ABSTRACT
Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH. PDXs were generated by implanting fresh BPH (transition zone) and paired normal (peripheral zone) prostate tissue from 8 patients under the renal capsule of immunodeficient male mice. Tissue weight, architecture, cellular proliferation, apoptosis, prostate-specific marker expression, and molecular profiles of PDXs were assessed after 1 week and 1, 2, or 3 months of implantation by immunohistochemistry, enzyme-linked immunosorbent assay, transcriptomics, and proteomics. Responses to finasteride, a standard-of-care therapy, were evaluated. PDXs maintained histologic and molecular characteristics of the parental human tissues. BPH, but not normal PDXs, demonstrated significant increases in weight and cellular proliferation, particularly at 1 month. Molecular profiling revealed specific gene and protein expression patterns correlating with BPH pathophysiology. Specifically, an increased immune and stress response was observed at 1 week, followed by increased expression of proliferation markers and BPH-specific stromal signaling molecules, such as BMP5 and CXCL13, at 1 month. Graft stabilization to preimplant characteristics was apparent between 2 and 3 months. Treatment with finasteride reduced proliferation, increased apoptosis, and induced morphologic changes consistent with therapeutic responses observed in human BPH. Our PDX model recapitulates the morphologic, histologic, and molecular features of human BPH, offering a significant advancement in modeling the complex interactions of cell types in BPH microenvironments. These PDXs respond to therapeutic intervention as expected, providing a valuable tool for preclinical testing of new therapeutics that will improve the well-being of BPH patients.
Subject(s)
Prostate , Prostatic Hyperplasia , Male , Humans , Animals , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Prostate/metabolism , Prostate/pathology , Mice , Disease Models, Animal , Heterografts , Aged , Finasteride/pharmacology , Finasteride/therapeutic use , Mice, SCID , Middle Aged , Cell ProliferationABSTRACT
After spinal cord injury (SCI), use chronic urinary catheters for bladder management is common, making these patients especially vulnerable to catheter-associated complications. Chronic catheterization is associated with bacterial colonization and frequent catheter-associated urinary tract infections (CAUTI). One determinant of infection success and treatment resistance is production of catheter-associated biofilms, composed of microorganisms and host- and microbial-derived components. To better understand the biofilm microenvironment, we performed proteomics analysis of catheter-associated biofilms and paired urine samples from four people with SCI with chronic indwelling urinary catheters. We developed a novel method for the removal of adhered cellular components on catheters that contained both human and microbial homologous proteins. Proteins from seven microbial species were identified including: Escherichia coli, Klebsiella species (spp), Enterococcus spp, Proteus mirabilis, Pseudomonas spp, Staphylococcus spp, and Candida spp. Peptides identified from catheter biofilms were assigned to 4,820 unique proteins, with 61% of proteins assigned to the biofilm-associated microorganisms, while the remainder were human-derived. Contrastingly, in urine, only 51% were assigned to biofilm-associated microorganisms and 4,554 proteins were identified as a human-derived. Of the proteins assigned to microorganisms in the biofilm and paired urine, Enterococcus, Candida spp, and P. mirabilis had greater associations with the biofilm phase, whereas E. coli and Klebsiella had greater associations with the urine phase, thus demonstrating a significant difference between the urine and adhered microbial communities. The microbial proteins that differed significantly between the biofilm and paired urine samples mapped to pathways associated with amino acid synthesis, likely related to adaptation to high urea concentrations in the urine, and growth and protein synthesis in bacteria in the biofilm. Human proteins demonstrated enrichment for immune response in the catheter-associated biofilm. Proteomic analysis of catheter-associated biofilms and paired urine samples has the potential to provide detailed information on host and bacterial responses to chronic indwelling urinary catheters and could be useful for understanding complications of chronic indwelling catheters including CAUTIs, urinary stones, and catheter blockages.
ABSTRACT
INTRODUCTION: Vasculogenic mimicry (VM), the process of tumor cell transdifferentiation to endow endothelial-like characteristics supporting de novo vessel formation, is associated with poor prognosis in several tumor types, including SCLC. In genetically engineered mouse models (GEMMs) of SCLC, NOTCH, and MYC co-operate to drive a neuroendocrine (NE) to non-NE phenotypic switch, and co-operation between NE and non-NE cells is required for metastasis. Here, we define the phenotype of VM-competent cells and molecular mechanisms underpinning SCLC VM using circulating tumor cell-derived explant (CDX) models and GEMMs. METHODS: We analyzed perfusion within VM vessels and their association with NE and non-NE phenotypes using multiplex immunohistochemistry in CDX, GEMMs, and patient biopsies. We evaluated their three-dimensional structure and defined collagen-integrin interactions. RESULTS: We found that VM vessels are present in 23/25 CDX models, 2 GEMMs, and in 20 patient biopsies of SCLC. Perfused VM vessels support tumor growth and only NOTCH-active non-NE cells are VM-competent in vivo and ex vivo, expressing pseudohypoxia, blood vessel development, and extracellular matrix organization signatures. On Matrigel, VM-primed non-NE cells remodel extracellular matrix into hollow tubules in an integrin ß1-dependent process. CONCLUSIONS: We identified VM as an exemplar of functional heterogeneity and plasticity in SCLC and these findings take considerable steps toward understanding the molecular events that enable VM. These results support therapeutic co-targeting of both NE and non-NE cells to curtail SCLC progression and to improve the outcomes of patients with SCLC in the future.
Subject(s)
Lung Neoplasms , Animals , Mice , Humans , Lung Neoplasms/pathology , Neovascularization, Pathologic/genetics , Cell Transdifferentiation , Cell Line, TumorABSTRACT
Breast cancer remains the second most lethal cancer among women in the United States and triple-negative breast cancer is the most aggressive subtype with limited treatment options. Trop2, a cell membrane glycoprotein, is overexpressed in almost all epithelial cancers. In this study, we demonstrate that Trop2 is overexpressed in triple-negative breast cancer (TNBC), and downregulation of Trop2 delays TNBC cell and tumor growth supporting the oncogenic role of Trop2 in breast cancer. Through proteomic profiling, we discovered a metabolic signature comprised of TALDO1, GPI, LDHA, SHMT2, and ADK proteins that were downregulated in Trop2-depleted breast cancer tumors. The identified oncogene-mediated metabolic gene signature is significantly upregulated in TNBC patients across multiple RNA-expression clinical datasets. Our study further reveals that the metabolic gene signature reliably predicts poor survival of breast cancer patients with early stages of the disease. Taken together, our study identified a new five-gene metabolic signature as an accurate predictor of breast cancer outcome.
ABSTRACT
Staphylococcus aureus (S. aureus) is a highly pathogenic facultative anaerobe that in some instances resides as an intracellular bacterium within macrophages and cancer cells. This pathogen can establish secondary infection foci, resulting in recurrent systemic infections that are difficult to treat using systemic antibiotics. Here, we use reconstructed apoptotic bodies (ReApoBds) derived from cancer cells as "nano decoys" to deliver vancomycin intracellularly to kill S. aureus by targeting inherent "eat me" signaling of ApoBds. We prepared ReApoBds from different cancer cells (SKBR3, MDA-MB-231, HepG2, U87-MG, and LN229) and used them for vancomycin delivery. Physicochemical characterization showed ReApoBds size ranges from 80 to 150 nm and vancomycin encapsulation efficiency of 60 ± 2.56%. We demonstrate that the loaded vancomycin was able to kill intracellular S. aureus efficiently in an in vitro model of S. aureus infected RAW-264.7 macrophage cells, and U87-MG (p53-wt) and LN229 (p53-mt) cancer cells, compared to free-vancomycin treatment (P < 0.001). The vancomycin loaded ReApoBds treatment in S. aureus infected macrophages showed a two-log-order higher CFU reduction than the free-vancomycin treatment group. In vivo studies revealed that ReApoBds can specifically target macrophages and cancer cells. Vancomycin loaded ReApoBds have the potential to kill intracellular S. aureus infection in vivo in macrophages and cancer cells.