ABSTRACT
The high-order three-dimensional (3D) organization of regulatory genomic elements provides a topological basis for gene regulation, but it remains unclear how multiple regulatory elements across the mammalian genome interact within an individual cell. To address this, herein, we developed scNanoHi-C, which applies Nanopore long-read sequencing to explore genome-wide proximal high-order chromatin contacts within individual cells. We show that scNanoHi-C can reliably and effectively profile 3D chromatin structures and distinguish structure subtypes among individual cells. This method could also be used to detect genomic variations, including copy-number variations and structural variations, as well as to scaffold the de novo assembly of single-cell genomes. Notably, our results suggest that extensive high-order chromatin structures exist in active chromatin regions across the genome, and multiway interactions between enhancers and their target promoters were systematically identified within individual cells. Altogether, scNanoHi-C offers new opportunities to investigate high-order 3D genome structures at the single-cell level.
ABSTRACT
The progression and malignancy of many tumors are associated with increased tissue stiffness. Conversely, the oncogenically transformed cells can be confined in soft stroma. Yet, the underlying mechanisms by which soft matrix confines tumorigenesis and metastasis remain elusive. Here, we show that pancreatic cancer cells are suppressed in the soft extracellular matrix, which is associated with YAP1 degradation through autophagic-lysosomal pathway rather than Hippo signal mediated proteasome pathway. In the soft stroma, PTEN is upregulated and activated, which consequently promotes lysosomal biogenesis, leading to the activation of cysteine-cathepsins for YAP1 degradation. In vitro, purified cathepsin L can directly digest YAP1 under acidic conditions. Lysosomal stress, either caused by chloroquine or overexpression of cystatin A/B, results in YAP1 accumulation and malignant transformation. Likewise, liver fibrosis induced stiffness can promote malignant potential in mice. Clinical data show that down-regulation of lysosomal biogenesis is associated with pancreatic fibrosis and stiffness, YAP1 accumulation, and poor prognosis in PDAC patients. Together, our findings suggest that soft stroma triggers lysosomal flux-mediated YAP1 degradation and induces cancer cell dormancy.
Subject(s)
Adaptor Proteins, Signal Transducing , Lysosomes , Pancreatic Neoplasms , Transcription Factors , YAP-Signaling Proteins , Humans , Lysosomes/metabolism , YAP-Signaling Proteins/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Proteolysis , Mice, Nude , Extracellular Matrix/metabolism , Cell Proliferation , Autophagy , Cathepsin L/metabolism , Cathepsin L/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Cathepsins/metabolism , Signal TransductionABSTRACT
Ru-related catalysts have shown excellent performance for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR); however, a deep understanding of Ru-active sites on a nanoscale heterogeneous support for hydrogen catalysis is still lacking. Herein, a click chemistry strategy is proposed to design Ru cluster-decorated nanometer RuxFe3-xO4 heterointerfaces (Ru/RuxFe3-xO4) as highly effective bifunctional hydrogen catalysts. It is found that introducing Ru into nanometric Fe3O4 species breaks the symmetry configuration and optimizes the active site in Ru/RuxFe3-xO4 for HER and HOR. As expected, the catalyst displays prominent alkaline HER and HOR performance with mass activity much higher than that of commercial Pt/C as well as robust stability during catalysis because of the strong interaction between the Ru cluster and the RuxFe3-xO4 support, and the optimized adsorption intermediate (Had and OHad). This work sheds light on a promsing approach to improving the electrocatalysis performance of catalysts by the breaking of atomic dimension symmetry.
ABSTRACT
Long non-coding RNAs (lncRNAs) serve as vital candidates to mediate cancer risk. Here, we aimed to identify the risk single-nucleotide polymorphisms (SNPs)-induced lncRNAs and to investigate their roles in gastric cancer (GC) development. Through integrating the differential expression analysis of lncRNAs in GC tissues and expression quantitative trait loci analysis in normal stomach tissues and GC tissues, as well as genetic association analysis based on GC genome-wide association studies and an independent validation study, we identified four lncRNA-related SNPs consistently associated with GC risk, including SNHG7 [odds ratio (OR)â =â 1.16, 95% confidence interval (CI): 1.09-1.23], NRAV (ORâ =â 1.11, 95% CI: 1.05-1.17), LINC01082 (ORâ =â 1.16, 95% CI: 1.08-1.22) and FENDRR (ORâ =â 1.16, 95% CI: 1.07-1.25). We further found that a functional SNP rs6489786 at 12q24.31 increases binding of MEOX1 or MEOX2 at a distal enhancer and results in up-regulation of NRAV. The functional assays revealed that NRAV accelerates GC cell proliferation while inhibits GC cell apoptosis. Mechanistically, NRAV decreases the expression of key subunit genes through the electron transport chain, thereby driving the glucose metabolism reprogramming from aerobic respiration to glycolysis. These findings suggest that regulating lncRNA expression is a crucial mechanism for risk-associated variants in promoting GC development.
Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Genome-Wide Association Study/methods , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Metabolic Reprogramming , Glucose , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, NeoplasticABSTRACT
Colloidal quantum dots (QDs) with a wide color gamut and high luminescent efficiency are promising for next-generation electronic and photonic devices. However, precise and scalable patterning of QDs without degrading their properties and their integration into commercially relevant devices, such as digitally addressable QD light-emitting diode (QLED) displays, remain challenging. Here, we develop electronically optimized diazirine-based cross-linkers for nondestructive, direct photopatterning of QDs and, ultimately, building the active-matrix QLED displays. The key to the cross-linker design is the introduction of electron-donating substituents that permit the formation of ground-state singlet carbenes for air-stable and benign QD photopatterning. Under ambient conditions, these cross-linkers enable the patterning of heavy metal-free QDs at a resolution of over 13,000 pixels per inch using commercial i-line photolithography. The patterned QD layers fully preserved their optical and optoelectronic properties. Pixelated electroluminescent devices with patterned InP/ZnSe/ZnS QD layers show a peak external quantum efficiency of 15.3% and a maximum luminance of about 40,000 cd m-2, outperforming those made by existing QD patterning approaches. We further show the seamless integration of patterned QLEDs with thin-film transistor circuits and the fabrication of dual-color active-matrix displays. These results underscore the importance of designing photochemistry for QD patterning, and promise the implementation of direct photopatterning methods in manufacturing commercial QLED displays and other integrated QD device platforms.
ABSTRACT
The emerging field of nanoscale infrared (nano-IR) offers label-free molecular contrast, yet its imaging speed is limited by point-by-point traverse acquisition of a three-dimensional (3D) data cube. Here, we develop a spatial-spectral network (SS-Net), a miniaturized deep-learning model, together with compressive sampling to accelerate the nano-IR imaging. The compressive sampling is performed in both the spatial and spectral domains to accelerate the imaging process. The SS-Net is trained to learn the mapping from small nano-IR image patches to the corresponding spectra. With this elaborated mapping strategy, the training can be finished quickly within several minutes using the subsampled data, eliminating the need for a large-labeled dataset of common deep learning methods. We also designed an efficient loss function, which incorporates the image and spectral similarity to enhance the training. We first validate the SS-Net on an open stimulated Raman-scattering dataset; the results exhibit the potential of 10-fold imaging speed improvement with state-of-the-art performance. We then demonstrate the versatility of this approach on atomic force microscopy infrared (AFM-IR) microscopy with 7-fold imaging speed improvement, even on nanoscale Fourier transform infrared (nano-FTIR) microscopy with up to 261.6 folds faster imaging speed. We further showcase the generalization of this method on AFM-force volume-based multiparametric nanoimaging. This method establishes a paradigm for rapid nano-IR imaging, opening new possibilities for cutting-edge research in materials, photonics, and beyond.
ABSTRACT
PURPOSE: This phase I/II trial (ChiCTR2000032879) assessed the safety and efficacy of toripalimab combined with chemoradiotherapy for locally advanced cervical squamous cell carcinoma. METHODS AND MATERIALS: Twenty-two patients, regardless of their programmed death ligand-1 (PD-L1) status, received toripalimab combined with concurrent chemoradiotherapy (CCRT). CCRT included cisplatin (40 mg/m2, once weekly for 5 weeks), radiotherapy (45-50.4 Gy/25-28 Fx, 5 fractions weekly), followed by brachytherapy (24-30 Gy/3-5 Fx) and toripalimab (240 mg, intravenous) on days 1, 22 and 43 during CCRT. The primary endpoints were safety and 2-year progression-free survival (PFS). The secondary endpoints included 2-year local control (LC), local regional control and overall survival (OS). RESULTS: All patients successfully completed CCRT and toripalimab treatment. Grade III and higher adverse events (AEs) were observed in 11 patients (11/22, 50%), and no patient experienced grade V AEs. The objective response rate (ORR) was 100%. At the data cutoff (June 30, 2023), the median follow-up was 31.8 months (9.5 to 37.8 months). The 2-year PFS rate was 81.8%. The 2-year LC and local regional control rates were both 95.5%, and the 2-year OS rate was 90.9%. CONCLUSIONS: Toripalimab combined with CCRT achieved good tolerance and showed promising anti-tumor effects in patients with locally advanced cervical cancer.
Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Squamous Cell , Chemoradiotherapy , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/mortality , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Middle Aged , Chemoradiotherapy/methods , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/drug therapy , Aged , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effectsABSTRACT
INTRODUCTION: The prospective study aimed to investigate the long-term associated risks of cirrhosis and hepatocellular carcinoma (HCC) across various subtypes of steatotic liver disease (SLD). METHODS: We enrolled 332,175 adults who participated in a health screening program between 1997 and 2013. Participants were categorized into various subtypes, including metabolic dysfunction-associated SLD (MASLD), MASLD with excessive alcohol consumption (MetALD), and alcohol-related liver disease (ALD), based on ultrasonography findings, alcohol consumption patterns, and cardiometabolic risk factors. We used computerized data linkage with nationwide registries from 1997 to 2019 to ascertain the incidence of cirrhosis and HCC. RESULTS: After a median follow-up of 16 years, 4,458 cases of cirrhosis and 1,392 cases of HCC occurred in the entire cohort, resulting in an incidence rate of 86.1 and 26.8 per 100,000 person-years, respectively. The ALD group exhibited the highest incidence rate for cirrhosis and HCC, followed by MetALD, MASLD, and non-SLD groups. The multivariate adjusted hazard ratios for HCC were 1.92 (95% confidence interval [CI] 1.51-2.44), 2.91 (95% CI 2.11-4.03), and 2.59 (95% CI 1.93-3.48) for MASLD, MetALD, and ALD, respectively, when compared with non-SLD without cardiometabolic risk factors. The pattern of the associated risk of cirrhosis was similar to that of HCC (all P value <0.001). The associated risk of cirrhosis for ALD increased to 4.74 (95% CI 4.08-5.52) when using non-SLD without cardiometabolic risk factors as a reference. DISCUSSION: This study highlights elevated risks of cirrhosis and HCC across various subtypes of SLD compared with non-SLD, emphasizing the importance of behavioral modifications for early prevention.
Subject(s)
Carcinoma, Hepatocellular , Liver Cirrhosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/epidemiology , Male , Liver Neoplasms/epidemiology , Female , Middle Aged , Liver Cirrhosis/epidemiology , Liver Cirrhosis/complications , Incidence , Prospective Studies , Adult , Risk Factors , Fatty Liver/epidemiology , Fatty Liver/complications , Aged , Taiwan/epidemiology , Follow-Up StudiesABSTRACT
Baculoviruses are virulent pathogens that infect a wide range of insects. They initiate infections via specific interactions between the structural proteins on the envelopes of occlusion-derived virions (ODVs) and the midgut cell surface receptors in hosts. However, host factors that are hijacked by baculoviruses for efficient infection remain largely unknown. In this study, we identified a membrane-associated protein sucrose hydrolase (BmSUH) as an ODV binding factor during Bombyx mori nucleopolyhedrovirus (BmNPV) primary infection. BmSUH was specifically expressed in the midgut microvilli where the ODV-midgut fusion happened. Knockout of BmSUH by CRISPR/Cas9 resulted in a significantly higher survival rate after BmNPV orally infection. Liquid chromatography-tandem mass spectrometry analysis and co-immunoprecipitation analysis demonstrated that PIF protein complex required for ODV binding could interact with BmSUH. Furthermore, fluorescence dequenching assay showed that the amount of ODV binding and fusion to the midgut decreased in BmSUH mutants compared to wild-type silkworm, suggesting the role of BmSUH as an ODV binding factor that mediates the ODV entry process. Based on a multilevel survey, the data showed that BmSUH acted as a host factor that facilitates BmNPV oral infection. More generally, this study indicated that disrupting essential protein-protein interactions required for baculovirus efficient entry may be broadly applicable to against viral infection.
Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Membrane Proteins/metabolism , Nucleopolyhedroviruses/metabolism , Digestive System , BaculoviridaeABSTRACT
BACKGROUND: Diabetic macroangiopathy has been the main cause of death and disability in diabetic patients. The mechanisms underlying smooth muscle cell transformation and metabolic reprogramming other than abnormal glucose and lipid metabolism remain to be further explored. METHOD: Single-cell transcriptome, spatial transcriptome and spatial metabolome sequencing were performed on anterior tibial artery from 11 diabetic patients with amputation. Multi-omics integration, cell communication analysis, time series analysis, network analysis, enrichment analysis, and gene expression analysis were performed to elucidate the potential molecular features. RESULT: We constructed a spatial multiomics map of diabetic blood vessels based on multiomics integration, indicating single-cell and spatial landscape of transcriptome and spatial landscape of metabolome. At the same time, the characteristics of cell composition and biological function of calcified regions were obtained by integrating spatial omics and single cell omics. On this basis, our study provides favorable evidence for the cellular fate of smooth muscle cells, which can be transformed into pro-inflammatory chemotactic smooth muscle cells, macrophage-like smooth muscle cells/foam-like smooth muscle cells, and fibroblast/chondroblast smooth muscle cells in the anterior tibial artery of diabetic patients. The smooth muscle cell phenotypic transformation is driven by transcription factors net including KDM5B, DDIT3, etc. In addition, in order to focus on metabolic reprogramming apart from abnormal glucose and lipid metabolism, we constructed a metabolic network of diabetic vascular activation, and found that HNMT and CYP27A1 participate in diabetic vascular metabolic reprogramming by combining public data. CONCLUSION: This study constructs the spatial gene-metabolism map of the whole anterior tibial artery for the first time and reveals the characteristics of vascular calcification, the phenotypic transformation trend of SMCs, and the transcriptional driving network of SMCs phenotypic transformation of diabetic macrovascular disease. In the perspective of combining the transcriptome and metabolome, the study demonstrates the activated metabolic pathways in diabetic blood vessels and the key genes involved in diabetic metabolic reprogramming.
Subject(s)
Diabetic Angiopathies , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Single-Cell Analysis , Transcriptome , Humans , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/genetics , Diabetic Angiopathies/pathology , Diabetic Angiopathies/physiopathology , Male , Gene Regulatory Networks , Metabolomics , Gene Expression Profiling , Middle Aged , Cellular Reprogramming , Aged , Female , Metabolome , Vascular Calcification/metabolism , Vascular Calcification/genetics , Vascular Calcification/pathology , Energy Metabolism/genetics , Gene Expression Regulation , Metabolic Reprogramming , MultiomicsABSTRACT
We have demonstrated the capability of spectral multiplexing in multi-distance diffractive imaging, enabling the reconstruction of samples with diverse spectral responses. While previous methods such as ptychography utilize redundancy in radial diffraction data to achieve information multiplexing, they typically require capturing a substantial amount of diffraction data. In contrast, our approach effectively harnesses the redundancy information in axial diffraction data. This significantly reduces the amount of diffraction data required and relaxes the stringent requirements on optical path stability.
ABSTRACT
BACKGROUND: Despite evidence supporting the high correlation of the novel platelet-to-albumin ratio (PAR) with survival in diverse malignancies, its prognostic relevance in nasopharyngeal carcinoma (NPC) remains underexplored. This study aimed to examine the link between PAR and overall survival (OS) in NPC and to establish a predictive model based on this biomarker. METHODS: We retrospectively assembled a cohort consisting of 858 NPC patients who underwent concurrent chemoradiotherapy (CCRT). Utilizing the maximally selected log-rank method, we ascertained the optimal cut-off point for the PAR. Subsequently, univariate and multivariate Cox proportional hazards models were employed to discern factors significantly associated with OS and to construct a predictive nomogram. Further, we subjected the nomogram's predictive accuracy to rigorous independent validation. RESULTS: The discriminative optimal PAR threshold was determined to be 4.47, effectively stratifying NPC patients into two prognostically distinct subgroups (hazard ratio [HR] = 0.53; 95% confidence interval [CI]: 0.28-0.98, P = 0.042). A predictive nomogram was formulated using the results from multivariate analysis, which revealed age greater than 45 years, T stage, N stage, and PAR score as independent predictors of OS. The nomogram demonstrated a commendable predictive capability for OS, with a C-index of 0.69 (95% CI: 0.64-0.75), surpassing the performance of the conventional staging system, which had a C-index of 0.56 (95% CI: 0.65-0.74). CONCLUSIONS: In the context of NPC patients undergoing CCRT, the novel nutritional-inflammatory biomarker PAR emerges as a promising, cost-efficient, easily accessible, non-invasive, and potentially valuable predictor of prognosis. The predictive efficacy of the nomogram incorporating the PAR score exceeded that of the conventional staging approach, thereby indicating its potential as an enhanced prognostic tool in this clinical setting.
Subject(s)
Chemoradiotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Nomograms , Humans , Female , Male , Retrospective Studies , Middle Aged , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/blood , Nasopharyngeal Carcinoma/pathology , Chemoradiotherapy/methods , Prognosis , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/blood , Nasopharyngeal Neoplasms/pathology , Adult , Blood Platelets/pathology , Aged , Serum Albumin/analysis , Neoplasm Staging , Young Adult , Proportional Hazards Models , Platelet Count , Biomarkers, Tumor/bloodABSTRACT
DNA methylation, chromatin accessibility, and gene expression represent different levels information in biological process, but a comprehensive multiomics analysis of the mammalian heart is lacking. Here, we applied nucleosome occupancy and methylome sequencing, which detected DNA methylation and chromatin accessibility simultaneously, as well as RNA-seq, for multiomics analysis of the 4 chambers of adult and fetal human hearts, and adult mouse hearts. Our results showed conserved region-specific patterns in the mammalian heart at transcriptome and DNA methylation level. Adult and fetal human hearts showed distinct features in DNA methylome, chromatin accessibility, and transcriptome. Novel long noncoding RNAs were identified in the human heart, and the gene expression profiles of major cardiovascular diseases associated genes were displayed. Furthermore, cross-species comparisons revealed human-specific and mouse-specific differentially expressed genes between the atria and ventricles. We also reported the relationship among multiomics and found there was a bell-shaped relationship between gene-body methylation and expression in the human heart. In general, our study provided comprehensive spatiotemporal and evolutionary insights into the regulation of gene expression in the heart.
Subject(s)
Heart/growth & development , Heart/physiology , Animals , Chromatin/metabolism , CpG Islands/genetics , DNA/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenomics/methods , Gene Expression/genetics , Gene Expression Profiling/methods , Heart Ventricles/growth & development , Heart Ventricles/metabolism , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Nucleosomes/metabolism , Organ Specificity/genetics , RNA, Long Noncoding/metabolism , Species Specificity , Transcriptome/geneticsABSTRACT
Chemical protein synthesis offers a powerful way to access otherwise-difficult-to-obtain proteins such as mirror-image proteins. Although a large number of proteins have been chemically synthesized to date, the acquisition to proteins containing hydrophobic peptide fragments has proven challenging. Here, we describe an approach that combines the removable backbone modification strategy and the peptide hydrazide-based native chemical ligation for the chemical synthesis of a 28 kDa full-length PET degrading enzyme IGGC (a higher depolymerization efficiency of variant leaf-branch compost cutinase (LCC)) containing hydrophobic peptide segments. The synthetic ICCG exhibits the enzymatic activity and will be useful in establishing the corresponding mirror-image version of ICCG.
Subject(s)
Polyethylene Terephthalates , Hydrolases/chemistry , Peptide Fragments , Peptides/chemistry , Polyethylene Terephthalates/chemistryABSTRACT
In this work, we rationally designed and synthesized two novel triazene-amonafide derivatives 2-(2-(diisopropylamino)ethyl)-5-(3,3-dimethyltriaz-1-en-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (D-11) and 5-(3,3-diethyltriaz-1-en-1-yl)-2-(2-(diisopropylamino)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (D-12) as potential antitumor agents. The DNA damage induced by the intercalation mode of D-11 (D-12) towards DNA was electrochemically detected through the construction of efficient biosensors. The consecutive processes of reversible redox of naphthylimide ring and irreversible oxidation of triazene moiety were elucidated on the surface of glassy carbon electrode (GCE) by CV, SWV, and DPV methods. Electrochemical biosensors were obtained through the immobilization of ctDNA, G-quadruplexes, poly(dG), and poly(dA), respectively, on the clean surface of GCE. After the incubation of biosensors with D-11 or D-12, the peaks of dGuo and dAdo decreased prominently, and the peak of 8-oxoGua appeared at +0.50 V, suggesting that the interaction between D-11 (D-12) and DNA could result in the oxidative damage of guanine. Unexpected, the as-prepared DNA biosensor possessed satisfactory anti-interference property and good practicability in real samples. UV-vis and fluorescence spectra, and gel electrophoresis assays were employed to further confirm the intercalation mode of D-11 (D-12) towards DNA base pairs. Moreover, D-11 was proved to exhibit stronger anti-proliferation activity than mitionafide and amonafide against both A549 and HeLa cell lines.
Subject(s)
Adenine , Antineoplastic Agents , DNA , Organophosphonates , Humans , HeLa Cells , DNA/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Carbon/chemistry , Triazenes , Oxidative Stress , IsoquinolinesABSTRACT
Accurate prediction and measurement of yield stress are crucial for optimizing sludge treatment and disposal. However, the differences and applicability of various methods for measuring yield stress are subjects of ongoing debate. Meanwhile, literature on measuring sludge yield stress is limited to low solid concentrations (TS <10%), understanding and studying the yield stress of medium to high solid concentration sludge is crucial due to increasingly stringent standards for sludge treatment and disposal. So, this study employed a rotational rheometer to measure sludge yield stress across a wide range of TS (4-50%) using steady shear, dynamic oscillatory shear, and transient shear. The study derived significant conclusions by comparing and summarizing the applicability and limitations of each testing method: Dynamic oscillatory shear methods, including G'-σ curve method, γ-σ curve method, and G**γc method can measure sludge yield stress ranging from 4% to 40% TS, while other methods are restricted to low or limited solid concentrations; The G' = Gâ³ method, utilizing the intersection of G' and Gâ³ curves, consistently yields the highest value for yield stress when 4%≤ TS ≤ 12%; The rotational rheometer cannot measure sludge yield stress when the solid concentration exceeds 40% TS; The relationship between sludge yield stress and solid concentration is stronger as a power-law for TS ≤ 25%, transitioning to linear for higher concentrations (28%≤ TS <40%). This study systematically explores the applicability and limitations of various measurement methods for characterizing sludge yield stress across a wide range of solid concentrations, providing valuable guidance for scientific measurement and highlighting challenging research issues.
Subject(s)
Sewage , Rheology/methods , Waste Disposal, Fluid/methodsABSTRACT
OBJECTIVE: To investigate the correlation between serum Rac1 enzyme (Rac1) level with asthma control, airway inflammatory response and lung function in asthmatic children. METHODS: A retrospective analysis was performed on 79 children with asthma who were diagnosed and treated in our hospital from June 2020 to January 2023. According to the severity of the disease, the children were divided into mild group (25 cases), moderate group (30 cases) and severe group (24 cases). 36 healthy children who underwent physical examination at the same period in our hospital were selected as the control group. The state of an illness, control level, serum mRNA Rac1, inflammatory factors, and lung function of the children in two groups were compared between the control group and the observation group. RESULTS: The Rac1 mRNA levels, forced vital capacity (FVC), forced expiratory volume in one second/FVC (FEV1/FVC), peak expiratory flow (PEF), and maximum mid-expiratory flow (MMEF) in the observation group were significantly lower than these in the control group (P < 0.05). The tumor necrosis factor-alpha (TNF-α), interleukin-5 (IL-5), IL-6, and IL-33 in the observation group were markedly higher than these in the control group (P < 0.05). As the state of an illness worsened, the Rac1 mRNA levels, FVC, FEV1/FVC, PEF, and MMEF gradually reduced (P < 0.05), while the levels of TNF-α, IL-5, IL-6, and IL-33 increased (P < 0.05). As the degree of disease control improved, the Rac1 mRNA levels, FVC, FEV1/FVC, PEF, and MMEF gradually elevated (P < 0.05), and the levels of TNF- α, IL-5, IL-6, and IL-33 showed the opposite trend (P < 0.05). Rac1 was negatively related to the levels of TNF-α, IL-5, IL-6 and IL-33 (P < 0.05), and positively to the levels of FVC, FEV1/FVC, PEF and MMEF (P < 0.001). Rac1 mRNA levels, FVC, FEV1/FVC, PEF and MMEF were protective factors, while TNF-α, IL-5, IL-6 and IL-33 were risk factors for the prognosis of children with asthma (P < 0.05). CONCLUSION: Children with asthma have obviously lower serum Rac1 mRNA levels, higher inflammatory factor levels and lower lung function. Serum Rac1 mRNA level may be associated with better asthma control, lower airway inflammatory response, better lung function and lower disease severity. It has important reference value for the evaluation of the state of an illness, efficacy and prognosis of children with bronchial asthma.
Subject(s)
Asthma , rac1 GTP-Binding Protein , Humans , Asthma/physiopathology , Asthma/genetics , Asthma/blood , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Female , Male , Child , Retrospective Studies , Vital Capacity , Forced Expiratory Volume , Lung/physiopathology , Respiratory Function Tests , Tumor Necrosis Factor-alpha/blood , Case-Control Studies , Interleukin-33/blood , Interleukin-33/genetics , Child, Preschool , Interleukin-6/blood , Adolescent , Severity of Illness Index , Interleukin-5/blood , RNA, Messenger/metabolismABSTRACT
Environmental aflatoxin B1 (AFB1) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB1-exposed hepatocyte-derived EVs (AFB1-EVs) were extracted, and the functional effects of AFB1-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB1 exposure-induced liver fibrogenesis. Our results revealed that an environment-level AFB1 exposure induced liver fibrosis via HSCs activation in mice, while the AFB1-EVs mediated hepatotoxicity and liver fibrogenesis in vitro and in vivo. AFB1 exposure in vitro increased PINK1/Parkin-dependent mitophagy in hepatocytes, where upregulated transcription of the PARK2 gene via p53 nuclear translocation and mitochondrial recruitment of Parkin, and promoted AFB1-EVs-mediated mitochondria-trafficking communication between hepatocytes and HSCs. The knockdown of Parkin in HepaRG cells reversed HSCs activation by blocking the mitophagy-related AFB1-EVs trafficking. This study further revealed that the hepatic fibrogenesis of AFB1 exposure was rescued by genetic intervention with siPARK2 or p53's Pifithrin-α (PFTα) inhibitors. Furthermore, AFB1-EVs-induced HSCs activation was relieved by GW4869 pharmaceutic inhibition of EVs secretion. These results revealed a novel mechanism that AFB1 exposure-induced p53-Parkin signal axis regulated mitophagy-dependent hepatocyte-derived EVs to mediate the mitochondria-trafficking intercellular communication between hepatocytes and HSCs in the local hepatotoxic microenvironment to promote the activated HSCs-associated liver fibrogenesis. Our study provided insight into p53-Parkin-dependent pathway regulation and promised an advanced strategy targeting intervention to EVs-mediated mitochondria trafficking for preventing xenobiotics-induced liver fibrosis.
Subject(s)
Aflatoxin B1 , Extracellular Vesicles , Hepatic Stellate Cells , Hepatocytes , Liver Cirrhosis , Mitophagy , Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Aflatoxin B1/toxicity , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Mitophagy/drug effects , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Animals , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Male , Humans , Mice, Inbred C57BL , Signal Transduction/drug effectsABSTRACT
Circ_UBAP2 is extensively engaged in regulating the development of various malignancies, containing osteosarcoma (OS). However, its biological significance and function are not fully understood. In this study, we found that circ_UBAP2 and HMGA1 levels were up-regulated, and miR-370-3p and miR-665 expressions were decreased in osteosarcoma tissues. Inhibition of circ_UBAP2 or HMGA1 expression in OS cells, cell viability, invasion and migration abilitities were notably hindered, and cell apoptosis abilities were increased. Bioinformatics analysis predicted that miR-665 and miR-370-3p were the downstream targets of circ_UBAP2, and the dual luciferase experiment demonstrated the correlation between them. In addition, inhibition of miR-665 and miR-370-3p expression could significantly reverse the impact of knocking down circ_UBAP2 on OS cells. HMGA1 was discovered to become the downstream target of both miR-665 and miR-370-3p. It was shown that over-expression of miR-665 or miR-370-3p notably stimulated the cell growth, invasion, and migration of osteosarcoma cells, while hindered cell apoptosis. Nevertheless, this effect could be reversed by concurrent over-expression of HMGA1. Our data strongly prove that circ_UBAP2 makes a vital impact on promoting the proliferation, invasion as well as migration of osteosarcoma cells via down-regulating the level of miR-665 and miR-370-3p, and later up-regulating the level of HMGA1. In conclusion, circ_UBAP2 is upregulated in osteosarcoma, and it competitively adsorbs miR-370-3p and miR-665, resulting in up-regulation of HMGA1, thus promoting OS development.
Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , HMGA1a Protein/genetics , Cell Line, Tumor , Osteosarcoma/metabolism , Transcription Factors , Bone Neoplasms/pathology , Cell Proliferation/genetics , Cell Movement/geneticsABSTRACT
PURPOSE: The aim of this study is to investigate the effect of double-tract reconstruction on short-term clinical outcome, quality of life and nutritional status of patients after proximal gastrectomy by comparing with esophagogastrostomy and total gastrectomy with Roux-en-Y reconstruction. METHODS: The clinical data of patients who underwent double tract reconstruction (DTR), esophagogastrostomy (EG), total gastrectomy with Roux-en-Y reconstruction (TG-RY) were retrospectively collected from May 2020 to May 2022. The clinical characteristics, short-term surgical outcomes, postoperative quality of life and nutritional status were compared among the three groups. RESULTS: Compared with the DTR group, the operation time in the TG group was significantly shorter (200(180,240) minutes vs. 230(210,255) minutes, p < 0.01), and more lymph nodes were removed (28(22, 25) vs. 22(19.31), p < 0.01), there were no significant differences in intraoperative blood loss, first flatus time, postoperative hospital stay and postoperative complication rate among the three groups. Postoperative digestive tract angiography was completed in 36 patients in the DTR group, of which 21 (58.3%) showed double-tract type of food passing. The incidence of postoperative reflux symptoms was 9.2% in the DTR group, 43.8% in the EG group and 23.2% in the TG group, repectively (P < 0.01). EORTCQLQ-STO22 questionnaire survey showed that compared with EG group, DTR group had fewer reflux symptoms (P < 0.05), fewer anxiety symptoms (P < 0.05) and more swallowing symptoms (P < 0.05). Compared with TG group, DTR group had fewer reflux symptoms (P < 0.05). There were no other significant differences between the two groups. Compared with TG group and EG group, DTR can better maintain postoperative BMI, and there is no statistical difference between the three groups in terms of hemoglobin and albumin. CONCLUSIONS: Although partial double-tract reconstruction approach does not always ensure food to enter the distal jejunum along the two pathways as expected, it still shows satisfactory anti-reflux effect. Moreover, it might improve patients' quality of life and maintain better nutritional status comparing with gastroesophageal anastomosis and total gastrectomy with Roux-en-Y reconstruction.