECTION OF CITATIONS
SEARCH DETAIL