Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neurobiol Dis ; 199: 106600, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996985

ABSTRACT

Familial Dysautonomia (FD) is an autosomal recessive disorder caused by a splice site mutation in the gene ELP1, which disproportionally affects neurons. While classically characterized by deficits in sensory and autonomic neurons, neuronal defects in the central nervous system have also been described. Although ELP1 expression remains high in the normal developing and adult cerebellum, its role in cerebellar development is unknown. To explore the role of Elp1 in the cerebellum, we knocked out Elp1 in cerebellar granule cell progenitors (GCPs) and examined the outcome on animal behavior and cellular composition. We found that GCP-specific conditional knockout of Elp1 (Elp1cKO) resulted in ataxia by 8 weeks of age. Cellular characterization showed that the animals had smaller cerebella with fewer granule cells. This defect was already apparent as early as 7 days after birth, when Elp1cKO animals also had fewer mitotic GCPs and shorter Purkinje dendrites. Through molecular characterization, we found that loss of Elp1 was associated with an increase in apoptotic cell death and cell stress pathways in GCPs. Our study demonstrates the importance of ELP1 in the developing cerebellum, and suggests that loss of Elp1 in the GC lineage may also play a role in the progressive ataxia phenotypes of FD patients.


Subject(s)
Cerebellum , Dysautonomia, Familial , Mice, Knockout , Phenotype , Animals , Dysautonomia, Familial/genetics , Dysautonomia, Familial/pathology , Cerebellum/metabolism , Cerebellum/pathology , Mice , Disease Models, Animal , Ataxia/genetics , Ataxia/pathology , Ataxia/metabolism , Neural Stem Cells/metabolism , Apoptosis/physiology , Intracellular Signaling Peptides and Proteins
2.
Chemistry ; 30(17): e202303785, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38134366

ABSTRACT

The first crystal structure of an ortho-lithium phosphinothioic amide complexed with tetramethylethylenediamine 12 is reported. The complex consists of a spirane in which the spiro-lithium is N,N- and C,S-chelated by the diamine and organophosphorus ligands, respectively. The analogous ortho anion 14 obtained by Sn(IV)/Li transmetallation in THF has also been synthesized. Nuclear magnetic resonance study of both anions showed that they exist as monomers in solution and are involved in dynamic processes including the restricted rotation around the P-N bond. 14 is converted at room temperature by nucleophilic cyclization to the dearomatized anion 15, which evolves after a few hours to the benzophosphindole sulfide 16. Density functional theory calculations supported the aggregation state in solution and were used to explore the conformational space of anion 12, the mechanism of ortho-lithiation directed by P(X)-N (X=O, S) groups, and the mechanism of formation of 15.

SELECTION OF CITATIONS
SEARCH DETAIL