Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
Add more filters

Publication year range
1.
Cell ; 184(16): 4137-4153.e14, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34256014

ABSTRACT

Diet modulates the gut microbiome, which in turn can impact the immune system. Here, we determined how two microbiota-targeted dietary interventions, plant-based fiber and fermented foods, influence the human microbiome and immune system in healthy adults. Using a 17-week randomized, prospective study (n = 18/arm) combined with -omics measurements of microbiome and host, including extensive immune profiling, we found diet-specific effects. The high-fiber diet increased microbiome-encoded glycan-degrading carbohydrate active enzymes (CAZymes) despite stable microbial community diversity. Although cytokine response score (primary outcome) was unchanged, three distinct immunological trajectories in high-fiber consumers corresponded to baseline microbiota diversity. Alternatively, the high-fermented-food diet steadily increased microbiota diversity and decreased inflammatory markers. The data highlight how coupling dietary interventions to deep and longitudinal immune and microbiome profiling can provide individualized and population-wide insight. Fermented foods may be valuable in countering the decreased microbiome diversity and increased inflammation pervasive in industrialized society.


Subject(s)
Diet , Gastrointestinal Microbiome , Immunity , Biodiversity , Dietary Fiber/pharmacology , Feeding Behavior , Female , Fermented Foods , Gastrointestinal Microbiome/drug effects , Humans , Inflammation/pathology , Male , Middle Aged , Signal Transduction/drug effects
2.
Circulation ; 149(15): e1067-e1089, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38436070

ABSTRACT

Nearly 56% of the global population lives in cities, with this number expected to increase to 6.6 billion or >70% of the world's population by 2050. Given that cardiometabolic diseases are the leading causes of morbidity and mortality in people living in urban areas, transforming cities and urban provisioning systems (or urban systems) toward health, equity, and economic productivity can enable the dual attainment of climate and health goals. Seven urban provisioning systems that provide food, energy, mobility-connectivity, housing, green infrastructure, water management, and waste management lie at the core of human health, well-being, and sustainability. These provisioning systems transcend city boundaries (eg, demand for food, water, or energy is met by transboundary supply); thus, transforming the entire system is a larger construct than local urban environments. Poorly designed urban provisioning systems are starkly evident worldwide, resulting in unprecedented exposures to adverse cardiometabolic risk factors, including limited physical activity, lack of access to heart-healthy diets, and reduced access to greenery and beneficial social interactions. Transforming urban systems with a cardiometabolic health-first approach could be accomplished through integrated spatial planning, along with addressing current gaps in key urban provisioning systems. Such an approach will help mitigate undesirable environmental exposures and improve cardiovascular and metabolic health while improving planetary health. The purposes of this American Heart Association policy statement are to present a conceptual framework, summarize the evidence base, and outline policy principles for transforming key urban provisioning systems to heart-health and sustainability outcomes.


Subject(s)
American Heart Association , Cardiovascular Diseases , Humans , Cities , Environmental Exposure , Policy , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control
3.
J Lipid Res ; 65(3): 100503, 2024 03.
Article in English | MEDLINE | ID: mdl-38246235

ABSTRACT

Circulating levels of the soluble ligand-binding ectodomain of the LDL receptor (sLDLR) that is proteolytically cleaved from the cell surface have been shown to correlate with plasma triglycerides, but the lipid and lipoprotein effects of longitudinal changes in sLDLR have not been examined. We sought to assess associations between changes in sLDLR and detailed lipoprotein measurements between baseline and 6 months in participants in the DIETFITS (Diet Intervention Examining The Factors Interacting with Treatment Success) weight loss trial who were randomly assigned to the low-fat (n = 225) or low-carbohydrate (n = 236) diet arms. sLDLR was assayed using a proteomic procedure, lipids and apoprotein (apo) B and apoAI were measured by standard assays, and lipoprotein particle subfractions were quantified by ion mobility methodology. Changes in sLDLR were significantly positively associated with changes in plasma cholesterol, triglycerides, apoB, large-sized and medium-sized VLDL, and small and very small LDL, and inversely with changes in large LDL and HDL. The lipoprotein subfraction associations with sLDLR were independent of age, sex, diet, and BMI, but all except for large LDL were reduced to insignificance when adjusted for triglyceride change. Principal component analysis identified three independent clusters of changes in lipoprotein subfractions that accounted for 78% of their total variance. Change in sLDLR was most strongly correlated with change in the principal component that was loaded positively with large VLDL and small and very small LDL and negatively with large LDL and HDL. In conclusion, sLDLR is a component of a cluster of lipids and lipoproteins that are characteristic of atherogenic dyslipidemia.


Subject(s)
Lipoproteins , Proteomics , Humans , Triglycerides , Receptors, LDL , Diet , Weight Loss , Lipoproteins, LDL , Lipoproteins, VLDL
4.
Circulation ; 147(22): 1715-1730, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37128940

ABSTRACT

The evolution of dietary guidelines from isolated nutrients to broader dietary pattern recommendations results from growing knowledge of the synergy between nutrients and their food sources as they influence health. Macronutrient and micronutrient needs can be met by consuming various dietary patterns, but guidance is often required to facilitate population-wide adherence to wise food choices to achieve a healthy dietary pattern. This is particularly true in this era with the proliferation of nutrition misinformation and misplaced emphasis. In 2021, the American Heart Association issued a scientific statement outlining key principles of a heart-healthy dietary pattern that could be operationalized in various ways. The objective of this scientific statement is to assess alignment of commonly practiced US dietary patterns with the recently published American Heart Association criteria, to determine clinical and cultural factors that affect long-term adherence, and to propose approaches for adoption of healthy dietary patterns. This scientific statement is intended to serve as a tool for clinicians and consumers to evaluate whether these popular dietary pattern(s) promote cardiometabolic health and suggests factors to consider when adopting any pattern to improve alignment with the 2021 American Heart Association Dietary Guidance. Numerous patterns strongly aligned with 2021 American Heart Association Dietary Guidance (ie, Mediterranean, DASH [Dietary Approaches to Stop Hypertension], pescetarian, vegetarian) can be adapted to reflect personal and cultural preferences and budgetary constraints. Thus, optimal cardiovascular health would be best supported by developing a food environment that supports adherence to these patterns wherever food is prepared or consumed.


Subject(s)
Hypertension , Nutrition Therapy , United States , Humans , American Heart Association , Diet , Nutrition Policy
5.
Circulation ; 148(18): 1417-1439, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37767686

ABSTRACT

Unhealthy diets are a major impediment to achieving a healthier population in the United States. Although there is a relatively clear sense of what constitutes a healthy diet, most of the US population does not eat healthy food at rates consistent with the recommended clinical guidelines. An abundance of barriers, including food and nutrition insecurity, how food is marketed and advertised, access to and affordability of healthy foods, and behavioral challenges such as a focus on immediate versus delayed gratification, stand in the way of healthier dietary patterns for many Americans. Food Is Medicine may be defined as the provision of healthy food resources to prevent, manage, or treat specific clinical conditions in coordination with the health care sector. Although the field has promise, relatively few studies have been conducted with designs that provide strong evidence of associations between Food Is Medicine interventions and health outcomes or health costs. Much work needs to be done to create a stronger body of evidence that convincingly demonstrates the effectiveness and cost-effectiveness of different types of Food Is Medicine interventions. An estimated 90% of the $4.3 trillion annual cost of health care in the United States is spent on medical care for chronic disease. For many of these diseases, diet is a major risk factor, so even modest improvements in diet could have a significant impact. This presidential advisory offers an overview of the state of the field of Food Is Medicine and a road map for a new research initiative that strategically approaches the outstanding questions in the field while prioritizing a human-centered design approach to achieve high rates of patient engagement and sustained behavior change. This will ideally happen in the context of broader efforts to use a health equity-centered approach to enhance the ways in which our food system and related policies support improvements in health.


Subject(s)
American Heart Association , Diet , Humans , United States , Nutritional Status , Risk Factors , Health Care Costs
6.
Circulation ; 145(24): e1077-e1093, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35535604

ABSTRACT

Nutritionally inadequate dietary intake is a leading contributor to chronic cardiometabolic diseases. Differences in dietary quality contribute to socioeconomic and racial and ethnic health disparities. Food insecurity, a household-level social or economic condition of limited access to sufficient food, is a common cause of inadequate dietary intake. Although US food assistance policies and programs are designed to improve food security, there is growing consensus that they should have a broader focus on nutrition security. In this policy statement, we define nutrition security as an individual or household condition of having equitable and stable availability, access, affordability, and utilization of foods and beverages that promote well-being and prevent and treat disease. Despite existing policies and programs, significant gaps remain for achieving equity in nutrition security across the life span. We provide recommendations for expanding and improving current food assistance policies and programs to achieve nutrition security. These recommendations are guided by several overarching principles: emphasizing nutritional quality, improving reach, ensuring optimal utilization, improving coordination across programs, ensuring stability of access to programs across the life course, and ensuring equity and dignity for access and utilization. We suggest a critical next step will be to develop and implement national measures of nutrition security that can be added to the current US food security measures. Achieving equity in nutrition security will require coordinated and sustained efforts at the federal, state, and local levels. Future advocacy, innovation, and research will be needed to expand existing food assistance policies and programs and to develop and implement new policies and programs that will improve cardiovascular health and reduce disparities in chronic disease.


Subject(s)
American Heart Association , Food Assistance , Diet , Food Supply , Humans , Nutrition Policy , Nutritional Status , United States
7.
J Nutr ; 153(2): 409-425, 2023 02.
Article in English | MEDLINE | ID: mdl-36894234

ABSTRACT

Scientific and political discussions around the role of animal-source foods (ASFs) in healthy and environmentally sustainable diets are often polarizing. To bring clarity to this important topic, we critically reviewed the evidence on the health and environmental benefits and risks of ASFs, focusing on primary trade-offs and tensions, and summarized the evidence on alternative proteins and protein-rich foods. ASFs are rich in bioavailable nutrients commonly lacking globally and can make important contributions to food and nutrition security. Many populations in Sub-Saharan Africa and South Asia could benefit from increased consumption of ASFs through improved nutrient intakes and reduced undernutrition. Where consumption is high, processed meat should be limited, and red meat and saturated fat should be moderated to lower noncommunicable disease risk-this could also have cobenefits for environmental sustainability. ASF production generally has a large environmental impact; yet, when produced at the appropriate scale and in accordance with local ecosystems and contexts, ASFs can play an important role in circular and diverse agroecosystems that, in certain circumstances, can help restore biodiversity and degraded land and mitigate greenhouse gas emissions from food production. The amount and type of ASF that is healthy and environmentally sustainable will depend on the local context and health priorities and will change over time as populations develop, nutritional concerns evolve, and alternative foods from new technologies become more available and acceptable. Efforts by governments and civil society organizations to increase or decrease ASF consumption should be considered in light of the nutritional and environmental needs and risks in the local context and, importantly, integrally involve the local stakeholders impacted by any changes. Policies, programs, and incentives are needed to ensure best practices in production, curb excess consumption where high, and sustainably increase consumption where low.


Subject(s)
Diet , Ecosystem , Animals , Nutritional Status , Eating , Health Status
8.
Proc Natl Acad Sci U S A ; 117(50): 31648-31659, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33229559

ABSTRACT

Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y-1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.


Subject(s)
Carbon Cycle , Earth, Planet , Ice Cover/chemistry , Micronutrients/metabolism , Trace Elements/metabolism , Antarctic Regions , Greenland , Micronutrients/analysis , Trace Elements/analysis
9.
J Infect Dis ; 225(1): 55-64, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34139752

ABSTRACT

BACKGROUND: Although a human adenovirus (HAdV) vaccine is available for military use, officers-in-training are not routinely vaccinated. We describe an HAdV-associated respiratory outbreak among unvaccinated cadets at the US Coast Guard Academy and its impact on cadet training. METHODS: We defined a case as a cadet with new onset cough or sore throat during August 1-October 4, 2019. We reviewed medical records and distributed a questionnaire to identify cases and to estimate impact on cadet training. We performed real-time polymerase chain reaction testing on patient and environmental samples and whole genome sequencing on a subset of positive patient samples. RESULTS: Among the 1072 cadets, 378 (35%) cases were identified by medical records (n = 230) or additionally by the questionnaire (n = 148). Of the 230 cases identified from medical records, 138 (60%) were male and 226 (98%) had no underlying conditions. From questionnaire responses, 113 of 228 (50%) cases reported duty restrictions. Of cases with respiratory specimens, 36 of 50 (72%) were HAdV positive; all 14 sequenced specimens were HAdV-4a1. Sixteen (89%) of 18 environmental specimens from the cadet dormitory were HAdV-positive. CONCLUSIONS: The HAdV-4-associated outbreak infected a substantial number of cadets and significantly impacted cadet training. Routine vaccination could prevent HAdV respiratory outbreaks in this population.


Subject(s)
Adenovirus Infections, Human/epidemiology , Adenovirus Vaccines , Adenoviruses, Human/isolation & purification , Military Personnel/statistics & numerical data , Polymerase Chain Reaction/methods , Respiratory Tract Infections/epidemiology , Adenoviruses, Human/genetics , Adolescent , Disease Outbreaks , Female , Humans , Male , Respiratory Tract Infections/virology , United States/epidemiology , Young Adult
10.
BMC Microbiol ; 22(1): 52, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148684

ABSTRACT

Citrus greening, also known as Huanglongbing (HLB), is a devastating citrus plant disease caused predominantly by Liberibacter asiaticus. While nearly all Liberibacter species remain uncultured, here we used the culturable L. crescens BT-1 as a model to examine physiological changes in response to the variable osmotic conditions and nutrient availability encountered within the citrus host. Similarly, physiological responses to changes in growth temperature and dimethyl sulfoxide concentrations were also examined, due to their use in many of the currently employed therapies to control the spread of HLB. Sublethal heat stress was found to induce the expression of genes related to tryptophan biosynthesis, while repressing the expression of ribosomal proteins. Osmotic stress induces expression of transcriptional regulators involved in expression of extracellular structures, while repressing the biosynthesis of fatty acids and aromatic amino acids. The effects of osmotic stress were further evaluated by quantifying biofilm formation of L. crescens in presence of increasing sucrose concentrations at different stages of biofilm formation, where sucrose-induced osmotic stress delayed initial cell attachment while enhancing long-term biofilm viability. Our findings revealed that exposure to osmotic stress is a significant contributing factor to the long term survival of L. crescens and, possibly, to the pathogenicity of other Liberibacter species.


Subject(s)
Biofilms/growth & development , Citrus/microbiology , Microbial Viability , Osmotic Pressure , Plant Diseases/microbiology , Liberibacter/pathogenicity , Liberibacter/physiology , Time Factors
11.
Crit Care ; 26(1): 160, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35659340

ABSTRACT

BACKGROUND: We determine the predictive value of transthoracic echocardiographic (TTE) metrics for clinical deterioration within 5 days in adults with intermediate-risk pulmonary embolism (PE). METHODS: This was a prospective observational study of intermediate-risk PE patients. To determine associations of TTE and clinical predictors with clinical deterioration, we used univariable analysis, Youden's index for optimal thresholds, and multivariable analyses to report odds ratios (ORs) or area under the curve (AUC). RESULTS: Of 306 intermediate-risk PE patients, 115 (37.6%) experienced clinical deterioration. PE patients who had clinical deterioration within 5 days had greater baseline right ventricle (RV) dilatation and worse systolic function than the group without clinical deterioration as indicated by the following: RV basal diameter 4.46 ± 0.77 versus 4.20 ± 0.77 cm; RV/LV basal width ratio 1.14 ± 0.29 versus 1.02 ± 0.24; tricuspid annular plane systolic excursion (TAPSE) 1.56 ± 0.55 versus 1.80 ± 0.52 cm; and RV systolic excursion velocity 10.40 ± 3.58 versus 12.1 ± 12.5 cm/s, respectively. Optimal thresholds for predicting clinical deterioration were: RV basal width 3.9 cm (OR 2.85 [1.64, 4.97]), RV-to-left ventricle (RV/LV) ratio 1.08 (OR 3.32 [2.07, 5.33]), TAPSE 1.98 cm (OR 3.3 [2.06, 5.3]), systolic excursion velocity 10.10 cm/s (OR 2.85 [1.75, 4.63]), and natriuretic peptide 190 pg/mL (OR 2.89 [1.81, 4.62]). Significant independent predictors were: transient hypotension 6.1 (2.2, 18.9), highest heart rate 1.02 (1.00, 1.03), highest respiratory rate 1.02 (1.00, 1.04), and RV/LV ratio 1.29 (1.14, 1.47). By logistic regression and random forest analyses, AUCs were 0.80 (0.73, 0.87) and 0.78 (0.70, 0.85), respectively. CONCLUSIONS: Basal RV, RV/LV ratio, and RV systolic function measurements were significantly different between intermediate-risk PE patients grouped by subsequent clinical deterioration.


Subject(s)
Clinical Deterioration , Pulmonary Embolism , Ventricular Dysfunction, Right , Adult , Echocardiography , Humans , Pulmonary Embolism/diagnostic imaging , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Function, Right
12.
Nutr J ; 21(1): 69, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36384651

ABSTRACT

BACKGROUND: Plant-based diets are known to be beneficial for cardiovascular health and promote environmental sustainability. However, many athletes avoid plant-based diets due to concerns of protein inadequacy. OBJECTIVES: To investigate the impact of two predominately plant-based diets-whole food plant-based (WFPB) and plant-based meat alternatives (PBMA)-vs. an omnivorous diet, favoring red meat and poultry (Animal), on endurance and muscular strength. METHODS: 12 recreational runners and 12 resistance trainers were assigned to three diets-WFPB, PBMA, and Animal-for 4 weeks each, in random order. Primary outcomes for runners (12-minute timed run) and resistance trainers (composite machine strength) were collected at baseline and after diets, along with secondary performance outcomes and dietary data. RESULTS: 22 recreational athletes completed the study (age: 26.2 ± 4.4 years; sex: 10 female, 12 male; BMI: 23.1 ± 2.4 kg/m2). Mean differences in 12-minute timed run - WFPB vs. Animal (- 23.4 m; 95% CI: - 107 to 60.0 m) and PBMA vs. Animal (- 2.9 m; 95% CI: - 119 to 113 m) - were not significant. Mean percent differences in composite machine strength - WFPB vs. Animal (- 2.7%; 95% CI: - 5.8 to 0.4% and PBMA vs. Animal (- 0.7%; 95% CI: - 3.5 to 2.2%) - were not significant. Average protein intake for all diets met International Society for Sports Nutrition recommendations. CONCLUSIONS: Our findings suggest recreational athletes can maintain athletic performance on both an omnivorous diet and two diets that are predominately plant-based. TRIAL REGISTRATION: NCT05472701. Retrospectively registered.


Subject(s)
Diet , Sports , Animals , Humans , Cross-Over Studies , Meat , Athletes
13.
Sensors (Basel) ; 22(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408248

ABSTRACT

In anticipation of the hybrid utilisation of the radio frequency (RF) wireless transceiver technology embedded in future smart Li-ion battery cells to deliver hybrid links based on power line communication (PLC) and wireless connections, herein we present an empirical high-frequency investigation of the direct current (DC) bus. The focus is to determine, via statistical tools including correlation coefficient (CC), root mean squared error (RMSE) and feature selective validation (FSV) method, the impedance and signal change impact on a possible communication link when fully charged cells are present or completely missing from the bus. Moreover, to establish if technological differences may be accounted for during the empirical experiments, Li-ion cells from two different manufacturers were selected and connected via three subsequent capacitive couplings of 1 µF, 1 nF and 1 pF. According to a methodical comparison by employing CC, RMSE, and FSV over the measured impedance and signal attenuation, this study has shown that the physical DC network is the dominant impedance at high frequencies and that the signal attenuation on the DC line supports communication in the investigated spectrum. The reported findings are critical for in situ hybrid PLC and wireless communication implementation of BMS for Li-ion systems supported through only one RF transceiver.

14.
Sensors (Basel) ; 22(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35957338

ABSTRACT

Accurate human identification using radar has a variety of potential applications, such as surveillance, access control and security checkpoints. Nevertheless, radar-based human identification has been limited to a few motion-based biometrics that are solely reliant on micro-Doppler signatures. This paper proposes for the first time the use of combined radar-based heart sound and gait signals as biometrics for human identification. The proposed methodology starts by converting the extracted biometric signatures collected from 18 subjects to images, and then an image augmentation technique is applied and the deep transfer learning is used to classify each subject. A validation accuracy of 58.7% and 96% is reported for the heart sound and gait biometrics, respectively. Next, the identification results of the two biometrics are combined using the joint probability mass function (PMF) method to report a 98% identification accuracy. To the best of our knowledge, this is the highest reported in the literature to date. Lastly, the trained networks are tested in an actual scenario while being used in an office access control platform to identify different human subjects. We report an accuracy of 76.25%.


Subject(s)
Biometric Identification , Radar , Forensic Anthropology , Gait , Humans , Machine Learning
15.
Sensors (Basel) ; 22(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35161487

ABSTRACT

As the drive to improve the cost, performance characteristics and safety of lithium-ion batteries increases with adoption, one area where significant value could be added is that of battery diagnostics. This paper documents an investigation into the use of plasmonic-based optical fibre sensors, inserted internally into 1.4 Ah lithium-ion pouch cells, as a real time and in-situ diagnostic technique. The successful implementation of the fibres inside pouch cells is detailed and promising correlation with battery state is reported, while having negligible impact on cell performance in terms of capacity and columbic efficiency. The testing carried out includes standard cycling and galvanostatic intermittent titration technique (GITT) tests, and the use of a reference electrode to correlate with the anode and cathode readings separately. Further observations are made around the sensor and analyte interaction mechanisms, robustness of sensors and suggested further developments. These finding show that a plasmonic-based optical fibre sensor may have potential as an opto-electrochemical diagnostic technique for lithium-ion batteries, offering an unprecedented view into internal cell phenomena.


Subject(s)
Lithium , Optical Fibers , Electric Power Supplies , Electrodes , Ions
16.
Environ Microbiol ; 23(11): 7121-7138, 2021 11.
Article in English | MEDLINE | ID: mdl-34431209

ABSTRACT

In Liberibacter asiaticus, PrbP is a transcriptional regulatory protein involved in survival and persistence during host infection. Tolfenamic acid was previously found to inhibit interactions between PrbP and the promotor region of rplK, resulting in reduced survival of L. asiaticus in the citrus host. In this study, we performed transcriptome analyses to elucidate the PrbP regulon in L. crescens, as it is phylogenetically the closest related species to L. asiaticus that can be grown in laboratory conditions. Chemical inhibition of PrbP with tolfenamic acid revealed that PrbP is involved in the regulation of diverse cellular processes, including stress response, cell motility, cell cycle and biofilm formation. In vitro DNA binding and bacterial two-hybrid assays also suggested that PrbP is a global regulator of multiple transcription factors (RpoH, VisN, PleD, MucR, MocR and CtrA) at both transcriptional and/or post-transcriptional levels. Sub-lethal concentrations of tolfenamic acid significantly reduced the attachment of L. crescens during biofilm formation and decreased long-term persistence in biofilm structures. Overall, our findings show the importance of PrbP in regulating diverse biological processes through direct and indirect interactions with other transcriptional regulators in L. crescens.


Subject(s)
Citrus , Rhizobiaceae , Biofilms , Citrus/microbiology , Liberibacter , Plant Diseases/microbiology , Rhizobiaceae/genetics
17.
Int J Obes (Lond) ; 45(1): 225-234, 2021 01.
Article in English | MEDLINE | ID: mdl-33188301

ABSTRACT

BACKGROUND/OBJECTIVES: Biological sex factors and sociocultural gender norms affect the physiology and behavior of weight loss. However, most diet intervention studies do not report outcomes by sex, thereby impeding reproducibility. The objectives of this study were to compare 12-month changes in body weight and composition in groups defined by diet and sex, and adherence to a healthy low carbohydrate (HLC) vs. healthy low fat (HLF) diet. PARTICIPANTS/METHODS: This was a secondary analysis of the DIETFITS trial, in which 609 overweight/obese nondiabetic participants (age, 18-50 years) were randomized to a 12-month HLC (n = 304) or HLF (n = 305) diet. Our first aim concerned comparisons in 12-month changes in weight, fat mass, and lean mass by group with appropriate adjustment for potential confounders. The second aim was to assess whether or not adherence differed by diet-sex group (HLC women n = 179, HLC men n = 125, HLF women n = 167, HLF men n = 138). RESULTS: 12-month changes in weight (p < 0.001) were different by group. HLC produced significantly greater weight loss, as well as greater loss of both fat mass and lean mass, than HLF among men [-2.98 kg (-4.47, -1.50); P < 0.001], but not among women. Men were more adherent to HLC than women (p = 0.02). Weight loss estimates within group remained similar after adjusting for adherence, suggesting adherence was not a mediator. CONCLUSIONS: By reporting outcomes by sex significant weight loss differences were identified between HLC and HLF, which were not recognized in the original primary analysis. These findings highlight the need to consider sex in the design, analysis, and reporting of diet trials.


Subject(s)
Diet, Carbohydrate-Restricted , Diet, Fat-Restricted , Overweight/diet therapy , Weight Loss/physiology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Obesity/diet therapy , Overweight/epidemiology , Patient Compliance , Treatment Outcome , Young Adult
18.
Curr Atheroscler Rep ; 23(7): 31, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33970349

ABSTRACT

PURPOSE OF REVIEW: Healthy dietary patterns are recommended for prevention of cardiovascular disease, which remains the leading cause of morbidity and mortality globally. In this review, we discuss dietary patterns that are not only optimal for CVD prevention and management but also sustainable in maximizing health, environmental, and economic benefits. RECENT FINDINGS: The growing literature on sustainable diets in the context of environmental sustainability includes subtopics of climate change, land use, biodiversity loss, freshwater use, and reactive nitrogen emissions. Similarly, economic sustainability, beyond the retail cost of food, extends to healthcare costs and the economic costs of environmental destruction related to current agricultural practices and food choices. Dietary patterns that are high in plant foods and low in animal foods could maximize health, environmental, and economic benefits; however, questions remain about how to best promote these patterns to achieve wider adoption in an environmentally and economically sustainable way.


Subject(s)
Cardiovascular Diseases , Food Supply , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Diet , Diet, Healthy , Humans
19.
Appetite ; 164: 105277, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33984401

ABSTRACT

Reducing meat consumption may improve human health, curb environmental damage, and limit the large-scale suffering of animals raised in factory farms. Most attention to reducing consumption has focused on restructuring environments where foods are chosen or on making health or environmental appeals. However, psychological theory suggests that interventions appealing to animal welfare concerns might operate on distinct, potent pathways. We conducted a systematic review and meta-analysis evaluating the effectiveness of these interventions. We searched eight academic databases and extensively searched grey literature. We meta-analyzed 100 studies assessing interventions designed to reduce meat consumption or purchase by mentioning or portraying farm animals, that measured behavioral or self-reported outcomes related to meat consumption, purchase, or related intentions, and that had a control condition. The interventions consistently reduced meat consumption, purchase, or related intentions at least in the short term with meaningfully large effects (meta-analytic mean risk ratio [RR] = 1.22; 95% CI: [1.13, 1.33]). We estimated that a large majority of population effect sizes (71%; 95% CI: [59%, 80%]) were stronger than RR = 1.1 and that few were in the unintended direction. Via meta-regression, we identified some specific characteristics of studies and interventions that were associated with effect size. Risk-of-bias assessments identified both methodological strengths and limitations of this literature; however, results did not differ meaningfully in sensitivity analyses retaining only studies at the lowest risk of bias. Evidence of publication bias was not apparent. In conclusion, animal welfare interventions preliminarily appear effective in these typically short-term studies of primarily self-reported outcomes. Future research should use direct behavioral outcomes that minimize the potential for social desirability bias and are measured over long-term follow-up.


Subject(s)
Consumer Behavior , Meat , Animal Welfare , Animals , Humans , Psychological Theory
20.
Sensors (Basel) ; 21(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833649

ABSTRACT

This paper presents the design and development of miniature coils for wireless power and data transfer through metal. Our coil has a total size of 15 mm × 13 mm × 6 mm. Experimental results demonstrate that we can harvest 440 mW through a 1 mm-thick aluminum plate. Aluminum and stainless-steel barriers of different thicknesses were used to characterize coil performance. Using a pair of the designed coils, we have developed a through-metal communication system to successfully transfer data through a 1 mm-thick aluminum plate. A maximum data rate of 100 bps was achieved using only harvested power. To the best of our knowledge, this is the first report that demonstrates power and data transfer through aluminum using miniature coils.

SELECTION OF CITATIONS
SEARCH DETAIL