Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004147

ABSTRACT

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Protein Phosphatase 2/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred NOD , Phosphorylation , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Substrate Specificity
2.
Nat Rev Mol Cell Biol ; 24(3): 204-220, 2023 03.
Article in English | MEDLINE | ID: mdl-36180603

ABSTRACT

In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.


Subject(s)
RNA Polymerase II , RNA Processing, Post-Transcriptional , Animals , RNA Polymerase II/metabolism , RNA , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Genomics , Transcription, Genetic
3.
Mol Cell ; 83(17): 3064-3079.e5, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37552993

ABSTRACT

CTCF is a critical regulator of genome architecture and gene expression that binds thousands of sites on chromatin. CTCF genomic localization is controlled by the recognition of a DNA sequence motif and regulated by DNA modifications. However, CTCF does not bind to all its potential sites in all cell types, raising the question of whether the underlying chromatin structure can regulate CTCF occupancy. Here, we report that R-loops facilitate CTCF binding through the formation of associated G-quadruplex (G4) structures. R-loops and G4s co-localize with CTCF at many genomic regions in mouse embryonic stem cells and promote CTCF binding to its cognate DNA motif in vitro. R-loop attenuation reduces CTCF binding in vivo. Deletion of a specific G4-forming motif in a gene reduces CTCF binding and alters gene expression. Conversely, chemical stabilization of G4s results in CTCF gains and accompanying alterations in chromatin organization, suggesting a pivotal role for G4 structures in reinforcing long-range genome interactions through CTCF.


Subject(s)
G-Quadruplexes , Animals , Mice , R-Loop Structures , CCCTC-Binding Factor/metabolism , Chromatin/genetics , Genomics , Binding Sites
4.
Cell ; 162(5): 1003-15, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26279188

ABSTRACT

The control of promoter-proximal pausing and the release of RNA polymerase II (Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify that Pol-II-associated factor 1 (PAF1) possesses an evolutionarily conserved function in metazoans in the regulation of promoter-proximal pausing. Reduction in PAF1 levels leads to an increased release of paused Pol II into gene bodies at thousands of genes. PAF1 depletion results in increased nascent and mature transcripts and increased levels of phosphorylation of Pol II's C-terminal domain on serine 2 (Ser2P). These changes can be explained by the recruitment of the Ser2P kinase super elongation complex (SEC) effecting increased release of paused Pol II into productive elongation, thus establishing PAF1 as a regulator of promoter-proximal pausing by Pol II.


Subject(s)
Nuclear Proteins/metabolism , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Transcription, Genetic , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster , Histones/metabolism , Humans , Phosphorylation , RNA Interference , Transcription Factors , Ubiquitination
5.
Mol Cell ; 71(1): 103-116.e7, 2018 07 05.
Article in English | MEDLINE | ID: mdl-30008316

ABSTRACT

The control of cell fate is an epigenetic process initiated by transcription factors (TFs) that recognize DNA motifs and recruit activator complexes and transcriptional machineries to chromatin. Lineage specificity is thought to be provided solely by TF-motif pairing, while the recruited activators are passive. Here, we show that INTS13, a subunit of the Integrator complex, operates as monocytic/macrophagic differentiation factor. Integrator is a general activator of transcription at coding genes and is required for eRNA maturation. Here, we show that INTS13 functions as an independent sub-module and targets enhancers through Early Growth Response (EGR1/2) TFs and their co-factor NAB2. INTS13 binds poised monocytic enhancers eliciting chromatin looping and activation. Independent depletion of INTS13, EGR1, or NAB2 impairs monocytic differentiation of cell lines and primary human progenitors. Our data demonstrate that Integrator is not functionally homogeneous and has TF-specific regulatory potential, revealing a new enhancer regulatory axis that controls myeloid differentiation.


Subject(s)
Cell Differentiation , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 2/metabolism , Enhancer Elements, Genetic , Monocytes/metabolism , Myeloid Progenitor Cells/metabolism , Repressor Proteins/metabolism , Cell Line , Early Growth Response Protein 1/genetics , Early Growth Response Protein 2/genetics , Humans , Myeloid Progenitor Cells/cytology , Repressor Proteins/genetics
6.
Cell ; 143(1): 46-58, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20887892

ABSTRACT

While the long noncoding RNAs (ncRNAs) constitute a large portion of the mammalian transcriptome, their biological functions has remained elusive. A few long ncRNAs that have been studied in any detail silence gene expression in processes such as X-inactivation and imprinting. We used a GENCODE annotation of the human genome to characterize over a thousand long ncRNAs that are expressed in multiple cell lines. Unexpectedly, we found an enhancer-like function for a set of these long ncRNAs in human cell lines. Depletion of a number of ncRNAs led to decreased expression of their neighboring protein-coding genes, including the master regulator of hematopoiesis, SCL (also called TAL1), Snai1 and Snai2. Using heterologous transcription assays we demonstrated a requirement for the ncRNAs in activation of gene expression. These results reveal an unanticipated role for a class of long ncRNAs in activation of critical regulators of development and differentiation.


Subject(s)
Enhancer Elements, Genetic , Genome, Human , RNA, Untranslated/metabolism , Cell Line , Cell Line, Tumor , Cells, Cultured , Humans , RNA, Messenger/genetics , Snail Family Transcription Factors , Transcription Factors/genetics , Transcriptional Activation
7.
Mol Cell ; 56(1): 128-139, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25201415

ABSTRACT

In unicellular organisms, initiation is the rate-limiting step in transcription; in metazoan organisms, the transition from initiation to productive elongation is also important. Here, we show that the RNA polymerase II (RNAPII)-associated multiprotein complex, Integrator, plays a critical role in both initiation and the release of paused RNAPII at immediate early genes (IEGs) following transcriptional activation by epidermal growth factor (EGF) in human cells. Integrator is recruited to the IEGs in a signal-dependent manner and is required to engage and recruit the super elongation complex (SEC) to EGF-responsive genes to allow release of paused RNAPII and productive transcription elongation.


Subject(s)
RNA Polymerase II/metabolism , Transcription Initiation, Genetic , Transcriptional Activation , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/physiology , HeLa Cells , Humans
8.
Nature ; 525(7569): 399-403, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26308897

ABSTRACT

Integrator is a multi-subunit complex stably associated with the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII). Integrator is endowed with a core catalytic RNA endonuclease activity, which is required for the 3'-end processing of non-polyadenylated, RNAPII-dependent, uridylate-rich, small nuclear RNA genes. Here we examine the requirement of Integrator in the biogenesis of transcripts derived from distal regulatory elements (enhancers) involved in tissue- and temporal-specific regulation of gene expression in metazoans. Integrator is recruited to enhancers and super-enhancers in a stimulus-dependent manner. Functional depletion of Integrator subunits diminishes the signal-dependent induction of enhancer RNAs (eRNAs) and abrogates stimulus-induced enhancer-promoter chromatin looping. Global nuclear run-on and RNAPII profiling reveals a role for Integrator in 3'-end cleavage of eRNA primary transcripts leading to transcriptional termination. In the absence of Integrator, eRNAs remain bound to RNAPII and their primary transcripts accumulate. Notably, the induction of eRNAs and gene expression responsiveness requires the catalytic activity of Integrator complex. We propose a role for Integrator in biogenesis of eRNAs and enhancer function in metazoans.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , Biocatalysis , Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation/genetics , HeLa Cells , Humans , Multiprotein Complexes/chemistry , Nuclear Proteins/chemistry , Nuclear Proteins/deficiency , Promoter Regions, Genetic/genetics , Protein Subunits/chemistry , Protein Subunits/deficiency , Protein Subunits/metabolism , RNA Polymerase II/chemistry , RNA Processing, Post-Transcriptional , RNA, Long Noncoding/metabolism , Transcription Initiation, Genetic , Transcription Termination, Genetic
9.
EMBO J ; 33(8): 890-905, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24591564

ABSTRACT

Breast and ovarian cancer susceptibility genes BRCA1 and PALB2 have enigmatic roles in cellular growth and mammalian development. While these genes are essential for growth during early developmental programs, inactivation later in adulthood results in increased growth and formation of tumors, leading to their designation as tumor suppressors. We performed genome-wide analysis assessing their chromatin residence and gene expression responsiveness using high-throughput sequencing in breast epithelial cells. We found an intimate association between BRCA1 and PALB2 chromatin residence and genes displaying high transcriptional activity. Moreover, our experiments revealed a critical role for BRCA1 and, to a smaller degree, PALB2 in transcriptional responsiveness to NF-κB, a crucial mediator of growth and inflammatory response during development and cancer. Importantly, we also uncovered a vital role for BRCA1 and PALB2 in response to retinoic acid (RA), a growth inhibitory signal in breast cancer cells, which may constitute the basis for their tumor suppressor activity. Taken together, our results highlight an important role for these breast cancer proteins in the regulation of diverse growth regulatory pathways.


Subject(s)
BRCA1 Protein/metabolism , Epithelial Cells/physiology , Nuclear Proteins/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Cell Line , Chromatin/metabolism , Fanconi Anemia Complementation Group N Protein , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , NF-kappa B/metabolism , Tretinoin/metabolism
10.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659891

ABSTRACT

The pathogenesis of many rare tumor types is poorly understood, preventing the design of effective treatments. Solitary fibrous tumors (SFTs) are neoplasms of mesenchymal origin that affect 1/1,000,000 individuals every year and are clinically assimilated to soft tissue sarcomas. SFTs can arise throughout the body and are usually managed surgically. However, 30-40% of SFTs will relapse local-regionally or metastasize. There are no systemic therapies with durable activity for malignant SFTs to date. The molecular hallmark of SFTs is a gene fusion between the NAB2 and STAT6 loci on chromosome 12, resulting in a chimeric protein of poorly characterized function called NAB2-STAT6. We use primary samples and an inducible cell model to discover that NAB2-STAT6 operates as a transcriptional coactivator for a specific set of enhancers and promoters that are normally targeted by the EGR1 transcription factor. In physiological conditions, NAB2 is primarily localized to the cytoplasm and only a small nuclear fraction is available to operate as a co-activator of EGR1 targets. NAB2-STAT6 redirects NAB1, NAB2, and additional EGR1 to the nucleus and bolster the expression of neuronal EGR1 targets. The STAT6 moiety of the fusion protein is a major driver of its nuclear localization and further contributes to NAB2's co-activating abilities. In primary tumors, NAB2-STAT6 activates a neuroendocrine gene signature that sets it apart from most sarcomas. These discoveries provide new insight into the pathogenesis of SFTs and reveal new targets with therapeutic potential.

11.
Nat Commun ; 15(1): 5410, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926365

ABSTRACT

METTL3 is the catalytic subunit of the methyltransferase complex, which mediates m6A modification to regulate gene expression. In addition, METTL3 regulates transcription in an enzymatic activity-independent manner by driving changes in high-order chromatin structure. However, how these functions of the methyltransferase complex are coordinated remains unknown. Here we show that the methyltransferase complex coordinates its enzymatic activity-dependent and independent functions to regulate cellular senescence, a state of stable cell growth arrest. Specifically, METTL3-mediated chromatin loops induce Hexokinase 2 expression through the three-dimensional chromatin organization during senescence. Elevated Hexokinase 2 expression subsequently promotes liquid-liquid phase separation, manifesting as stress granule phase separation, by driving metabolic reprogramming. This correlates with an impairment of translation of cell-cycle related mRNAs harboring polymethylated m6A sites. In summary, our results report a coordination of m6A-dependent and -independent function of the methyltransferase complex in regulating senescence through phase separation driven by metabolic reprogramming.


Subject(s)
Cellular Senescence , Chromatin , Methyltransferases , Stress Granules , Methyltransferases/metabolism , Methyltransferases/genetics , Chromatin/metabolism , Humans , Stress Granules/metabolism , Stress Granules/genetics , Hexokinase/metabolism , Hexokinase/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Adenosine/metabolism , Adenosine/analogs & derivatives , HEK293 Cells , Metabolic Reprogramming , Phase Separation
12.
Cell Rep ; 42(3): 112244, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36920904

ABSTRACT

RNA polymerase II (RNAPII) controls expression of all protein-coding genes and most noncoding loci in higher eukaryotes. Calibrating RNAPII activity requires an assortment of polymerase-associated factors that are recruited at sites of active transcription. The Integrator complex is one of the most elusive transcriptional regulators in metazoans, deemed to be recruited after initiation to help establish and modulate paused RNAPII. Integrator is known to be composed of 14 subunits that assemble and operate in a modular fashion. We employed proteomics and machine-learning structure prediction (AlphaFold2) to identify an additional Integrator subunit, INTS15. We report that INTS15 assembles primarily with the INTS13/14/10 module and interfaces with the Int-PP2A module. Functional genomics analysis further reveals a role for INTS15 in modulating RNAPII pausing at a subset of genes. Our study shows that omics approaches combined with AlphaFold2-based predictions provide additional insights into the molecular architecture of large and dynamic multiprotein complexes.


Subject(s)
RNA Polymerase II , Transcription, Genetic , RNA Polymerase II/metabolism
13.
Cancer Res ; 82(3): 458-471, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34903608

ABSTRACT

Despite treatment with intensive chemotherapy, acute myelogenous leukemia (AML) remains an aggressive malignancy with a dismal outcome in most patients. We found that AML cells exhibit an unusually rapid accumulation of the repressive histone mark H3K27me3 on nascent DNA. In cell lines, primary cells and xenograft mouse models, inhibition of the H3K27 histone methyltransferase EZH2 to decondense the H3K27me3-marked chromatin of AML cells enhanced chromatin accessibility and chemotherapy-induced DNA damage, apoptosis, and leukemia suppression. These effects were further promoted when chromatin decondensation of AML cells was induced upon S-phase entry after release from a transient G1 arrest mediated by CDK4/6 inhibition. In the p53-null KG-1 and THP-1 AML cell lines, EZH2 inhibitor and doxorubicin cotreatment induced transcriptional reprogramming that was, in part, dependent on derepression of H3K27me3-marked gene promoters and led to increased expression of cell death-promoting and growth-inhibitory genes.In conclusion, decondensing H3K27me3-marked chromatin by EZH2 inhibition represents a promising approach to improve the efficacy of DNA-damaging cytotoxic agents in patients with AML. This strategy might allow for a lowering of chemotherapy doses, with a consequent reduction of treatment-related side effects in elderly patients with AML or those with significant comorbidities. SIGNIFICANCE: Pharmacological inhibition of EZH2 renders DNA of AML cells more accessible to cytotoxic agents, facilitating leukemia suppression with reduced doses of chemotherapy.See related commentary by Adema and Colla, p. 359.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Leukemia, Myeloid, Acute/genetics , Animals , Humans , Mice
14.
Cancer Discov ; 12(11): 2684-2709, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36053276

ABSTRACT

The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055. A CRISPR-Cas9-mediated mutagenesis screen uncovers an ENL mutation that confers resistance to TDI-11055, validating the compound's on-target activity. TDI-11055 treatment rapidly decreases chromatin occupancy of ENL-associated complexes and impairs transcription elongation, leading to suppression of key oncogenic gene expression programs and induction of differentiation. In vivo treatment with TDI-11055 blocks disease progression in cell line- and patient-derived xenograft models of MLL-rearranged and NPM1-mutated AML. Our results establish ENL displacement from chromatin as a promising epigenetic therapy for molecularly defined AML subsets and support the clinical translation of this approach. SIGNIFICANCE: AML is a poor-prognosis disease for which new therapeutic approaches are desperately needed. We developed an orally bioavailable inhibitor of ENL, demonstrated its potent efficacy in MLL-rearranged and NPM1-mutated AML, and determined its mechanisms of action. These biological and chemical insights will facilitate both basic research and clinical translation. This article is highlighted in the In This Issue feature, p. 2483.


Subject(s)
Leukemia, Myeloid, Acute , Lysine , Humans , Leukemia, Myeloid, Acute/genetics , Histones/metabolism , Chromatin , Myeloid-Lymphoid Leukemia Protein/metabolism
15.
PLoS Genet ; 4(11): e1000275, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19043539

ABSTRACT

A reciprocal translocation involving chromosomes 8 and 21 generates the AML1/ETO oncogenic transcription factor that initiates acute myeloid leukemia by recruiting co-repressor complexes to DNA. AML1/ETO interferes with the function of its wild-type counterpart, AML1, by directly targeting AML1 binding sites. However, transcriptional regulation determined by AML1/ETO probably relies on a more complex network, since the fusion protein has been shown to interact with a number of other transcription factors, in particular E-proteins, and may therefore target other sites on DNA. Genome-wide chromatin immunoprecipitation and expression profiling were exploited to identify AML1/ETO-dependent transcriptional regulation. AML1/ETO was found to co-localize with AML1, demonstrating that the fusion protein follows the binding pattern of the wild-type protein but does not function primarily by displacing it. The DNA binding profile of the E-protein HEB was grossly rearranged upon expression of AML1/ETO, and the fusion protein was found to co-localize with both AML1 and HEB on many of its regulated targets. Furthermore, the level of HEB protein was increased in both primary cells and cell lines expressing AML1/ETO. Our results suggest a major role for the functional interaction of AML1/ETO with AML1 and HEB in transcriptional regulation determined by the fusion protein.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Oncogene Proteins, Fusion/genetics , Animals , Binding Sites , Cell Line, Tumor , Chromosomes, Human, Pair 19/genetics , HeLa Cells , Humans , Mice , Oncogene Proteins, Fusion/metabolism , Promoter Regions, Genetic , RUNX1 Translocation Partner 1 Protein , Transcription, Genetic , U937 Cells
16.
Sci Adv ; 7(3)2021 01.
Article in English | MEDLINE | ID: mdl-33523892

ABSTRACT

Monocytes and monocyte-derived macrophages originate through a multistep differentiation process. First, hematopoietic stem cells generate lineage-restricted progenitors that eventually develop into peripheral, postmitotic monocytes. Second, blood-circulating monocytes undergo differentiation into macrophages, which are specialized phagocytic cells capable of tissue infiltration. While monocytes mediate some level of inflammation and cell toxicity, macrophages boast the widest set of defense mechanisms against pathogens and elicit robust inflammatory responses. Here, we analyze the molecular determinants of monocytic and macrophagic commitment by profiling the EGR1 transcription factor. EGR1 is essential for monopoiesis and binds enhancers that regulate monocytic developmental genes such as CSF1R However, differentiating macrophages present a very different EGR1 binding pattern. We identify novel binding sites of EGR1 at a large set of inflammatory enhancers, even in the absence of its binding motif. We show that EGR1 repressive activity results in suppression of inflammatory genes and is mediated by the NuRD corepressor complex.


Subject(s)
Macrophages , Monocytes , Cell Differentiation/genetics , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Hematopoietic Stem Cells , Humans , Macrophages/metabolism , Monocytes/metabolism
17.
Life Sci Alliance ; 4(8)2021 08.
Article in English | MEDLINE | ID: mdl-34187875

ABSTRACT

The oncogenic role of common fragile sites (CFS), focal and pervasive gaps in the cancer genome arising from replicative stress, remains controversial. Exploiting the TCGA dataset, we found that in most CFS the genes residing within the associated focal deletions are down-regulated, including proteins involved in tumour immune recognition. In a subset of CFS, however, the residing genes are surprisingly overexpressed. Within the most frequent CFS in this group, FRA4F, which is deleted in up to 18% of cancer cases and harbours the CCSER1 gene, we identified a region which includes an intronic, antisense pseudogene, TMSB4XP8. TMSB4XP8 focal ablation or transcriptional silencing elicits the overexpression of CCSER1, through a cis-acting mechanism. CCSER1 overexpression increases proliferation and triggers centrosome amplifications, multinuclearity, and aberrant mitoses. Accordingly, FRA4F is associated in patient samples to mitotic genes deregulation and genomic instability. As a result, cells overexpressing CCSER1 become sensitive to the treatment with aurora kinase inhibitors. Our findings point to a novel tumourigenic mechanism where focal deletions increase the expression of a new class of "dormant" oncogenes.


Subject(s)
Cell Cycle Proteins/genetics , Chromosome Fragile Sites , Gene Deletion , Up-Regulation , Cell Line , Cell Proliferation , Gene Expression Regulation, Neoplastic , Genomic Instability , HEK293 Cells , HeLa Cells , Humans , Mitosis , Pseudogenes
18.
Cell Rep ; 33(6): 108373, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33176136

ABSTRACT

Genome-wide profiling of nascent RNA has become a fundamental tool to study transcription regulation. Unlike steady-state RNA-sequencing (RNA-seq), nascent RNA profiling mirrors real-time activity of RNA polymerases and provides an accurate readout of transcriptome-wide variations. Some species of nuclear RNAs (i.e., large intergenic noncoding RNAs [lincRNAs] and eRNAs) have a short half-life and can only be accurately gauged by nascent RNA techniques. Furthermore, nascent RNA-seq detects post-cleavage RNA at termination sites and promoter-associated antisense RNAs, providing insights into RNA polymerase II (RNAPII) dynamics and processivity. Here, we present a run-on assay with 4-thio ribonucleotide (4-S-UTP) labeling, followed by reversible biotinylation and affinity purification via streptavidin. Our protocol allows streamlined sample preparation within less than 3 days. We named the technique fastGRO (fast Global Run-On). We show that fastGRO is highly reproducible and yields a more complete and extensive coverage of nascent RNA than comparable techniques can. Importantly, we demonstrate that fastGRO is scalable and can be performed with as few as 0.5 × 106 cells.


Subject(s)
Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Transcription, Genetic/genetics , Humans
19.
Sci Adv ; 5(5): eaaw5294, 2019 05.
Article in English | MEDLINE | ID: mdl-31131328

ABSTRACT

ARID1A, a subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex, localizes to both promoters and enhancers to influence transcription. However, the role of ARID1A in higher-order spatial chromosome partitioning and genome organization is unknown. Here, we show that ARID1A spatially partitions interphase chromosomes and regulates higher-order genome organization. The SWI/SNF complex interacts with condensin II, and they display significant colocalizations at enhancers. ARID1A knockout drives the redistribution of condensin II preferentially at enhancers, which positively correlates with changes in transcription. ARID1A and condensin II contribute to transcriptionally inactive B-compartment formation, while ARID1A weakens the border strength of topologically associated domains. Condensin II redistribution induced by ARID1A knockout positively correlates with chromosome sizes, which negatively correlates with interchromosomal interactions. ARID1A loss increases the trans interactions of small chromosomes, which was validated by three-dimensional interphase chromosome painting. These results demonstrate that ARID1A is important for large-scale genome folding and spatially partitions interphase chromosomes.


Subject(s)
Chromosomes/ultrastructure , DNA-Binding Proteins/physiology , Interphase/genetics , Transcription Factors/physiology , Adenosine Triphosphatases/chemistry , Binding Sites , Cell Line, Tumor , Chromatin/chemistry , Cluster Analysis , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic , Gene Expression Profiling , Humans , Multiprotein Complexes/chemistry , Promoter Regions, Genetic , Protein Binding , RNA-Seq , Serine Endopeptidases/chemistry , Transcription Factors/genetics
20.
Cancer Discov ; 9(3): 416-435, 2019 03.
Article in English | MEDLINE | ID: mdl-30626590

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, and new strategies for prevention and treatment are urgently needed. We previously reported that histone H4 acetylation is elevated in pancreatic acinar cells harboring Kras mutations prior to the appearance of premalignant lesions. Because acetyl-CoA abundance regulates global histone acetylation, we hypothesized that altered acetyl-CoA metabolism might contribute to metabolic or epigenetic alterations that promote tumorigenesis. We found that acetyl-CoA abundance is elevated in KRAS-mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM). Pancreas-specific loss of the acetyl-CoA-producing enzyme ATP-citrate lyase (ACLY) accordingly suppresses ADM and tumor formation. In PDA cells, growth factors promote AKT-ACLY signaling and histone acetylation, and both cell proliferation and tumor growth can be suppressed by concurrent BET inhibition and statin treatment. Thus, KRAS-driven metabolic alterations promote acinar cell plasticity and tumor development, and targeting acetyl-CoA-dependent processes exerts anticancer effects. SIGNIFICANCE: Pancreatic cancer is among the deadliest of human malignancies. We identify a key role for the metabolic enzyme ACLY, which produces acetyl-CoA, in pancreatic carcinogenesis. The data suggest that acetyl-CoA use for histone acetylation and in the mevalonate pathway facilitates cell plasticity and proliferation, suggesting potential to target these pathways.See related commentary by Halbrook et al., p. 326.This article is highlighted in the In This Issue feature, p. 305.


Subject(s)
Acetyl Coenzyme A/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Acetylation , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Female , Genes, ras , Heterografts , Histones/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Processing, Post-Translational , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL