Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
BMC Microbiol ; 24(1): 301, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134942

ABSTRACT

BACKGROUND: Penicillium oxalicum is an important fungal agent in the composting of cattle manure, but the changes that occur in the microbial community, physicochemical factors, and potential functions of microorganisms at different time points are still unclear. To this end, the dynamic changes occurring in the microbial community and physicochemical factors and their correlations during the composting of cattle manure with Penicillium oxalicum were analysed. RESULTS: The results showed that the main phyla observed throughout the study period were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Halanaerobiaeota, Apicomplexa and Ascomycota. Linear discriminant analysis effect size (LEfSe) illustrated that Chitinophagales and Eurotiomycetes were biomarker species of bacteria and eukaryote in samples from Days 40 and 35, respectively. Bacterial community composition was significantly correlated with temperature and pH, and eukaryotic microorganism community composition was significantly correlated with moisture content and NH4+-N according to redundancy analysis (RDA). The diversity of the microbial communities changed significantly, especially that of the main pathogenic microorganisms, which showed a decreasing trend or even disappeared after composting. CONCLUSIONS: In conclusion, a combination of high-throughput sequencing and physicochemical analysis was used to identify the drivers of microbial community succession and the composition of functional microbiota during cattle manure composting with Penicillium oxalicum. The results offer a theoretical framework for explaining microecological assembly during cattle manure composting with Penicillium oxalicum.


Subject(s)
Bacteria , Composting , Manure , Microbiota , Penicillium , Animals , Penicillium/metabolism , Cattle , Manure/microbiology , Manure/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Temperature , Soil Microbiology , High-Throughput Nucleotide Sequencing , Hydrogen-Ion Concentration , Biodiversity , RNA, Ribosomal, 16S/genetics
2.
Toxicol Appl Pharmacol ; 487: 116976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777097

ABSTRACT

Staff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear. Regulator of G-protein signaling 2 (RGS2) has been reported to play a regulatory role in pneumonia. The aim of this study was to explore the therapeutic potential of RGS2 in cowshed PM2.5-induced respiratory damage. PM2.5 was collected from a cattle farm, and the alveolar macrophages (NR8383) of the model animal rat were stimulated with different treatment conditions of cowshed PM2.5. The RGS2 overexpression vector was constructed and transfected it into cells. Compared with the control group, cowshed PM2.5 significantly induced a decrease in cell viability and increased the levels of apoptosis and proinflammatory factor expression. Overexpression of RGS2 ameliorated the above-mentioned cellular changes induced by cowshed PM2.5. In addition, PM2.5 has significantly induced intracellular Ca2+ dysregulation. Affinity inhibition of Gq/11 by RGS2 attenuated the cytosolic calcium signaling pathway mediated by PLCß/IP3R. To further investigate the causes and mechanisms of action of differential RGS2 expression, the possible effects of oxidative stress and TLR2/4 activation were investigated. The results have shown that RGS2 expression was not only regulated by oxidative stress-induced nitric oxide during cowshed PM2.5 cells stimulation but the activation of TLR2/4 had also an important inhibitory effect on its protein expression. The present study demonstrates the intracellular Ca2+ regulatory role of RGS2 during cellular injury, which could be a potential target for the prevention and treatment of PM2.5-induced respiratory injury.


Subject(s)
Macrophages, Alveolar , Particulate Matter , RGS Proteins , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Animals , RGS Proteins/genetics , RGS Proteins/metabolism , Particulate Matter/toxicity , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Rats , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Cattle , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Cell Line , Calcium Signaling/drug effects , Calcium/metabolism , Apoptosis/drug effects , Air Pollutants/toxicity
3.
Ecotoxicol Environ Saf ; 278: 116381, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38676963

ABSTRACT

Bioaerosols produced during animal production have potential adverse effects on the health of workers and animals. Our objective was to investigate characteristics, antibiotic-resistance genes (ARGs), and health risks of bioaerosols in various animal barns. Poultry and swine barns had high concentrations of airborne bacteria (11156 and 10917 CFU/m3, respectively). Acinetobacter, Clostridium sensu stricto, Corynebacterium, Pseudomonas, Psychrobacter, Streptococcus, and Staphylococcus were dominant pathogenic bacteria in animal barns, with Firmicutes being the most abundant bacterial phylum. Based on linear discriminant analysis effect size (LEfSe), there were more discriminative biomarkers in cattle barns than in poultry or swine barns, although the latter had the highest abundance of bacterial pathogens and high abundances of ARGs (including tetM, tetO, tetQ, tetW sul1, sul2, ermA, ermB) and intI1). Based on network analyses, there were higher co-occurrence patterns between bacteria and ARGs in bioaerosol from swine barns. Furthermore, in these barns, relative abundance of bacteria in bioaerosol samples was greatly affected by environmental factors, mainly temperature, relative humidity, and concentrations of CO2, NH3, and PM2.5. This study provided novel data regarding airborne bio-contaminants in animal enclosures and an impetus to improve management to reduce potential health impacts on humans and animals.


Subject(s)
Aerosols , Air Microbiology , Bacteria , Animals , Aerosols/analysis , Swine , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Cattle , Environmental Monitoring , Animal Husbandry , Poultry , Housing, Animal , Humans , Particulate Matter/analysis , Drug Resistance, Microbial/genetics , Air Pollution, Indoor/analysis
4.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891899

ABSTRACT

In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.


Subject(s)
Carps , Fish Proteins , MicroRNAs , Poly I-C , Signal Transduction , Animals , Carps/genetics , Carps/immunology , Carps/virology , Carps/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Immunity, Innate/genetics , Janus Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Poly I-C/pharmacology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics
5.
BMC Biotechnol ; 23(1): 48, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37924095

ABSTRACT

BACKGROUND: A lot of kitchen waste oil is produced every day worldwide, leading to serious environmental pollution. As one of the environmental protection methods, microorganisms are widely used treating of various wastes. Lipase, as one of the cleaning agents can effectively degrade kitchen waste oil. The composting process of pig carcasses produces many lipase producing microorganisms, rendering compost products an excellent source for isolating lipase producing microorganisms. To our knowledge, there are no reports isolating of lipase producing strains from the high temperature phase of pig carcass compost. METHODOLOGY: Lipase producing strains were isolated using a triglyceride medium and identified by 16S rRNA gene sequencing. The optimal fermentation conditions for maximum lipase yield were gradually optimized by single-factor tests. The extracellular lipase was purified by ammonium sulfate precipitation and Sephadex G-75 gel isolation chromatography. Amino acid sequence analysis, structure prediction, and molecular docking of the purified protein were performed. The pure lipase's enzymatic properties and application potential were evaluated by characterizing its biochemical properties. RESULTS: In this study, a lipase producing strain of Bacillus sp. ZF2 was isolated from pig carcass compost products, the optimal fermentation conditions of lipase: sucrose 3 g/L, ammonium sulfate 7 g/L, Mn2+ 1.0 mmol/L, initial pH 6, inoculum 5%, temperature 25 ℃, and fermentation time 48 h. After purification, the specific activity of the purified lipase reached 317.59 U/mg, a 9.78-fold improvement. Lipase had the highest similarity to the GH family 46 chitosanase and molecular docking showed that lipase binds to fat via two hydrogen bonds at Gln146 (A) and Glu203 (A). Under different conditions (temperature, metal ions, organic solvents, and surfactants), lipase can maintain enzymatic activity. Under different types of kitchen oils, lipase has low activity only for 'chicken oil', in treating other substrates, the enzyme activity can exceed 50%. CONCLUSIONS: This study reveals the potential of lipase for waste oil removal, and future research will be devoted to the application of lipase.


Subject(s)
Composting , Swine , Animals , Ammonium Sulfate , RNA, Ribosomal, 16S/genetics , Molecular Docking Simulation , Hydrogen-Ion Concentration , Lipase/chemistry , Temperature
6.
Microb Cell Fact ; 22(1): 116, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370116

ABSTRACT

BACKGROUND: 17ß-estradiol (E2) residues exhibit harmful effects both for human and animals and have got global attention of the scientific community. Microbial enzymes are considered as one of the effective strategies having great potential for removal E2 residues from the environment. However, limited literature is available on the removal of E2 from wastewater using short-chain dehydrogenase. RESULTS: In this study, 17ß-estradiol degrading enzyme (17ß-HSD-0095) was expressed and purified from Microbacterium sp. MZT7. The optimal pH and temperature for reaction was 7 and 40 °C, respectively. Molecular docking studies have shown that the ARG215 residue form a hydrogen bond with oxygen atom of the substrate E2. Likewise, the point mutation results have revealed that the ARG215 residue play an important role in the E2 degradation by 17ß-HSD-0095. In addition, 17ß-HSD-0095 could remediate E2 contamination in synthetic livestock wastewater. CONCLUSIONS: These findings offer some fresh perspectives on the molecular process of E2 degradation and the creation of enzyme preparations that can degrade E2.


Subject(s)
Microbacterium , Wastewater , Animals , Humans , Microbacterium/metabolism , Molecular Docking Simulation , Estradiol/metabolism
7.
Environ Res ; 217: 114963, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36471558

ABSTRACT

17ß-estradiol (E2) pollution has attracted much attention, and the existence of E2 poses certain risks to the environment and human health. However, the mechanism of microbial degradation of E2 remains unclear. In this study, the location of E2-degrading enzymes was investigated, and transcriptome analysis of Microbacterium resistens MZT7 (M. resistens MZT7) exposed to E2. The degradation of E2 by M. resistens MZT7 was via the biological action of E2-induced intracellular enzymes. With the RNA sequencing, we found 1109 differentially expressed genes (DEGs). Among them, 773 genes were up-regulated and 336 genes were down-regulated. The results of the RNA sequencing indicated the DEGs were related to transport, metabolism, and stress response. Genes for transport, transmembrane transport, oxidoreductase activity, ATPase activity, transporter activity and quorum sensing were up-regulated. Genes for the tricarboxylic acid cycle, ribosome, oxidative phosphorylation and carbon metabolism were down-regulated. In addition, heterologous expression of one enzymes efficiently degraded E2. These findings provide some new insights into the molecular mechanism of biotransformation of E2 by M. resistens MZT7.


Subject(s)
Estradiol , Gene Expression Profiling , Humans , Biotransformation , Oxidative Phosphorylation , Transcriptome
8.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240435

ABSTRACT

Antibiotic tolerance has become an increasingly serious crisis that has seriously threatened global public health. However, little is known about the exogenous factors that can trigger the development of antibiotic tolerance, both in vivo and in vitro. Herein, we found that the addition of citric acid, which is used in many fields, obviously weakened the bactericidal activity of antibiotics against various bacterial pathogens. This mechanistic study shows that citric acid activated the glyoxylate cycle by inhibiting ATP production in bacteria, reduced cell respiration levels, and inhibited the bacterial tricarboxylic acid cycle (TCA cycle). In addition, citric acid reduced the oxidative stress ability of bacteria, which led to an imbalance in the bacterial oxidation-antioxidant system. These effects together induced the bacteria to produce antibiotic tolerance. Surprisingly, the addition of succinic acid and xanthine could reverse the antibiotic tolerance induced by citric acid in vitro and in animal infection models. In conclusion, these findings provide new insights into the potential risks of citric acid usage and the relationship between antibiotic tolerance and bacterial metabolism.


Subject(s)
Anti-Bacterial Agents , Oxidative Stress , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Citric Acid Cycle
9.
BMC Biotechnol ; 22(1): 36, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443757

ABSTRACT

BACKGROUND: Dead swine carcass composting is an excellent method for harmless treatment and resource utilization of swine carcass. However, poor biodegradation ability of traditional composting results in poor harmless treatment effect. Researches report that the biodegradation ability of composting can be improved by inoculation with enzyme-producing microorganisms or by inoculation with enzyme preparations. At present, the researches on improving the efficiency of dead swine carcass composting by inoculating enzyme-producing microorganisms have been reported. However, no work has been reported on the development of enzyme preparations for dead swine carcass composting. METHODOLOGY: The protease-producing strain was isolated by casein medium, and was identified by 16 S rRNA gene sequencing. The optimal fermentation conditions for maximum protease production were gradually optimized by single factor test. The extracellular protease was purified by ammonium sulfate precipitation and Sephadex G-75 gel exclusion chromatography. The potential for composting applications of the purified protease was evaluated by characterization of its biochemical properties. And based on amino acid sequence analysis, molecular docking and inhibition test, the catalytic hydrolysis mechanism of the purified protease was elucidated. RESULTS: In this study, a microbial protease was developed for swine carcass composting. A protease-producing strain DB1 was isolated from swine carcass compositing and identified as Serratia marcescen. Optimum fermentation conditions for maximum protease production were 5 g/L glucose, 5 g/L urea, 1.5 mmol/L Mg2+, initial pH-value 8, inoculation amount 5%, incubation temperature 30 °C and 60 h of fermentation time. The specific activity of purified protease reached 1982.77 U/mg, and molecular weight of the purified protease was 110 kDa. Optimum pH and temperature of the purified protease were 8 and 50 °C, respectively, and it had good stability at high temperature and in alkaline environments. The purified protease was a Ser/Glu/Asp triad serine protease which catalyzed substrate hydrolysis by Glu, Arg, Ser, Asp and Tyr active residues. CONCLUSIONS: In general, the microbial protease developed in this study was suitable for industrial production and has the potential to enhance composting at thermophilic stage. Moreover, the catalytic hydrolysis mechanism of the protease was further analyzed in this study.


Subject(s)
Composting , Swine , Animals , Hydrolysis , Molecular Docking Simulation , Catalysis , Serine Proteases , Serine Endopeptidases , Glucose
10.
Arch Microbiol ; 204(1): 112, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34982208

ABSTRACT

In this study, a bacteriocin PA996 isolated from Pseudomonas azotoformans (P. azotoformans) was purified to homogeneity by ammonium sulphate precipitation and SP-Sepharose column chromatography. P. azotoformans began to grow at 6 h, reached exponential phase at 12-18 h. Bacteriocin PA996 was produced at 18 h and reached a maximum level of 2400 AU/mL. The molecular mass of purified bacteriocin PA996 was estimated by SDS-PAGE and its molecular mass was approximately 50 kDa. By screening in vitro, the bacteriocin PA996 showed an antimicrobial activity against Pasteurella multocida (P. multocida). The bacteriocin PA996 showed antibacterial activity in the range of pH2-10 and it was heat labile. The inhibitory activities were diminished after treatment with proteinase K, trypsin and papain, respectively, while catalase treatment was ineffective. The minimal inhibitory concentration (MIC) and bactericidal kinetics curves showed that the bacteriocin PA996 had a good inhibitory ability against P. multocida. Our data indicate that bacteriocin PA996 could inhibit the growth of P. maltocida and it may have the potential to apply as an alternative therapeutic drug.


Subject(s)
Anti-Bacterial Agents , Bacteriocins , Pasteurella multocida/drug effects , Pseudomonas , Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Hydrogen-Ion Concentration , Microbial Sensitivity Tests
11.
J Appl Microbiol ; 132(6): 4440-4451, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35324068

ABSTRACT

AIMS: The purpose of the research is to study the effects of different fibre types and sources on the intestinal flora of geese. METHODS AND RESULTS: A total of 48 geese (males: 35 days old) were divided into four groups, each of which included three replicates of four geese. Groups 1-4 were fed a diet containing 5% corn stover Crude fibre (CF, the LJ group), 8% corn stover CF (the HJ group), 5% alfalfa CF (the LM group) or 8% alfalfa CF (the HM group), respectively. After 42 days of feeding, the intestinal flora of each group was determined by 16SrRNA gene sequencing. In the duodenum, the diet supplemented with corn stover meal increased the relative abundance of Proteobacteria, Actinobacteria and Euryarchaeota, and with alfalfa as fibre source increased the relative abundance of Firmicutes, Bacteroidetes, Tenericutes and Chloroflexi. In the jejunum, Bacteroidetes, Actinobacteria, Planctomycetes, Acidobacteria, Tenericutes and Spirochetes were significantly more abundant in the corn stover group. There were no significant differences among the results for the other two fibre sources, which were fibre level in their influence where in ileum. Firmicutes, Deferribacteres and Euryarchaeota with corn stover as fibre source in the cecum were higher than the alfalfa group. CONCLUSIONS: Different fibre sources have significant effects on goose gut microbiota. The same flora has the same trend of change in different intestinal segments. The relative fibre source in the ileum makes the gut microbiota more sensitive to differences in fibre levels. SIGNIFICANCE AND IMPACT OF THE STUDY: This study proved that the dietary fibre affects the intestinal flora. At the same time, different groups of dietary fibre may be used to provide the possibility to study functional roles of specific bacteria in host physiology.


Subject(s)
Actinobacteria , Gastrointestinal Microbiome , Animals , Bacteria , Bacteroidetes , Cecum , Diet/veterinary , Dietary Fiber/pharmacology , Firmicutes/genetics , Geese/microbiology , Geese/physiology , Male , Medicago sativa
12.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144543

ABSTRACT

Estrogen contamination is widespread and microbial degradation is a promising removal method; however, unfavorable environments can hinder microbial function. In this study, a natural estrogen 17ß-estradiol (E2) was introduced as a degradation target, and a new combination of bacterial carrier was investigated. We found the best combination of polyvinyl alcohol (PVA) and sodium alginate (SA) was 4% total concentration, PVA:SA = 5:5, with nano-Fe3O4 at 2%, and maltose and glycine added to promote degradation, for which the optimal concentrations were 5 g·L-1 and 10 g·L-1, respectively. Based on the above exploration, the bacterial carrier was made, and the degradation efficiency of the immobilized bacteria reached 92.3% in 5 days. The immobilized bacteria were reused for three cycles, and the degradation efficiency of each round could exceed 94%. Immobilization showed advantages at pH 5, pH 11, 10 °C, 40 °C, and 40 g·L-1 NaCl, and the degradation efficiency of the immobilized bacteria was higher than 90%. In the wastewater, the immobilized bacteria could degrade E2 to about 1 mg·L-1 on the 5th day. This study constructed a bacterial immobilization carrier using a new combination, explored the application potential of the carrier, and provided a new choice of bacterial immobilization carrier.


Subject(s)
Polyvinyl Alcohol , Wastewater , Alginates/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Estradiol/metabolism , Estrogens/metabolism , Glycine/metabolism , Magnetic Phenomena , Maltose/metabolism , Sodium Chloride/metabolism
13.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1618-1624, 2022 Mar.
Article in Zh | MEDLINE | ID: mdl-35347961

ABSTRACT

Aconiti Kusnezoffii Radix Cocta is one of the most commonly used medicinal materials in Mongolian medicine. Due to the strong toxicity of Aconiti Kusnezoffii Radix Cocta, Mongolian medicine often uses Chebulae Fructus, Glycyrrhizae Radix et Rhizoma to reduce the toxicity, so as to ensure the curative effect of Aconiti Kusnezoffii Radix Cocta while ensuring its clinical curative effect, but the mechanism is not clear. The aim of this study was to investigate the effects of Chebulae Fructus, Glycyrrhizae Radix et Rhizoma and Aconiti Kusnezoffii Radix Cocta on the mRNA transcription and protein translation of cytochrome P450(CYP450) in the liver of normal rats. Male SD rats were randomly divided into negative control(NC) group, phenobarbital(PB) group(0.08 g·kg~(-1)·d~(-1)), Chebulae Fructus group(0.254 2 g·kg~(-1)·d~(-1)), Glycyrrhizae Radix et Rhizoma group(0.254 2 g·kg~(-1)·d~(-1)), Aconiti Kusnezoffii Radix Cocta group(0.254 2 g·kg~(-1)·d~(-1))and compatibility group(0.254 2 g·kg~(-1)·d~(-1),taking Aconiti Kusnezoffii Radix Cocta as the standard). After continuous administration for 8 days, the activities of total bile acid(TBA), alkaline phosphatase(ALP), amino-transferase(ALT) and aspartate aminotransferase(AST)in serum were detected, the pathological changes of liver tissue were observed, and the mRNA and protein expression levels of CYP1 A2, CYP2 C11 and CYP3 A1 were observed. Compared with the NC group, the serum ALP, ALT and AST activities in the Aconiti Kusnezoffii Radix Cocta group were significantly increased, and the ALP, ALT and AST activities were decreased after compatibility. At the same time, compatibility could reduce the liver injury caused by Aconiti Kusnezoffii Radix Cocta. The results showed that Aconiti Kusnezoffii Radix Cocta could inhibit the expression of CYP1 A2, CYP2 C11 and CYP3 A1, and could up-regulate the expression of CYP1 A2, CYP2 C11 and CYP3 A1 when combined with Chebulae Fructus and Glycyrrhizae Radix et Rhizoma. The level of translation was consistent with that of transcription. The compatibility of Chebulae Fructus and Glycyrrhizae Radix et Rhizoma with Aconiti Kusnezoffii Radix Cocta could up-regulate the expression of CYP450 enzyme, reduce the accumulation time of aconitine in vivo, and play a role in reducing toxicity, and this effect may start from gene transcription.


Subject(s)
Cytochrome P-450 Enzyme System , Liver , Animals , Cytochrome P-450 Enzyme System/genetics , Drugs, Chinese Herbal , Glycyrrhiza , Male , Plant Extracts , Rats , Rats, Sprague-Dawley , Terminalia
14.
Microb Pathog ; 135: 103570, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31158492

ABSTRACT

Escherichia coli can cause severe, acute hemorrhagic pneumonia and systemic infection in farmed foxes, raccoon dogs and minks, leading to considerable economic losses to the farmers. It is well established that the htrA-encoded serine protease HtrA is critical for bacterial growth and survival under stress, and HtrA has been determined to be a potential vaccine target. However, the roles of HtrA in E. coli pathogenesis remain unknown. In this study, we generated an htrA-deletion mutant of the E. coli protype strain HBCLE-12 that causes pneumonia in silver foxes and then evaluated the changes in bacterial physiological characteristics in the absence of HtrA. The data show that knockout of the htrA gene did not affect growth and biochemical characteristics but led to impaired virulence of the strain. Increased susceptibility to environmental stresses, impaired survival in serum, and reduced biofilm formation may contribute to the virulence attenuation of the mutant. Furthermore, the HtrA-deficient mutant was subjected to RNA-seq analysis, and 16 differentially expressed genes were determined. This study provided insight that HtrA plays a definitive role in E. coli-induced infection.


Subject(s)
Escherichia coli Infections/veterinary , Escherichia coli/enzymology , Escherichia coli/genetics , Foxes/microbiology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Periplasmic Proteins/genetics , Periplasmic Proteins/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Animal Diseases/microbiology , Animals , Bacterial Proteins , Biofilms/growth & development , Cold Shock Proteins and Peptides/genetics , Escherichia coli/growth & development , Escherichia coli/pathogenicity , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Mice , Pneumonia/microbiology , Pneumonia/veterinary , Sequence Deletion , Stress, Physiological/genetics , Transcriptome , Virulence/genetics , Virulence Factors/genetics
15.
Trop Anim Health Prod ; 51(7): 2099-2103, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31104226

ABSTRACT

Trueperella pyogenes (T. pyogenes) is a worldwide known pathogen of domestic ruminants and pigs causing a wide variety of infections. The objective of this study was to report the presence of major virulence genes in T. pyogenes isolated from pigs with respiratory clinical signs and determine their resistance to antibiotics at the same time. A total of 27 T. pyogenes strains were obtained from Jilin Province, and the nanH, nanP, cbpA, fimC, and fimE virulence genes were detected in 7 (25.9%), 14 (51.9%), 18 (66.7%), 8 (29.6%), and 16 (59.3%) isolates, respectively. All isolates were observed to harbor plo and fimA genes. However, 27 T. pyogenes strains tested negative for fimG gene. Antibiotic susceptibility tests revealed that the isolated strains had extensive drug resistance, all isolates were sensitive to fluoroquinolones and penicillins antibiotics, and high levels of resistance were found to gentamicin (77.8%), amikacin (74.1%), erythromycin (85.2%), and azithromycin (85.2%). These results highlights the need for prudent use of specific antimicrobial agents in veterinary clinical treatment.


Subject(s)
Actinomycetales Infections/veterinary , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Pneumonia, Bacterial/veterinary , Actinomycetales Infections/drug therapy , Actinomycetales Infections/microbiology , Animals , Erythromycin/pharmacology , Microbial Sensitivity Tests , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Swine , Virulence , Virulence Factors/genetics
16.
Fish Shellfish Immunol ; 72: 604-610, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29146446

ABSTRACT

The objective was to add 0, 400, 800 or 1200 mg/kg of Hericium caput-medusae polysaccharide (HCMP) to the basal diet of grass carp (Ctenopharyngodon idella) and determine effects on humoral innate immunity, expression of immune-related genes and disease resistance. Adding HCMP enhanced (P < 0.05) bactericidal activity at 1, 2 and 3 weeks and also lysozyme activity, complement C3, and SOD activity at 2 and 3 weeks. Supplementing 800 or 1200 mg/kg of HCMP for 2 or 3 weeks increased (P < 0.05) serum concentrations of total protein, albumin and globulin. Two immune-related genes (IL-1ß and TNF-α) were up-regulated (P < 0.05) in HCMP supplemented groups given 800 or 1200 mg/kg HCMP after 2 and 3 weeks of feeding. Expression of anti-inflammatory cytokine IL-10 was down-regulated (P < 0.05) after receiving 800 or 1200 mg/kg HCMP for 2 or 3 weeks. Fish fed 800 mg/kg HCMP had maximal disease resistance against Aeromonas hydrophila (65.4%). In conclusion, HCMP enhanced immune response and expression of immune-related genes and increased disease resistance against Aeromonas hydrophila in grass carp, with greatest effects in fish given 800 mg/kg HCMP for 3 weeks.


Subject(s)
Basidiomycota/chemistry , Disease Resistance/drug effects , Fish Diseases/immunology , Gene Expression/drug effects , Immunity, Innate/drug effects , Polysaccharides/pharmacology , Aeromonas hydrophila/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Gram-Negative Bacterial Infections/immunology , Polysaccharides/administration & dosage , Random Allocation
17.
Microb Pathog ; 112: 63-69, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28943150

ABSTRACT

Lignin, a common natural polymers, is abundant and complex, and termites can break down and utilize the lignin in their food. In this study an attempt was made to isolate and characterize the lignolytic bacteria from termite (Reticulitermes chinensis Snyder) gut. Two strains (PY12 and MX5) with high lignin peroxidase (LiP) activity were screened using the azure B method. By analyzing their 16S rRNA, the strain PY12 was classified as Enterobacter hormaechei; MX5, as Bacillus licheniformis. We then optimized the different conditions of liquid fermentation medium, and obtained LiP activities of 278 U/L and 256 U/L for PY12 and MX5, respectively. Subsequently, we confirmed the LiP activities of the strains by evaluating their decolorizing effects on various dyes. Finally, we cloned the LiP gene of strain PY12 and successfully transferred it to Lactococcus lactis. We believe that our results provide the theoretical and practical basis for the production of genetically engineered bacteria that produce LiP, thus allowing for the utilization of naturally available lignin as an energy resource.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Gastrointestinal Tract/microbiology , Isoptera/microbiology , Lactococcus lactis/genetics , Lignin/metabolism , Peroxidases/genetics , Peroxidases/metabolism , Animals , Bacillus licheniformis/classification , Bacillus licheniformis/enzymology , Bacillus licheniformis/growth & development , Bacillus licheniformis/isolation & purification , Bacteria/classification , Bacteria/enzymology , Enterobacter/classification , Enterobacter/enzymology , Enterobacter/growth & development , Enterobacter/isolation & purification , Fermentation , Gene Expression Regulation, Bacterial/genetics , Genes, Bacterial/genetics , Genetic Vectors , Phylogeny , RNA, Ribosomal, 16S/genetics , Recombination, Genetic , Transformation, Bacterial
18.
Fish Shellfish Immunol ; 66: 531-539, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28546024

ABSTRACT

Toll-like receptors (TLRs) play a crucial role in the recognition of immune reactions against invading pathogens. The molecular regulation mechanisms of TLR expression in aquatic organisms remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs that are critical adjustors of immune signaling pathway at the post-transcriptional level and play critical roles in intricate networks of host-pathogen interactions and innate immunity. The critical role of TLRs in host defense for discerning certain kinds of pathogen associated molecular patternsand striking a cascade immune response in fish have been demonstrated. Miiuy croaker TLR13 significantly increased after infection with Vibrio anguillarum, which suggests that mmiTLR13 plays an important role in innate immunity. In this study, the role of miR-8159 was explored in regulating TLR13, which is involved in inflammatory responses in miiuy croakers. Bioinformatics was used to predict miR-8159, which has a direct negative regulatory effect on TLR13 in miiuy croaker. Afterward, the dual luciferase reporter assay containing miRNA mimics or inhibitors and pre-miR-8159 showed that miR-8159 was the direct negative regulator of TLR13 in miiuy croaker. Moreover, miR-8159 downregulated the expression of TLR13 in the transcription level. The expression of miR-8159 could be upregulated by V. anguillarum challenged miiuy croaker and LPS exposure macrophages. Thus, miR-8159 could be induced by V. anguillarum and may function as a negative regulator of TLR13 in the immune response of miiuy croakers.


Subject(s)
Fish Diseases/genetics , Fish Proteins/genetics , MicroRNAs/genetics , Perciformes , Signal Transduction/genetics , Toll-Like Receptors/genetics , Vibrio Infections/veterinary , Animals , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/metabolism , Gene Expression Regulation , MicroRNAs/metabolism , Random Allocation , Toll-Like Receptors/metabolism , Vibrio/physiology , Vibrio Infections/genetics , Vibrio Infections/immunology , Vibrio Infections/microbiology
19.
BMC Vet Res ; 13(1): 169, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28599670

ABSTRACT

BACKGROUND: In recent years, highly frequent swine respiratory diseases have been caused by extraintestinal pathogenic Escherichia coli (ExPEC) in China. Due to this increase in ExPECs, this bacterial pathogen has become a threat to the development of the Chinese swine industry. To investigate ExPEC pathogenesis, we isolated a strain (named SLPE) from lesioned porcine lungs from Changchun in China, reported the draft genome and performed comparative genomic analyses. RESULTS: Based on the gross post-mortem examination, bacterial isolation, animal regression test and 16S rRNA gene sequence analysis, the pathogenic bacteria was identified as an ExPEC. The SLPE draft genome was 4.9 Mb with a G + C content of 51.7%. The phylogenomic comparison indicated that the SLPE strain belongs to the B1 monophyletic phylogroups and that its closest relative is Avian Pathogenic Escherichia coli (APEC) O78. However, the distribution diagram of the pan-genome virulence genes demonstrated significant differences between SLPE and APEC078. We also identified a capsular polysaccharide synthesis gene cluster (CPS) in the SLPE strain genomes using blastp. CONCLUSIONS: We isolated the ExPEC (SLPE) from swine lungs in China, performed the whole genome sequencing and compared the sequence with other Escherichia coli (E. coli). The comparative genomic analysis revealed several genes including several virulence factors that are ExPEC strain-specific, such as fimbrial adhesins (papG II), ireA, pgtP, hlyF, the pix gene cluster and fecR for their further study. We found a CPS in the SLPE strain genomes for the first time, and this CPS is closely related to the CPS from Klebsiella pneumoniae.


Subject(s)
Escherichia coli Infections/veterinary , Extraintestinal Pathogenic Escherichia coli/genetics , Genome, Bacterial , Pneumonia, Bacterial/veterinary , Swine Diseases/microbiology , Animals , Bacterial Capsules/metabolism , China , DNA, Bacterial , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Extraintestinal Pathogenic Escherichia coli/classification , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Farms , Lung/microbiology , Lung/pathology , Mice , Microbial Sensitivity Tests , Multigene Family , Phylogeny , Pneumonia, Bacterial/microbiology , Polysaccharides, Bacterial/biosynthesis , Sequence Analysis, DNA/veterinary , Serotyping , Swine , Swine Diseases/pathology , Virulence/genetics
20.
Fish Shellfish Immunol ; 46(2): 387-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26108036

ABSTRACT

The nucleotide-binding oligomerization domain proteins NOD1 and NOD2 are important cytoplasmic pathogen recognition receptors which sense microbial infections molecules to induce innate immune response. In this study, the sequence analysis showed that NOD1 and NOD2 genes in miiuy croaker (miichthys miiuy, mmiNOD1 and mmiNOD2) share some highly conserved motifs that crucial for recognizing the bacterial and viral components. Quantitative expression analysis revealed mmiNOD1 and mmiNOD2 had the highest level of expression in liver. Induction experiments with Vibrio anguillarum indicated the different expression levels of mmiNOD1 and mmiNOD2 in liver, spleen and kidney. The expressions of mmiNOD1 and mmiNOD2 increased more significantly after Poly(I:C) stimulation, meanwhile, we carried out the expression analysis at the transcriptome level and the regulation of microRNAs. In addition, the evolutionary analysis showed that the ancestral lineages of NOD1 in bony fish detected one positively selected site, however, both the current lineages of NOD1 and NOD2 genes in bony fish underwent purifying selection indicating that NOD1 gene in the ancestor of bony fish experienced positive selection. To further understand the evolutionary pattern of NOD1 and NOD2 in vertebrates, we were the first to conduct comparative genomic analysis by comparing the number and synteny of NOD1 and NOD2. Combining the duplication of NOD1, the lost of NOD2 and the more conserved synteny of NOD2 than NOD1, we proposed that the hypothetical evolutionary pattern is different between NOD1 and NOD2.


Subject(s)
Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/immunology , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Perciformes/genetics , Perciformes/immunology , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/genetics , Evolution, Molecular , Fish Diseases/genetics , Fish Diseases/immunology , Genomics , Kidney/immunology , Liver/immunology , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Spleen/immunology , Staphylococcal Infections/genetics , Staphylococcal Infections/immunology , Staphylococcal Infections/veterinary , Staphylococcus aureus , Vibrio , Vibrio Infections/genetics , Vibrio Infections/immunology , Vibrio Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL