ABSTRACT
Plant-based biostimulants (PBs), agents rich in bioactive compounds, are emerging as key players able to sustainably improve plant growth and crop productivity to address food security. PBs are generally applied as foliar spray or soil irrigation, while more recently, the application as seed priming treatments is being envisaged as a highly sustainable method to also improve seed quality and germination. Therefore, this review proposes to explore the use of PBs for the seeds industry, specifically discussing about the relevance of product market values, sustainable methods for their production, why and how PBs are used for seed priming, and pinpointing specific strengths and challenges. The collected research studies indicate that PBs applied to seeds result in improved germination, seedling growth, and stress tolerance, although the molecular mechanisms at work are still largely overlooked. The high variability of bioactive molecules and used sources point towards a huge reservoir of nature-based solutions in support of sustainable agriculture practices.
ABSTRACT
Introduction: Several molecular aspects underlying the seed response to priming and the resulting vigor profile are still poorly understood. Mechanisms involved in genome maintenance deserve attention since the balance between stimulation of germination and DNA damage accumulation versus active repair is a key determinant for designing successful seed priming protocols. Methods: Changes in the Medicago truncatula seed proteome were investigated in this study, using discovery mass spectrometry and label-free quantification, along the rehydration-dehydration cycle of a standard vigorization treatment (hydropriming plus dry-back), and during post-priming imbibition. Resuts and discussion: From 2056 to 2190 proteins were detected in each pairwise comparison, among which six were differentially accumulated and 36 were detected only in one condition. The following proteins were selected for further investigation: MtDRP2B (DYNAMIN-RELATED PROTEIN), MtTRXm4 (THIOREDOXIN m4), and MtASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) showing changes in seeds under dehydration stress; MtITPA (INOSINE TRIPHOSPHATE PYROPHOSPHORYLASE), MtABA2 (ABSCISIC ACID DEFICIENT 2), MtRS2Z32 (SERINE/ARGININE-RICH SPLICING FACTOR RS2Z32), and MtAQR (RNA HELICASE AQUARIUS) that were differentially regulated during post-priming imbibition. Changes in the corresponding transcript levels were assessed by qRT-PCR. In animal cells, ITPA hydrolyses 2'-deoxyinosine triphosphate and other inosine nucleotides, preventing genotoxic damage. A proof of concept was performed by imbibing primed and control M. truncatula seeds in presence/absence of 20 mM 2'-deoxyinosine (dI). Results from comet assay highlighted the ability of primed seeds to cope with dI-induced genotoxic damage. The seed repair response was assessed by monitoring the expression profiles of MtAAG (ALKYL-ADENINE DNA GLYCOSILASE) and MtEndoV (ENDONUCLEASE V) genes that participate in the repair of the mismatched I:T pair in BER (base excision repair) and AER (alternative excision repair) pathways, respectively.
ABSTRACT
Consensus guidelines for hereditary breast and ovarian cancer include management recommendations for pathogenic/likely pathogenic (P/LP) variants in ATM, CHEK2, PALB2, and other DNA damage repair (DDR) genes beyond BRCA1 or BRCA2. We report on clinical management decisions across three academic medical centers resulting from P/LP findings in DDR genes in breast/ovarian cancer patients. Among 2184 patients, 156 (7.1%) carried a P/LP variant in a DDR gene. Clinical follow-up information was available for 101/156 (64.7%) patients. Genetic test result-based management recommendations were made for 57.8% (n = 59) of patients and for 64.7% (n = 66) of patients' family members. Most recommendations were made for moderate-to-high risk genes and were consistent with guidelines. Sixty-six percent of patients (n = 39/59) implemented recommendations. This study suggests that P/LP variants in DDR genes beyond BRCA1 and BRCA2 can change clinical management recommendations for patients and their family members, facilitate identification of new at-risk carriers, and impact treatment decisions. Additional efforts are needed to improve the implementation rates of genetic-testing-based management recommendations for patients and their family members.
ABSTRACT
PURPOSE: National guidelines recommend genetic counseling and multigene germline testing (GC/MGT) for all patients with pancreatic ductal adenocarcinoma (PDAC). This study's aim was to assess real-world effectiveness of implementing systematic GC/MGT for all patients with PDAC at a high-volume academic institution. METHODS: An iterative process for systematizing GC/MGT was developed in which gastrointestinal oncology providers at the Dana-Farber Cancer Institute were recommended to refer all patients with PDAC for GC/MGT (clinician-directed referral). Workflows were subsequently changed such that patients with PDAC were automatically offered GC/MGT when scheduling their initial oncology consultation (automated referral). Clinical and germline data were collected on a consecutive cohort of patients with PDAC undergoing GC/MGT during a 25-month enrollment period (19-month clinician-directed referrals; 6-month automated referrals). RESULTS: One thousand two hundred fourteen patients with PDAC were seen for initial oncologic evaluation, 266 (21.9%) of whom underwent GC/MGT. Compared with baseline clinician-directed referrals, implementation of automated referrals led to a significant increase in patients with PDAC undergoing GC/MGT (16.5% v 38.0%, P < .001), including those undergoing multigene germline testing (MGT) ≤ 7 days of initial oncology evaluation (14.7% v 60.3%, P < .001), with preserved pathogenic variant detection rates (10.0% v 11.2%, P = 0.84). 16 of 28 (57.1%) pathogenic variant carriers had relatives who pursued cascade germline testing, and 13 of 26 (50.0%) carriers with incurable disease received targeted therapy based on MGT results. CONCLUSION: Implementation of systematic GC/MGT in patients with PDAC is feasible and leads to management changes for patients with PDAC and their families. GC/MGT workflows that bypass the need for clinician referral result in superior uptake and time to testing. Further investigation is needed to identify other barriers and facilitators of universal GC/MGT.
Subject(s)
Genetic Counseling , Pancreatic Neoplasms , Genetic Predisposition to Disease , Genetic Testing , Germ Cells , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/geneticsABSTRACT
Germline variants in tumor suppressor genes (TSGs) can result in RNA mis-splicing and predisposition to cancer. However, identification of variants that impact splicing remains a challenge, contributing to a substantial proportion of patients with suspected hereditary cancer syndromes remaining without a molecular diagnosis. To address this, we used capture RNA-sequencing (RNA-seq) to generate a splicing profile of 18 TSGs (APC, ATM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MLH1, MSH2, MSH6, MUTYH, NF1, PALB2, PMS2, PTEN, RAD51C, RAD51D, and TP53) in 345 whole-blood samples from healthy donors. We subsequently demonstrated that this approach can detect mis-splicing by comparing splicing profiles from the control dataset to profiles generated from whole blood of individuals previously identified with pathogenic germline splicing variants in these genes. To assess the utility of our TSG splicing profile to prospectively identify pathogenic splicing variants, we performed concurrent capture DNA and RNA-seq in a cohort of 1000 patients with suspected hereditary cancer syndromes. This approach improved the diagnostic yield in this cohort, resulting in a 9.1% relative increase in the detection of pathogenic variants, demonstrating the utility of performing simultaneous DNA and RNA genetic testing in a clinical context.
ABSTRACT
BACKGROUND: Brucellosis is a widespread zoonotic infection. This disease is endemic in many parts of Asia, including India. Brucellosis is a major cause of pyrexia of unknown origin (PUO). Persons exposed to infected animals or contaminated animal products are at high risk. Seropositivity among animal handlers, veterinarians and dairy workers has been documented in India. Thus, the present study was aimed to determine prevalence of brucellosis among PUO cases and occupationally exposed individuals. METHODS: In this study, serum samples (n=282) from cases of pyrexia of unknown origin (PUO) (n=243), and occupationally exposed individuals (n=39) were collected and tested for brucellosis by Rose Bengal plate test (RBPT), serum agglutination test (SAT), indirect ELISA, IgG and IgM ELISA. Blood culture for isolation of Brucella was performed for 10 serologically positive patients using BACTEC 9050 automated blood culture system. Biochemical tests and PCR techniques were used for confirmation of the isolates. RESULTS: Of the samples tested, 4.25%, 3.54%, 6.02% and 4.96% samples were positive by RBPT, SAT, indirect ELISA and IgG ELISA, respectively. None of the sample was positive for IgM ELISA. Of the 10 blood samples cultured bacteriologically, one Brucella isolate was recovered. The isolate was confirmed as Brucella abortus. Amplification of the bcsp31 and IS711 genes was also observed. CONCLUSION: Seropositivity for brucellosis was observed among PUO cases, animal handlers and dairy workers in Goa, India. The serological tests showed variable results. One Brucella isolate was obtained by performing blood culture. Confirmation of the case was done rapidly using molecular tools. General awareness about clinical symptoms should be increased which will improve proper diagnosis within short time frame.