ABSTRACT
Dasatinib is effective treatment for Philadelphia chromosome-positive (Ph+) acute leukemia but some patients develop resistance. Combination treatment with dasatinib and asciminib, an allosteric inhibitor of BCR::ABL1, may deepen responses and prevent the emergence of dasatinib-resistant clones. In this phase 1 study (NCT03595017), 24 adults with Ph+ acute lymphoblastic leukemia (ALL, n=22; p190, n=16; p210, n=6) and chronic myeloid leukemia in lymphoid blast crisis (CML-LBC, n=2) were treated with escalating daily doses of asciminib in combination with dasatinib 140 mg daily plus prednisone 60 mg/m2 daily to determine the maximum tolerated dose (MTD). After a 28-day induction, dasatinib and asciminib continued indefinitely or until hematopoietic stem cell transplant. The median age was 64.5 years (range, 33-85; 50% Ā³65). The recommended phase 2 dose of asciminib was 80 mg daily in combination with dasatinib and prednisone. The dose limiting toxicity at 160 mg daily was asymptomatic grade 3 pancreatic enzyme elevation without symptomatic pancreatitis. There were no vaso-occlusive events. Among patients with de novo ALL, the complete hematologic remission rate at day 28 and 84 was 84% and 100%, respectively. At day 84, 100% of patients achieved complete cytogenetic remission, 89% achieved measurable residual disease negativity (<0.01%) by multicolor flow cytometry, and 74% and 26% achieved BCR::ABL1 RT-PCR <0.1% and <0.01%. Dual BCR::ABL1 inhibition with dasatinib and asciminib is safe with encouraging activity in patients with de novo Ph+ ALL. ClinicalTrials.gov NCT02081378.
ABSTRACT
ABSTRACT: Fusion oncogenes can be cancer-defining molecular alterations that are essential for diagnosis and therapy selection.1,2 Rapid and accessible molecular diagnostics for fusion-driven leukemias such as acute promyelocytic leukemia (APL), Philadelphia chromosome-positive acute lymphoblastic leukemia, and chronic myeloid leukemia (CML) are unavailable, creating a barrier to timely diagnosis and effective targeted therapy in many health care settings, including community hospitals and low-resource environments. We developed CRISPR-based RNA-fusion transcript detection assays using SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) for the diagnosis of fusion-driven leukemias. We validated these assays using diagnostic samples from patients with APL and CML from academic centers and dried blood spots from low-resource environments, demonstrating 100% sensitivity and specificity. We identified assay optimizations to enable the use of these tests outside of tertiary cancer centers and clinical laboratories, enhancing the potential impact of this technology. Rapid point-of-care diagnostics can improve outcomes for patients with cancer by expanding access to therapies for highly treatable diseases that would otherwise lead to serious adverse outcomes due to delayed or missed diagnoses.
Subject(s)
Oncogene Proteins, Fusion , Humans , Oncogene Proteins, Fusion/genetics , Molecular Diagnostic Techniques/methods , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/therapy , CRISPR-Cas Systems , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Leukemia/genetics , Leukemia/diagnosis , Leukemia/therapy , Clustered Regularly Interspaced Short Palindromic RepeatsABSTRACT
ABSTRACT: With emerging new drugs in myelofibrosis (MF), a robust and harmonized framework for defining the severity of anemia and response to treatment will enhance clinical investigation and facilitate interstudy comparisons. Accordingly, the lead authors on the 2013 edition of the International Working Group-European LeukemiaNet (IWG-ELN) response criteria in MF were summoned to revise their document with the intent to (1) account for gender-specific differences in determining hemoglobin levels for eligibility criteria; (2) revise the definition of transfusion-dependent anemia (TDA) based on current restrictive transfusion practices; and (3) provide a structurally simple and easy to apply response criteria that are sensitive enough to detect efficacy signals (minor response) and also account for major responses. The initial draft of the 2024 IWG-ELN proposed criteria was subsequently circulated around a wider group of international experts and their feedback incorporated. The proposed articles include new definitions for TDA (≥3 units in the 12 weeks before study enrollment) and hemoglobin thresholds for eligibility criteria (<10 g/dL for women and <11 g/dL for men). The revised document also provides separate (TDA vs non-TDA) and graded (major vs minor response) response criteria while preserving the requirement for a 12-week period of screening and observation on treatment.
Subject(s)
Anemia , Primary Myelofibrosis , Humans , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/therapy , Primary Myelofibrosis/blood , Anemia/diagnosis , Anemia/therapy , Anemia/etiology , Anemia/blood , Female , Male , Hemoglobins/analysis , Europe , Blood TransfusionABSTRACT
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription signaling. As a result, JAK inhibitors have been the standard therapy for treatment of patients with myelofibrosis (MF). Although currently approved JAK inhibitors successfully ameliorate MPN-related symptoms, they are not known to substantially alter the MF disease course. Similarly, in essential thrombocythemia and polycythemia vera, treatments are primarily aimed at reducing the risk of cardiovascular and thromboembolic complications, with a watchful waiting approach often used in patients who are considered to be at a lower risk for thrombosis. However, better understanding of MPN biology has led to the development of rationally designed therapies, with the goal of not only addressing disease complications but also potentially modifying disease course. We review the most recent data elucidating mechanisms of disease pathogenesis and highlight emerging therapies that target MPN on several biologic levels, including JAK2-mutant MPN stem cells, JAK and non-JAK signaling pathways, mutant calreticulin, and the inflammatory bone marrow microenvironment.
Subject(s)
Janus Kinase Inhibitors , Myeloproliferative Disorders , Polycythemia Vera , Primary Myelofibrosis , Humans , Janus Kinase Inhibitors/therapeutic use , Myeloproliferative Disorders/drug therapy , Polycythemia Vera/drug therapy , Primary Myelofibrosis/drug therapy , Janus Kinase 2/genetics , Janus Kinases , Disease Progression , Biology , Mutation , Tumor MicroenvironmentABSTRACT
This phase 1b trial (NCT02670044) evaluated venetoclax-idasanutlin in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) ineligible for cytotoxic chemotherapy. Two-dimensional dose escalation (DE, nĀ = 50) was performed for venetoclax daily with idasanutlin on days 1 to 5 in 28-day cycles, followed by dosing schedule optimization (nĀ =Ā 6) to evaluate reduced venetoclax schedules (21-/14-day dosing). Common adverse events (occurring in ≥40% of patients) included diarrhea (87.3% of patients), nausea (74.5%), vomiting (52.7%), hypokalemia (50.9%), and febrile neutropenia (45.5%). During DE, across all doses, composite complete remission (CRc; CRĀ + CR with incomplete blood count recoveryĀ + CR with incomplete platelet count recovery) rate was 26.0% and morphologic leukemia-free state (MLFS) rate was 12%. ForĀ anticipated recommended phase 2 doses (venetoclax 600 mgĀ + idasanutlin 150Ā mg; venetoclax 600 mgĀ + idasanutlin 200 mg), the combined CRc rate was 34.3% and the MLFS rate was 14.3%. Pretreatment IDH1/2 and RUNX1 mutations were associated with higher CRc rates (50.0% and 45.0%, respectively). CRc rate in patients with TP53 mutations was 20.0%, with responses noted among those with co-occurring IDH and RUNX1 mutations. In 12Ā out of 36 evaluable patients, 25Ā emergent TP53 mutations were observed; 22Ā were present at baseline with low TP53 variant allele frequency (median 0.0095% [range, 0.0006-0.4]). Venetoclax-idasanutlin showed manageable safety and encouraging efficacy in unfit patients with R/R AML. IDH1/2 and RUNX1 mutations were associated with venetoclax-idasanutlin sensitivity, even in some patients with co-occurring TP53 mutations; most emergent TP53 clones wereĀ preexisting. Our findings will aid ongoing/future trials of BCL-2/MDM2 inhibitor combinations. This trial was registered at www.clinicaltrials.gov as #NCT02670044.
Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Core Binding Factor Alpha 2 Subunit , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effectsABSTRACT
The challenge of eradicating leukemia in patients with acute myelogenous leukemia (AML) after initial cytoreduction has motivated modern efforts to combine synergistic active modalities including immunotherapy. Recently, the ETCTN/CTEP 10026 study tested theĀ combination of the DNA methyltransferase inhibitor decitabine together with the immune checkpoint inhibitor ipilimumab for AML/myelodysplastic syndrome (MDS) either after allogeneic hematopoietic stem cell transplantation (HSCT) or in the HSCT-naĆÆve setting. Integrative transcriptome-based analysis of 304 961 individual marrow-infiltrating cells for 18 of 48 subjects treated on study revealed the strong association of response with a high baseline ratio of T to AML cells. Clinical responses were predominantly driven by decitabine-induced cytoreduction. Evidence of immune activation was only apparent after ipilimumab exposure, which altered CD4+ T-cell gene expression, in line with ongoing T-cell differentiation and increased frequency of marrow-infiltrating regulatory TĀ cells. For post-HSCT samples, relapse could be attributed to insufficient clearing of malignant clones in progenitor cell populations. In contrast to AML/MDS bone marrow, the transcriptomes of leukemia cutis samples from patients with durable remission after ipilimumab monotherapy showed evidence of increased infiltration with antigen-experienced resident memory T cells and higher expression of CTLA-4 and FOXP3. Altogether, activity of combined decitabine and ipilimumab is impacted by cellular expression states within the microenvironmental niche of leukemic cells. The inadequate elimination of leukemic progenitors mandates urgent development of novel approaches for targeting these cell populations to generate long-lasting responses. This trial was registered at www.clinicaltrials.gov as #NCT02890329.
Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Ipilimumab/therapeutic use , Decitabine/therapeutic use , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , RecurrenceABSTRACT
Myelodysplastic syndromes/myelodysplastic neoplasms (MDS) are associated with variable clinical presentations and outcomes. The initial response criteria developed by the International Working Group (IWG) in 2000 have been used in clinical practice, clinical trials, regulatory reviews, and drug labels. Although the IWG criteria were revised in 2006 and 2018 (the latter focusing on lower-risk disease), limitations persist in their application to higher-risk MDS (HR-MDS) and their ability to fully capture the clinical benefits of novel investigational drugs or serve as valid surrogates for longer-term clinical end points (eg, overall survival). Further, issues related to the ambiguity and practicality of some criteria lead to variability in interpretation and interobserver inconsistency in reporting results from the same sets of data. Thus, we convened an international panel of 36 MDS experts and used an established modified Delphi process to develop consensus recommendations for updated response criteria that would be more reflective of patient-centered and clinically relevant outcomes in HR-MDS. Among others, the IWG 2023 criteria include changes in the hemoglobin threshold for complete remission (CR), the introduction of CR with limited count recovery and CR with partial hematologic recovery as provisional response criteria, the elimination of marrow CR, and specific recommendations for the standardization of time-to-event end points and the derivation and reporting of responses. The updated criteria should lead to a better correlation between patient-centered outcomes and clinical trial results in an era of multiple emerging new agents with novel mechanisms of action.
Subject(s)
Hematology , Myelodysplastic Syndromes , Humans , Treatment Outcome , Consensus , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/drug therapy , Outcome Assessment, Health CareABSTRACT
In this study, we performed a comprehensive molecular analysis of paired skin and peripheral blood/bone marrow (BM) samples from 17 patients with cutaneous myeloid or cutaneous histiocytic-dendritic neoplasms. The cutaneous manifestations included 10 patients with cutaneous acute myeloid leukemia (c-AML), 2 patients with full or partial Langerhans cell differentiation, 2 patients with blastic plasmacytoid dendritic cell neoplasms (BPDCN), 1 patient with both Langerhans cell differentiation and BPDCN, and 2 patients with full or partial indeterminate dendritic cell differentiation. Seven of the 10 c-AML patients (70%) exhibited concurrent or subsequent marrow involvement by acute myeloid leukemia, with all 7 cases (100%) demonstrating shared clonal mutations in both the skin and BM. However, clonal relatedness was documented in one additional case that never had any BM involvement. Nevertheless, NPM1 mutations were identified in 7 of the 10 (70%) of these c-AML cases while one had KMT2A rearrangement and one showed inv(16). All 3 patients (100%) with Langerhans cell neoplasms, 2 patients with BPDCN (100%), and one of the 2 patients (50%) with other cutaneous dendritic cell neoplasms also demonstrated shared mutations between the skin and concurrent or subsequent myeloid neoplasms. Both BM and c-AML shared identical founding drivers, with a predominance of NPM1, DNMT3A, and translocations associated with monocytic differentiation, with common cutaneous-only mutations involving genes in the signal transduction and epigenetic pathways. Cutaneous histiocytic-dendritic neoplasms shared founding drivers in ASXL1, TET2, and/or SRSF2. However, in the Langerhans cell histiocytosis or histiocytic sarcoma cases, there exist recurrent secondary RAS pathway hits, whereas cutaneous BPDCN cases exhibit copy number or structural variants. These results enrich and broaden our understanding of clonally related cutaneous manifestations of myeloid neoplasms and further illuminate the highly diverse spectrum of morphologic and immunophenotypic features they exhibit.
Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Skin Neoplasms , Humans , Bone Marrow/pathology , Dendritic Cells/metabolism , Mutation , Leukemia, Myeloid, Acute/pathology , Hematologic Neoplasms/pathology , Skin Neoplasms/pathology , Myeloproliferative Disorders/pathology , Nuclear Proteins/geneticsABSTRACT
Venetoclax-azacitidine is approved for treatment of patients with newly diagnosed acute myeloid leukemia (AML) ineligible for intensive chemotherapy based on the interim overall survival (OS) analysis of the VIALE-A study (NCT02993523). Here, long-term follow-up is presented to address survival benefit and long-term outcomes with venetoclax-azacitidine. Patients with newly diagnosed AML who were ineligible for intensive chemotherapy were randomized 2:1 to receive venetoclax-azacitidine or placebo-azacitidine. OS was the primary endpoint; complete remission with/without blood count recovery (CR/CRi) was a key secondary endpoint. This final analysis was conducted when 100% of the predefined 360 OS events occurred. In VIALE-A, 431 patients were enrolled to venetoclax-azacitidine (n = 286) or placebo-azacitidine (n = 145). At 43.2 months median follow-up, median OS was 14.7 months (95% confidence interval [CI], 12.1-18.7) with venetoclax-azacitidine, and 9.6 months (95% CI, 7.4-12.7) with placebo-azacitidine (hazard ratio, 0.58 [95% CI, 0.47-0.72], p < .001); the estimated 24-month OS rate was 37.5% and 16.9%, respectively. Median OS for patients with IDH1/2 mutations and those with measurable residual disease responses was reached in this final analysis. CR/CRi rate was similar to interim analysis. Any-grade hematologic and gastrointestinal adverse events were most common in venetoclax-azacitidine and placebo-azacitidine arms, including thrombocytopenia (47% and 42%) and neutropenia (43% and 29%). No new safety signals were identified. Long-term efficacy and safety confirm venetoclax-azacitidine is an improvement in standard-of-care for patients with AML who are not eligible for intensive chemotherapy because of advanced age or comorbidities.
Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Neutropenia , Sulfonamides , Humans , Follow-Up Studies , Leukemia, Myeloid, Acute/drug therapy , Azacitidine/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effectsABSTRACT
BACKGROUND: In the past decade, there have been significant breakthroughs in immunotherapies for B-cell lymphoid malignancies and multiple myeloma, but progress has been much less for acute myeloid leukemia (AML). Nevertheless, challenge begets innovation and several therapeutic strategies are under investigation. SUMMARY: In this review, we review the state of the art in AML immunotherapy including CD33- and CD123-targeted agents, immune checkpoint inhibition, and adoptive cell therapy strategies. We also share conceptual frameworks for approaching the growing catalog of investigational AML immunotherapies and propose future directions for the field. KEY MESSAGES: Immunotherapies for AML face significant challenges but novel strategies are in development.
Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Immunotherapy , Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy , Leukemia, Myeloid, Acute/drug therapy , Immunotherapy, AdoptiveABSTRACT
Myelofibrosis is a heterogeneous myeloproliferative neoplasm characterized by chronic inflammation, progressive bone marrow failure, and hepatosplenic extramedullary hematopoiesis. Treatments like Janus kinase inhibitor monotherapy (e.g., ruxolitinib) provide significant spleen and symptom relief but demonstrate limited ability to lead to a durable disease modification. There is an urgent unmet medical need for treatments with a novel mechanism of action that can modify the underlying pathophysiology and affect the disease course of myelofibrosis. This review highlights the role of B-cell lymphoma (BCL) protein BCL-extra large (BCL-XL ) in disease pathogenesis and the potential role that navitoclax, a BCL-extra large/BCL-2 inhibitor, may have in myelofibrosis treatment.
Subject(s)
Antineoplastic Agents , Janus Kinase Inhibitors , Primary Myelofibrosis , Humans , Primary Myelofibrosis/drug therapy , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Janus Kinase 2 , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Proto-Oncogene Proteins c-bcl-2 , Nitriles/therapeutic useABSTRACT
BACKGROUND: Older patients with acute myeloid leukemia (AML) have a dismal prognosis, even after treatment with a hypomethylating agent. Azacitidine added to venetoclax had promising efficacy in a previous phase 1b study. METHODS: We randomly assigned previously untreated patients with confirmed AML who were ineligible for standard induction therapy because of coexisting conditions, because they were 75 years of age or older, or both to azacitidine plus either venetoclax or placebo. All patients received a standard dose of azacitidine (75 mg per square meter of body-surface area subcutaneously or intravenously on days 1 through 7 every 28-day cycle); venetoclax (target dose, 400 mg) or matching placebo was administered orally, once daily, in 28-day cycles. The primary end point was overall survival. RESULTS: The intention-to-treat population included 431 patients (286 in the azacitidine-venetoclax group and 145 in the azacitidine-placebo [control] group). The median age was 76 years in both groups (range, 49 to 91). At a median follow-up of 20.5 months, the median overall survival was 14.7 months in the azacitidine-venetoclax group and 9.6 months in the control group (hazard ratio for death, 0.66; 95% confidence interval, 0.52 to 0.85; P<0.001). The incidence of complete remission was higher with azacitidine-venetoclax than with the control regimen (36.7% vs. 17.9%; P<0.001), as was the composite complete remission (complete remission or complete remission with incomplete hematologic recovery) (66.4% vs. 28.3%; P<0.001). Key adverse events included nausea of any grade (in 44% of the patients in the azacitidine-venetoclax group and 35% of those in the control group) and grade 3 or higher thrombocytopenia (in 45% and 38%, respectively), neutropenia (in 42% and 28%), and febrile neutropenia (in 42% and 19%). Infections of any grade occurred in 85% of the patients in the azacitidine-venetoclax group and 67% of those in the control group, and serious adverse events occurred in 83% and 73%, respectively. CONCLUSIONS: In previously untreated patients who were ineligible for intensive chemotherapy, overall survival was longer and the incidence of remission was higher among patients who received azacitidine plus venetoclax than among those who received azacitidine alone. The incidence of febrile neutropenia was higher in the venetoclax-azacitidine group than in the control group. (Funded by AbbVie and Genentech; VIALE-A ClinicalTrials.gov number, NCT02993523.).
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides/administration & dosage , Aged , Aged, 80 and over , Azacitidine/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Double-Blind Method , Female , Follow-Up Studies , Humans , Intention to Treat Analysis , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , Leukopenia/chemically induced , Male , Middle Aged , Pneumonia/etiology , Recurrence , Remission Induction , Sulfonamides/adverse effects , Thrombocytopenia/chemically inducedABSTRACT
Patients with relapsed/refractory (R/R) higher-risk myelodysplastic syndromes (MDS) have a dismal median overall survival (OS) after failing hypomethylating agent (HMA) treatment. There is no standard of care for patients after HMA therapy failure; hence, there is a critical need for effective therapeutic strategies. Herein, we present the safety and efficacy of venetoclax + azacitidine in patients with R/R MDS. This phase 1b, open-label, multicenter study enrolled patients ≥18 years. Patients were treated with escalating doses of oral venetoclax: 100, 200, or 400 mg daily for 14 days every 28-day cycle. Azacitidine was administered on Days 1-7 every cycle at 75 mg/m2 /day intravenously/subcutaneously. Responses were assessed per modified 2006 International Working Group (IWG) criteria. Forty-four patients (male 86%, median age 74 years) received venetoclax + azacitidine treatment. Median follow-up was 21.2Ā months. Hematological adverse events of Grade ≥ 3 included febrile neutropenia (34%), thrombocytopenia (32%), neutropenia (27%), and anemia (18%). Pneumonia (23%) was the most common Grade ≥ 3 infection. Marrow responses were seen including complete remission (CR, nĀ = 3, 7%) and marrow CR (mCR, nĀ = 14, 32%); 36% (16/44) achieved transfusion independence (TI) for RBCs and/or platelets, and 43% (6/14) with mCR achieved hematological improvement (HI). The median time to CR/mCR was 1.2Ā months, and the median duration of response for CR + mCR was 8.6Ā months. Median OS was 12.6Ā months. Venetoclax + azacitidine shows activity in patients with R/R MDS following prior HMA therapy failure and provides clinically meaningful benefits, including HI and TI, and encouraging OS.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Myelodysplastic Syndromes , Aged , Humans , Male , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Azacitidine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Neutropenia/chemically induced , Sulfonamides , Treatment Outcome , FemaleABSTRACT
The development of targeted therapies for the treatment of myelofibrosis highlights a unique issue in a field that has historically relied on symptom relief, rather than survival benefit or modification of disease course, as key response criteria. There is, therefore, a need to understand what constitutes disease modification of myelofibrosis to advance appropriate drug development and therapeutic pathways. Here, the authors discuss recent clinical trial data of agents in development and dissect the potential for novel end points to act as disease modifying parameters. Using the rationale garnered from latest clinical and scientific evidence, the authors propose a definition of disease modification in myelofibrosis. With improved overall survival a critical outcome, alongside the normalization of hematopoiesis and improvement in bone marrow fibrosis, there will be an increasing need for surrogate measures of survival for use in the early stages of trials. As such, the design of future clinical trials will require re-evaluation and updating to incorporate informative parameters and end points with standardized definitions and methodologies.
Subject(s)
Primary Myelofibrosis , Disease Progression , Hematopoiesis , Humans , Primary Myelofibrosis/drug therapyABSTRACT
Most patients with relapsed or refractory (R/R) acute myeloid leukemia (AML) do not benefit from current re-induction or approved targeted therapies. In the absence of targetable genetic mutations, there is minimal guidance on optimal treatment selection particularly in the R/R setting highlighting an unmet need for clinically useful functional biomarkers. Blood and bone marrow samples from patients treated on two clinical trials were used to test the combination of lenalidomide (LEN) and MEC (mitoxantrone, etoposide, and cytarabine) chemotherapy in R/R AML patients. The bone marrow samples were available to test the clinical utility of the mitochondrial apoptotic BH3 and dynamic BH3 profiling (DBP) assays in predicting response, as there was no clear genetic biomarker identifying responders. To test whether LEN-induced mitochondrial priming predicted clinical response to LEN-MEC therapy, we performed DBP on patient myeloblasts. We found that short-term ex vivo treatment with lenalidomide discriminated clinical responders from non-responders based on drug-induced change in priming (delta priming). Using paired patient samples collected before and after clinical LEN treatment (prior to MEC dosing), we confirmed LEN-induced increased apoptotic priming in vivo, suggesting LEN enhanced vulnerability of myeloblasts to cytotoxic MEC chemotherapy. This is the first study demonstrating the potential role of DBP in predicting clinical response to a combination regimen. Our findings demonstrate that functional properties of relapsed AML can identify active therapies.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis/drug effects , Induction Chemotherapy , Leukemia, Myeloid, Acute , Mitochondria/metabolism , Adult , Aged , Cytarabine/administration & dosage , Etoposide/administration & dosage , Female , Humans , Lenalidomide/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mitochondria/pathology , Mitoxantrone/administration & dosageABSTRACT
Acute undifferentiated leukemia is a rare type of acute leukemia that shows no evidence of differentiation along any lineage. Clinical, immunophenotypic and genetic data is limited and it is uncertain if acute undifferentiated leukemia is biologically distinct from acute myeloid leukemia with minimal differentiation, which also shows limited myeloid marker expression and has been reported to have a poor prognosis. We identified 92 cases initially diagnosed as acute undifferentiated leukemia or acute myeloid leukemia with minimal differentiation from pathology databases of nine academic institutions with available diagnostic flow cytometric data, cytogenetic findings, mutational and clinical data. Outcome analysis was performed using Kaplan Meier test for the 53 patients who received induction chemotherapy. Based on cytogenetic abnormalities (N = 30) or history of myelodysplastic syndrome (N = 2), 32 cases were re-classified as acute myeloid leukemia with myelodysplasia related changes. The remaining 24 acute undifferentiated leukemia patients presented with similar age, blood counts, bone marrow cellularity, and blast percentage as the remaining 30 acute myeloid leukemia with minimal differentiation patients. Compared to acute myeloid leukemia with minimal differentiation, acute undifferentiated leukemia cases were characterized by more frequent mutations in PHF6 (5/15 vs 0/19, p = 0.016) and more frequent expression of TdT on blasts (p = 0.003) while acute myeloid leukemia with minimal differentiation cases had more frequent CD123 expression (p = 0.042). Outcome data showed no difference in overall survival, relapse free survival, or rates of complete remission between acute undifferentiated leukemia and acute myeloid leukemia with minimal differentiation groups (p > 0.05). Acute myeloid leukemia with myelodysplasia-related changes patients showed shorter survival when censoring for bone marrow transplant as compared to acute undifferentiated leukemia (p = 0.03) and acute myeloid leukemia with minimal differentiation (p = 0.002). In this largest series to date, the acute undifferentiated leukemia group shows distinct characteristics from acute myeloid leukemia with minimal differentiation, including more frequent PHF6 mutations and expression of TdT.
Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia/genetics , Leukemia/pathology , Adult , Aged , Aged, 80 and over , Female , Genotype , Humans , Immunophenotyping , Leukemia/classification , Leukemia, Myeloid, Acute/classification , Male , Middle AgedABSTRACT
The B/T subtype of mixed phenotype acute leukemia (B/T MPAL) is defined by co-expression of antigens of both B- and T-cell lineages on leukemic blasts. Although it has been suggested that multilineage antigen expression portends poor response to chemotherapy, the clinical characteristics and driver mutations that underlie the pathogenesis of this rare subtype of acute leukemia are scarcely known. We identified nine cases of B/T MPAL from multiple institutions and correlated clinical and immunophenotypic findings with next-generation sequencing data. We report that B/T MPAL commonly presents with lymphadenopathy in adolescence and young adulthood. While the tumors have diverse cytogenetic and genomic perturbations, recurrent acquired aberrations include mutations in the putative transcriptional regulator PHF6 and the JAK-STAT and Ras signaling pathways. Alterations were also identified in genes encoding hematopoietic transcription factors, cell cycle regulators/tumor suppressors, and chromatin modifying enzymes. The genomic landscape of B/T MPAL strongly resembles that of T-ALL subgroups associated with early developmental arrest, while genetic alterations that are common in B-ALL were rarely seen. Two-thirds of the patients responded to ALL-based chemotherapy with or without stem cell transplantation. Our observations lay the groundwork for further study of the unique biology and clinical trajectory of B/T MPAL.
Subject(s)
Leukemia, Biphenotypic, Acute , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Adult , Drug Therapy/methods , Female , Genomics , Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/therapy , Male , Middle Aged , Young AdultABSTRACT
The ability of a cell to undergo malignant transformation is both associated with and dependent on a concomitant increase in protein synthesis due to increased cell division rates and biosynthetic activities. Protein synthesis, in turn, depends upon the synthesis of ribosomes and thus ultimately on the transcription of ribosomal RNA by RNA polymerase I that occurs in the nucleolus. Enlargement of nucleoli has long been considered a hallmark of the malignant cell, but it is only recently that the rate of synthesis of rRNA in the nucleolus has been recognized as both a critical regulator of cellular proliferation and a potential target for therapeutic intervention. As might be expected, the factors regulating rRNA synthesis are both numerous and complex. It is the objective of this review to highlight recent advances in understanding how rRNA synthesis is perturbed in transformed mammalian cells and to consider the impact of these findings on the development of new approaches to the treatment of malignancies. In-depth analysis of the process of rRNA transcription itself may be found in several recently published reviews (Drygin et al., 2010, Annu Rev Pharmacol Toxicol 50:131-156; Bywater et al., 2013,Cancer Cell 22: 51-65; Hein et al., 2013,Trends Mol Med 19:643-654).