Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
FASEB J ; 36(11): e22598, 2022 11.
Article in English | MEDLINE | ID: mdl-36305891

ABSTRACT

Cachexia is a systemic disease associated with several pathologies, including cancer, that leads to excessive weight loss due to enhanced protein degradation. Previously, we showed that cachectic features in myotubes are provoked by a metabolic shift toward lactic fermentation. Our previous results led us to hyphotesise that increasing pyruvate concentration could impede the metabolic modifications responsible for induction of cachexia in myotubes. Here, we demonstrated that the addition of sodium pyruvate in conditioned media from CT26 colon cancer cells (CM CT26) prevents the onset of either phenotypic and metabolic cachectic features. Myotubes treated with CM CT26 containing sodium pyruvate show a phenotype similar to the healthy counterpart and display lactate production, oxygen consumption, and pyruvate dehydrogenase activity as control myotubes. The use of the Mitochondrial Pyruvate Carrier inhibitor UK5099, highlights the importance of mitochondrial pyruvate amount in the prevention of cachexia. Indeed, UK5099-treated myotubes show cachectic features as those observed in myotubes treated with CM CT26. Finally, we found that sodium pyruvate is able to decrease STAT3 phosphorylation level, a signaling pathway involved in the induction of cachexia in myotubes. Collectively, our results show that cachexia in myotubes could be prevented by the utilization of sodium pyruvate which impedes the metabolic modifications responsible for the acquisition of the cachectic features.


Subject(s)
Cachexia , Pyruvic Acid , Humans , Cachexia/metabolism , Pyruvic Acid/pharmacology , Pyruvic Acid/metabolism , Muscle Fibers, Skeletal/metabolism , Signal Transduction , Sodium/metabolism , Muscle, Skeletal/metabolism , STAT3 Transcription Factor/metabolism
2.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674598

ABSTRACT

Adiponectin (ADPN), a hormone produced by adipose tissue, facilitates gastric relaxation and can be a satiety signal in the network connecting peripheral organs and the central nervous system for feeding behavior control. Here, we performed preclinical research by morpho-functional analyses on murine gastric fundus smooth muscle to add insights into the molecular mechanisms underpinning ADPN action. Moreover, we conducted a clinical study to evaluate the potential use of ADPN as a biomarker for eating disorders (ED) based on the demonstrated gastric alterations and hormone level fluctuations that are often associated with ED. The clinical study recruited patients with ED and healthy controls who underwent blood draws for ADPN dosage and psychopathology evaluation tests. The findings of this basic research support the ADPN relaxant action, as indicated by the smooth muscle cell membrane pro-relaxant effects, with mild modifications of contractile apparatus and slight inhibitory effects on gap junctions. All of these actions engaged the ADPN/nitric oxide/guanylate cyclase pathway. The clinical data failed to unravel a correlation between ADPN levels and the considered ED, thus negating the potential use of ADPN as a valid biomarker for ED management for the moment. Nevertheless, this adipokine can modulate physiological eating behavior, and its effects deserve further investigation.


Subject(s)
Adiponectin , Gastric Fundus , Humans , Animals , Mice , Adiponectin/metabolism , Adipose Tissue/metabolism , Muscle, Smooth/metabolism , Biomarkers/metabolism
3.
Exp Physiol ; 107(2): 106-121, 2022 02.
Article in English | MEDLINE | ID: mdl-34935228

ABSTRACT

NEW FINDINGS: What is the central question of this study? It is a challenge to discover effective therapies for fibrosis. Increasing evidence supports the antifibrotic potential of platelet-rich plasma (PRP) as a source of bioactive molecules, such as vascular endothelial growth factor (VEGF)-A. However, the effects and mechanisms of action of PRP need to be clarified. What is the main finding and its importance? This report clarifies the mechanisms mediating the antifibrotic action of PRP, strengthening the role of VEGF-A/VEGF receptor, and identifies gap junction currents and connexin 43 as novel targets of this pathway in the fibroblast-to-myofibroblast transition induced by the transforming growth factor-ß1. ABSTRACT: Despite increasing experimental evidence, the antifibrotic potential of platelet-rich plasma (PRP) remains controversial, and its mechanisms of action are not fully clarified. This short report extends our previous research on the capability of PRP to prevent the in vitro differentiation of fibroblasts toward myofibroblasts, the key effectors of fibrosis, induced by the profibrotic agent transforming growth factor-ß1 (TGF-ß1). In particular, we focused on the involvement of signalling mediated by vascular endothelial growth factor (VEGF)-A/VEGF receptor (VEGFR) in the PRP-induced fibroblast response, highlighting gap junction features. Electrophysiological and morphological analyses revealed that PRP hindered morphofunctional differentiation of both murine NIH/3T3 and human primary adult skin fibroblasts toward myofibroblasts as judged by the analysis of membrane phenomena, α-smooth muscle actin and vinculin expression and cell morphology. Neutralization of VEGF-A by blocking antibodies or pharmacological inhibition of VEGFR by KRN633 in TGF-ß1-treated fibroblasts prevented the PRP-promoted effects, such as the reduction of voltage-dependent transjunctional currents in cell pairs and a decreased expression of connexin 43, the typical connexin isoform forming voltage-dependent connexons. The role of VEGF-A in inhibiting these events was confirmed by treating TGF-ß1-stimulated fibroblasts with soluble VEGF-A. The results obtained when cells were differentiated using KRN633 alone suggest an antagonistic cross-talk between TGF-ß1 and VEGFR. In conclusion, this study identifies, for the first time, gap junction currents as crucial targets in the VEGF-A/VEGFR-mediated antifibrotic pathway and provides new insights into mechanisms behind the action of PRP in preventing differentiation of fibroblasts to myofibroblasts.


Subject(s)
Myofibroblasts , Platelet-Rich Plasma , Adult , Animals , Cell Differentiation , Cells, Cultured , Fibroblasts , Gap Junctions/metabolism , Humans , Mice , Myofibroblasts/metabolism , Platelet-Rich Plasma/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism
4.
J Cell Mol Med ; 25(14): 6988-7000, 2021 07.
Article in English | MEDLINE | ID: mdl-34109728

ABSTRACT

Irritable bowel syndrome (IBS) is a highly prevalent gastrointestinal disorder characterized by periods of remission and exacerbation. Among the risk factors to develop IBS, psychosocial stress is widely acknowledged. The water avoidance stress repeatedly applied (rWAS) is considered effective to study IBS etio-pathogenesis. Otilonium bromide (OB), a drug with multiple mechanisms of action, is largely used to treat IBS patients. Orally administered, it concentrates in the large bowel and significantly ameliorates the IBS symptomatology. Presently, we tested whether rWAS rats developed neuro-muscular abnormalities in the distal colon and whether OB treatment prevented them. The investigation was focussed on the nitrergic neurotransmission by combining functional and morphological methodologies. The results confirm rWAS as reliable animal model to investigate the cellular mechanisms responsible for IBS: exposure to one-hour psychosocial stress for 10 days depressed muscle contractility and increased iNOS expression in myenteric neurons. OB treatment counteracted these effects. We hypothesize that these effects are due to the corticotropin-releasing factor (CRF) release, the main mediator of the psychosocial stress, followed by a CRF1receptor activation. OB, that was shown to prevent CRF1r activation, reasonably interrupted the cascade events that bring to the mechanical and immunohistochemical changes affecting rWAS rat colon.


Subject(s)
Colon/drug effects , Gastrointestinal Agents/therapeutic use , Irritable Bowel Syndrome/drug therapy , Nitric Oxide/metabolism , Quaternary Ammonium Compounds/therapeutic use , Stress, Psychological/metabolism , Animals , Colon/metabolism , Colon/pathology , Corticotropin-Releasing Hormone/metabolism , Gastrointestinal Agents/administration & dosage , Gastrointestinal Agents/pharmacology , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/metabolism , Male , Nitric Oxide Synthase Type II/metabolism , Quaternary Ammonium Compounds/administration & dosage , Quaternary Ammonium Compounds/pharmacology , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/metabolism , Stress, Psychological/complications
5.
Mol Cell Biochem ; 476(8): 3111-3126, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33837873

ABSTRACT

The widespread environmental pollutant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) is a non-dioxin-like toxicant. It is a potential carcinogen compound able to induce gap junction (GJ) intercellular communication impairment, probably the first non-genomic event leading to tumor promotion. Although PCBs have been known for many years, the molecular mode of PCB153 action is still unclear. Recent studies from our research group have shown that the toxicant elicits a transient modulation of connexin (Cx) 43-formed GJs in hepatic stem-like WB-F344 cells involving sphingosine 1-phosphate (S1P) path. Taking into account that other strictly related bioactive sphingolipids, such as ceramide (Cer), may have different effects from S1P, here we aim to clarify the signaling paths engaged by PCB153 in the control of GJs, focusing primarily on the role of Cer. Accordingly, we have achieved a combined biomolecular and electrophysiological analysis of GJs in cultured WB-F344 cells treated with PCB153 at different time points. We have found that the toxicant elicited a time-dependent regulation of GJs formed by different Cx isoforms, through a transient modulation of Cer/Cer kinase (CerK) axis and, in turn, of protein phosphatase 2A (PP2A). Our new findings demonstrate the existence of a specific molecular mechanism downstream to Cer, which distinctly affects the voltage-dependent and -independent GJs in liver stem-like cells, and open new opportunities for the identification of additional potential targets of these environmental toxicants.


Subject(s)
Ceramides/metabolism , Gap Junctions/pathology , Liver/pathology , Polychlorinated Biphenyls/pharmacology , Protein Phosphatase 2/metabolism , Stem Cells/pathology , Animals , Cell Communication , Cells, Cultured , Gap Junctions/drug effects , Gap Junctions/metabolism , Liver/drug effects , Liver/metabolism , Protein Phosphatase 2/genetics , Rats , Signal Transduction , Stem Cells/drug effects , Stem Cells/metabolism
6.
Int J Mol Sci ; 22(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807453

ABSTRACT

Bone marrow-mesenchymal stem/stromal cells (MSCs) may offer promise for skeletal muscle repair/regeneration. Growing evidence suggests that the mechanisms underpinning the beneficial effects of such cells in muscle tissue reside in their ability to secrete bioactive molecules (secretome) with multiple actions. Hence, we examined the effects of MSC secretome as conditioned medium (MSC-CM) on ex vivo murine extensor digitorum longus muscle injured by forced eccentric contraction (EC). By combining morphological (light and confocal laser scanning microscopies) and electrophysiological analyses we demonstrated the capability of MSC-CM to attenuate EC-induced tissue structural damages and sarcolemnic functional properties' modifications. MSC-CM was effective in protecting myofibers from apoptosis, as suggested by a reduced expression of pro-apoptotic markers, cytochrome c and activated caspase-3, along with an increase in the expression of pro-survival AKT factor. Notably, MSC-CM also reduced the EC-induced tissue redistribution and extension of telocytes/CD34+ stromal cells, distinctive cells proposed to play a "nursing" role for the muscle resident myogenic satellite cells (SCs), regarded as the main players of regeneration. Moreover, it affected SC functionality likely contributing to replenishment of the SC reservoir. This study provides the necessary groundwork for further investigation of the effects of MSC secretome in the setting of skeletal muscle injury and regenerative medicine.


Subject(s)
Mesenchymal Stem Cells/metabolism , Animals , Bone Marrow/metabolism , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , Male , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Regenerative Medicine/methods , Satellite Cells, Skeletal Muscle/metabolism , Secretory Vesicles/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Wound Healing/drug effects
7.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525436

ABSTRACT

Skeletal muscle atrophy is characterized by a decrease in muscle mass causing reduced agility, increased fatigability and higher risk of bone fractures. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), are strong inducers of skeletal muscle atrophy. The bioactive sphingolipid sphingosine 1-phoshate (S1P) plays an important role in skeletal muscle biology. S1P, generated by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK1/2), exerts most of its actions through its specific receptors, S1P1-5. Here, we provide experimental evidence that TNFα induces atrophy and autophagy in skeletal muscle C2C12 myotubes, modulating the expression of specific markers and both active and passive membrane electrophysiological properties. NMR-metabolomics provided a clear picture of the deep remodelling of skeletal muscle fibre metabolism induced by TNFα challenge. The cytokine is responsible for the modulation of S1P signalling axis, upregulating mRNA levels of S1P2 and S1P3 and downregulating those of SK2. TNFα increases the phosphorylated form of SK1, readout of its activation. Interestingly, pharmacological inhibition of SK1 and specific antagonism of S1P3 prevented the increase in autophagy markers and the changes in the electrophysiological properties of C2C12 myotubes without affecting metabolic remodelling induced by the cytokine, highlighting the involvement of S1P signalling axis on TNFα-induced atrophy in skeletal muscle.


Subject(s)
Lysophospholipids/metabolism , Muscle Fibers, Skeletal/drug effects , Phosphotransferases (Alcohol Group Acceptor)/genetics , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine/analogs & derivatives , Tumor Necrosis Factor-alpha/pharmacology , Animals , Cell Differentiation , Cell Line , Gene Expression Regulation , Humans , Metabolomics/methods , Mice , Models, Biological , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Myoblasts/metabolism , Myoblasts/pathology , Patch-Clamp Techniques , Phosphorylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
8.
Eur Eat Disord Rev ; 29(4): 588-599, 2021 07.
Article in English | MEDLINE | ID: mdl-33939220

ABSTRACT

OBJECTIVE: The recent conceptualization of ghrelin as a stress hormone suggested that its chronic alterations may have a role in maintaining overeating behaviors in subjects with eating disorders (EDs) reporting childhood traumatic experiences. The aim of this study was to investigate the alterations of ghrelin levels in patients with EDs, their associations with early trauma, binge and emotional eating, and possible moderation/mediation models. METHOD: Sixty-four patients with EDs and 42 healthy controls (HCs) had their plasma ghrelin levels measured and completed questionnaires evaluating general and ED-specific psychopathology, emotional eating, and childhood traumatic experiences. RESULTS: Participants with anorexia nervosa had higher ghrelin levels than HCs in body mass index (BMI)-adjusted comparisons. Moreover, patients reporting a history of childhood trauma had higher ghrelin levels. Childhood sexual abuse (CSA), BMI, and self-induced vomiting were independent predictors of ghrelin levels. Moderation analyses showed that ghrelin levels were associated with binge and emotional eating only for higher levels of childhood trauma. Elevated ghrelin was a significant mediator for the association of CSA with binge eating. CONCLUSIONS: These results support the hypothesis that chronic alterations in ghrelin levels following childhood traumatic experiences could represent a neurobiological maintaining factor of pathological overeating behaviors in EDs.


Subject(s)
Binge-Eating Disorder , Bulimia , Feeding and Eating Disorders , Binge-Eating Disorder/psychology , Biomarkers , Bulimia/psychology , Ghrelin , Humans
9.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348652

ABSTRACT

Some adipokines, such as adiponectin (ADPN), other than being implicated in the central regulation of feeding behavior, may influence gastric motor responses, which are a source of peripheral signals that also influence food intake. The present study aims to elucidate the signaling pathways through which ADPN exerts its actions in the mouse gastric fundus. To this purpose, we used a multidisciplinary approach. The mechanical results showed that ADPN caused a decay of the strip basal tension, which was abolished by the nitric oxide (NO) synthesis inhibitor, L-NG-nitro arginine (L-NNA). The electrophysiological experiments confirmed that all ADPN effects were abolished by L-NNA, except for the reduction of Ca2+ current, which was instead prevented by the inhibitor of AMP-activated protein kinase (AMPK), dorsomorphin. The activation of the AMPK signaling by ADPN was confirmed by immunofluorescence analysis, which also revealed the ADPN R1 receptor (AdipoR1) expression in glial cells of the myenteric plexus. In conclusion, our results indicate that ADPN exerts an inhibitory action on the gastric smooth muscle by acting on AdipoR1 and involving the AMPK signaling pathway at the peripheral level. These findings provide novel bases for considering AMPK as a possible pharmacologic target for the potential treatment of obesity and eating disorders.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adiponectin/pharmacology , Gastric Mucosa/metabolism , Muscle, Smooth/metabolism , Signal Transduction/drug effects , AMP-Activated Protein Kinases/antagonists & inhibitors , Animals , Female , Gastric Fundus/drug effects , Gastric Fundus/metabolism , Gastric Mucosa/drug effects , Mice , Mice, Inbred C57BL , Muscle, Smooth/drug effects , Obesity/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Adiponectin/metabolism
10.
J Cell Mol Med ; 20(5): 891-902, 2016 May.
Article in English | MEDLINE | ID: mdl-26915460

ABSTRACT

Smoking is regarded as a major risk factor for the development of cardiovascular diseases (CVD). This study investigates whether serelaxin (RLX, recombinant human relaxin-2) endowed with promising therapeutic properties in CVD, can be credited of a protective effect against cigarette smoke (CS)-induced vascular damage and dysfunction. Guinea pigs exposed daily to CS for 8 weeks were treated with vehicle or RLX, delivered by osmotic pumps at daily doses of 1 or 10 µg. Controls were non-smoking animals. Other studies were performed on primary guinea pig aortic endothelial (GPAE) cells, challenged with CS extracts (CSE) in the absence and presence of 100 ng/ml (17 nmol/l) RLX. In aortic specimens from CS-exposed guinea pigs, both the contractile and the relaxant responses to phenylephrine and acetylcholine, respectively, were significantly reduced in amplitude and delayed, in keeping with the observed adverse remodelling of the aortic wall, endothelial injury and endothelial nitric oxide synthase (eNOS) down-regulation. RLX at both doses maintained the aortic contractile and relaxant responses to a control-like pattern and counteracted aortic wall remodelling and endothelial derangement. The experiments with GPAE cells showed that CSE significantly decreased cell viability and eNOS expression and promoted apoptosis by sparkling oxygen free radical-related cytotoxicity, while RLX counterbalanced the adverse effects of CSE. These findings demonstrate that RLX is capable of counteracting CS-mediated vascular damage and dysfunction by reducing oxidative stress, thus adding a tile to the growing mosaic of the beneficial effects of RLX in CVD.


Subject(s)
Complex Mixtures/toxicity , Endothelial Cells/drug effects , Protective Agents/pharmacology , Relaxin/pharmacology , Tobacco Smoke Pollution/adverse effects , Vascular System Injuries/prevention & control , Acetylcholine/pharmacology , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Cell Survival/drug effects , Down-Regulation , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression , Guinea Pigs , Infusion Pumps, Implantable , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Osmosis , Oxidative Stress , Phenylephrine/pharmacology , Recombinant Proteins/pharmacology , Nicotiana/chemistry , Vascular System Injuries/etiology , Vascular System Injuries/metabolism , Vascular System Injuries/pathology
11.
Exp Physiol ; 100(6): 652-66, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25786395

ABSTRACT

NEW FINDINGS: What is the central question of this study? Fibroblast-to-myofibroblast transition is a key mechanism in the reparative response to tissue damage, but myofibroblast persistence in the wound leads to fibrosis and organ failure. The role of relaxin as an antifibrotic agent capable of counteracting the acquisition of biophysical features of differentiated myofibroblasts deserves further investigation. What is the main finding and its importance? Electrophysiological analysis showed that relaxin, administered during profibrotic treatment, hyperpolarizes the membrane potential and attenuates delayed rectifier and inwardly rectifying K(+) currents, which usually increase in the transition to myofibroblasts. These findings provide further clues to the therapeutic potential of relaxin in fibrosis. The hormone relaxin (RLX) is produced by the heart and may be involved in endogenous mechanisms of cardiac protection against ischaemic injury and fibrosis. Recent findings in cultured cardiac stromal cells suggest that RLX can inhibit fibroblast-to-myofibroblast transition, thereby counteracting fibrosis. In order to explore its efficiency as an antifibrotic agent further, we designed the present study to investigate whether RLX may influence the electrophysiological events associated with differentiation of cardiac stromal cells to myofibroblasts. Primary cardiac proto-myofibroblasts and NIH/3T3 fibroblasts were induced to myofibroblasts by transforming growth factor-ß1, and the electrophysiological features of both cell populations were investigated by whole-cell patch clamp. We demonstrated that proto-myofibroblasts and myofibroblasts express different membrane passive properties and K(+) currents. Here, we have shown, for the first time, that RLX (100 ng ml(-1) ) significantly reduced both voltage- and Ca(2+) -dependent delayed-rectifier and inward-rectifying K(+) currents that are typically increased in myofibroblasts compared with proto-myofibroblasts, suggesting that this hormone can antagonize the biophysical effects of transforming growth factor-ß1 in inducing myofibroblast differentiation. These newly recognized effects of RLX on the electrical properties of cardiac stromal cell membrane correlate well with its well-known ability to suppress myofibroblast differentiation, further supporting the possibility that RLX may be used for the treatment of cardiac fibrosis.


Subject(s)
Cell Differentiation/drug effects , Fibroblasts/drug effects , Myofibroblasts/drug effects , Potassium Channels, Inwardly Rectifying/metabolism , Relaxin/pharmacology , Animals , Biomarkers/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Delayed Rectifier Potassium Channels/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Membrane Potentials , Mice , Myofibroblasts/metabolism , Myofibroblasts/pathology , NIH 3T3 Cells , Phenotype , Potassium/metabolism , Recombinant Proteins/pharmacology , Transforming Growth Factor beta1/pharmacology
12.
Am J Physiol Gastrointest Liver Physiol ; 305(9): G628-37, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23989009

ABSTRACT

Obestatin is a hormone released from the stomach deriving from the same peptide precursor as ghrelin. It is known to act as an anorectic hormone decreasing food intake, but contrasting results have been reported about the effects of obestatin on gastrointestinal motility. The aim of the present study was to investigate whether this peptide may act on the gastric longitudinal smooth muscle by using a combined mechanical and electrophysiological approach. When fundal strips from mice were mounted in organ baths for isometric recording of the mechanical activity, obestatin caused a tetrodotoxin-insensitive decrease of the basal tension and a reduction in amplitude of the neurally induced cholinergic contractile responses, even in the presence of the nitric oxide synthesis inhibitor N(G)-nitro-l-arginine. Obestatin reduced the amplitude of the response to the ganglionic stimulating agent dimethylphenyl piperazinium iodide but did not influence that to methacholine. In nonadrenergic, noncholinergic conditions, obestatin still decreased the basal tension of the preparations without influencing the neurally induced relaxant responses. For comparison, in circular fundal strips, obestatin had no effects. Notably, in the longitudinal antral ones, obestatin only caused a decrease of the basal tension. Electrophysiological experiments, performed by a single microelectrode inserted in a gastric longitudinal smooth muscle cell, showed that obestatin had similar effects in fundal and antral preparations: it decreased the resting specific membrane conductance, inhibited Ca(2+) currents, and positively shifted their voltage threshold of activation. In conclusion, the present results indicate that obestatin influences gastric smooth muscle exerting site-specific effects.


Subject(s)
Electrophysiological Phenomena , Ghrelin/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Stomach/drug effects , Animals , Gastric Fundus/drug effects , Humans , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Muscle Contraction/physiology , Muscle, Smooth/physiology , Stomach/physiology , Tetrodotoxin/pharmacology
13.
Endocr Relat Cancer ; 30(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37493200

ABSTRACT

Pheochromocytomas/paragangliomas (PPGLs) are neuroendocrine tumours, mostly resulting from mutations in predisposing genes. Mutations of succinate dehydrogenase (SDH) subunit B (SDHB) are associated with high probability of metastatic disease. Since bioelectrical properties and signalling in cancer are an emerging field, we investigated the metabolic, functional and electrophysiological characteristics in human succinate dehydrogenase subunit B (SDHB)-deficient pheochromocytoma cells. These cells exhibited reduced SDH function with elevated succinate-to-fumarate ratio and reduced intracellular ATP levels. The analysis of membrane passive properties revealed a more hyperpolarized membrane potential and a lower cell capacitance of SDHB-deficient cells compared to the parental ones. These bioelectrical changes were associated with reduced proliferation and adhesion capacity of SDHB-deficient cells. Only in SDHB-deficient cells, we also observed an increased amplitude of potassium currents suggesting an activation of ATP-sensitive potassium channels (KATP). Indeed, exposure of the SDHB-deficient cells to glibenclamide, a specific KATP inhibitor, or to ATP caused normalization of potassium current features and altered proliferation and adhesion. In this work, we show for the first time that reduced intracellular ATP levels in SDHB-deficient chromaffin cells impaired cell bioelectrical properties, which, in turn, are associated with an increased cell aggressiveness. Moreover, we first ever demonstrated that glibenclamide not only reduced the outward potassium currents in SDHB-deficient cells but increased their growth capacity, reduced their ability to migrate and shifted their phenotype towards one more similar to that of parental one.


Subject(s)
Adrenal Gland Neoplasms , Chromaffin Cells , Paraganglioma , Pheochromocytoma , Humans , Succinate Dehydrogenase/genetics , Glyburide/pharmacology , Paraganglioma/genetics , Pheochromocytoma/genetics , Adrenal Gland Neoplasms/genetics , Chromaffin Cells/metabolism , Chromaffin Cells/pathology , Adenosine Triphosphate
14.
Environ Pollut ; 317: 120766, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36460192

ABSTRACT

The neuroendocrine control of reproduction is strictly coordinated at the central level by the pulsatile release of gonadotropin-releasing hormone (GnRH) by the hypothalamic GnRH neurons. Alterations of the GnRH-network, especially during development, lead to long-term reproductive and systemic consequences, also causing infertility. Recent evidence shows that benzo[a]pyrene (BaP), a diffuse pollutant that can play a role as an endocrine disruptor, affects gonadal function and gamete maturation, whereas data demonstrating its impact at hypothalamic level are very scarce. This study investigated the effects of BaP (10 µM) in a primary cell culture isolated from the human fetal hypothalamus (hfHypo) and exhibiting a clear GnRH neuron phenotype. BaP significantly decreased gene and protein expression of both GnRH and kisspeptin receptor (KISS1R), the master regulator of GnRH neuron function. Moreover, BaP exposure increased phospho-ERK1/2 signaling, a well-known mechanism associated with KISS1R activation. Interestingly, BaP altered the electrophysiological membrane properties leading to a significant depolarizing effect and it also significantly increased GnRH release, with both effects being not affected by kisspeptin addition. In conclusion, our findings demonstrate that BaP may alter GnRH neuron phenotype and function, mainly interfering with KISS1R signaling and GnRH secretion and therefore with crucial mechanisms implicated in the central neuroendocrine control of reproduction.


Subject(s)
Gonadotropin-Releasing Hormone , Kisspeptins , Humans , Receptors, Kisspeptin-1/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Reproduction/physiology , Neurons
15.
Biomater Adv ; 155: 213674, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922662

ABSTRACT

Mechanomimetic materials are particularly attractive for modeling in vitro fibroblast to myofibroblast (Myof) transition, a key process in the physiological repair of damaged tissue, and recognized as the core cellular mechanism of pathological fibrosis in different organs. In vivo, mechanical stimuli from the extracellular matrix (ECM) are crucial, together with cell-cell contacts and the pro-fibrotic transforming growth factor (TGF)-ß1, in promoting fibroblast differentiation. Here, we explore the impact of hydrogels made by polyacrylamide with different composition on fibroblast behavior. By appropriate modulation of the hydrogel composition (e.g. adjusting the crosslinker content), we produce and fully characterize three kinds of scaffolds with different Young modulus (E). We observe that soft hydrogels (E < 1 kPa) induced fibroblast differentiation better than stiffer ones, also in the absence of TGF-ß1. This study provides a readily accessible biomaterial platform to promote Myof generation. The easy approach used and the commercial availability of the monomers make these hydrogels suitable to a wide range of biomedical applications combined with high reproducibility and simple preparation protocols.


Subject(s)
Hydrogels , Myofibroblasts , Humans , Myofibroblasts/metabolism , Hydrogels/pharmacology , Reproducibility of Results , Cell Differentiation/physiology , Fibroblasts/metabolism , Fibrosis
16.
Cells ; 12(24)2023 12 16.
Article in English | MEDLINE | ID: mdl-38132171

ABSTRACT

Hypoxia-inducible factor (HIF)-1α represents an oxygen-sensitive subunit of HIF transcriptional factor, which is usually degraded in normoxia and stabilized in hypoxia to regulate several target gene expressions. Nevertheless, in the skeletal muscle satellite stem cells (SCs), an oxygen level-independent regulation of HIF-1α has been observed. Although HIF-1α has been highlighted as a SC function regulator, its spatio-temporal expression and role during myogenic progression remain controversial. Herein, using biomolecular, biochemical, morphological and electrophysiological analyses, we analyzed HIF-1α expression, localization and role in differentiating murine C2C12 myoblasts and SCs under normoxia. In addition, we evaluated the role of matrix metalloproteinase (MMP)-9 as an HIF-1α effector, considering that MMP-9 is involved in myogenesis and is an HIF-1α target in different cell types. HIF-1α expression increased after 24/48 h of differentiating culture and tended to decline after 72 h/5 days. Committed and proliferating mononuclear myoblasts exhibited nuclear HIF-1α expression. Differently, the more differentiated elongated and parallel-aligned cells, which are likely ready to fuse with each other, show a mainly cytoplasmic localization of the factor. Multinucleated myotubes displayed both nuclear and cytoplasmic HIF-1α expression. The MMP-9 and MyoD (myogenic activation marker) expression synchronized with that of HIF-1α, increasing after 24 h of differentiation. By means of silencing HIF-1α and MMP-9 by short-interfering RNA and MMP-9 pharmacological inhibition, this study unraveled MMP-9's role as an HIF-1α downstream effector and the fact that the HIF-1α/MMP-9 axis is essential in morpho-functional cell myogenic commitment.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Matrix Metalloproteinase 9 , Myoblasts, Skeletal , Animals , Mice , Cell Differentiation , Matrix Metalloproteinase 9/metabolism , Myoblasts, Skeletal/metabolism , Oxygen , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Hypoxia
17.
Life (Basel) ; 13(9)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37763216

ABSTRACT

Adipokines are peptide hormones produced by the adipose tissue involved in several biological functions. Among adipokines, adiponectin (ADPN) has antidiabetic and anti-inflammatory properties. It can also modulate food intake at central and peripheral levels, acting on hypothalamus and facilitating gastric relaxation. ADPN exerts its action interacting with two distinct membrane receptors and triggering some well-defined signaling cascades. The ceramidase activity of ADPN receptor has been reported in many tissues: it converts ceramide into sphingosine. In turn, sphingosine kinase (SK) phosphorylates it into sphingosine-1 phosphate (S1P), a crucial mediator of many cellular processes including contractility. Using a multidisciplinary approach that combined biochemical, electrophysiological and morphological investigations, we explored for the first time the possible role of S1P metabolism in mediating ADPN effects on the murine gastric fundus muscle layer. By using a specific pharmacological inhibitor of SK2, we showed that ADPN affects smooth muscle cell membrane properties and contractile machinery via SK2 activation in gastric fundus, adding a piece of knowledge to the action mechanisms of this hormone. These findings help to identify ADPN and its receptors as new therapeutic targets or as possible prognostic markers for diseases with altered energy balance and for pathologies with fat mass content alterations.

18.
Front Physiol ; 13: 930197, 2022.
Article in English | MEDLINE | ID: mdl-35910552

ABSTRACT

Resistin, among its several actions, has been reported to exert central anorexigenic effects in rodents. Some adipokines which centrally modulate food intake have also been reported to affect the activity of gastric smooth muscle, whose motor responses represent a source of peripheral signals implicated in the control of the hunger-satiety cycle through the gut-brain axis. On this basis, in the present experiments, we investigated whether resistin too could affect the mechanical responses in the mouse longitudinal gastric fundal strips. Electrical field stimulation (EFS) elicited tetrodotoxin- and atropine-sensitive contractile responses. Resistin reduced the amplitude of the EFS-induced contractile responses. This effect was no longer detected in the presence of L-NNA, a nitric oxide (NO) synthesis inhibitor. Resistin did not influence the direct muscular response to methacholine. In the presence of carbachol and guanethidine, EFS elicited inhibitory responses whose amplitude was increased by resistin. L-NNA abolished the inhibitory responses evoked by EFS, indicating their nitrergic nature. In the presence of L-NNA, resistin did not have any effect on the EFS-evoked inhibitory responses. Western blot and immunofluorescence analysis revealed a significant increase in neuronal nitric oxide synthase (nNOS) expression in neurons of the myenteric plexus following resistin exposure. In conclusion, the present results offer the first evidence that resistin acts on the gastric fundus, likely through a modulatory action on the nitrergic neurotransmission.

19.
Cells ; 11(4)2022 02 17.
Article in English | MEDLINE | ID: mdl-35203362

ABSTRACT

BACKGROUND: Adiponectin (Adn), released by adipocytes and other cell types such as skeletal muscle, has insulin-sensitizing and anti-inflammatory properties. Sphingosine 1-phosphate (S1P) is reported to act as effector of diverse biological actions of Adn in different tissues. S1P is a bioactive sphingolipid synthesized by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK) 1 and 2. Consolidated findings support the key role of S1P in the biology of skeletal muscle. METHODS AND RESULTS: Here we provide experimental evidence that S1P signalling is modulated by globular Adn treatment being able to increase the phosphorylation of SK1/2 as well as the mRNA expression levels of S1P4 in C2C12 myotubes. These findings were confirmed by LC-MS/MS that showed an increase of S1P levels after Adn treatment. Notably, the involvement of S1P axis in Adn action was highlighted since, when SK1 and 2 were inhibited by PF543 and ABC294640 inhibitors, respectively, not only the electrophysiological changes but also the increase of oxygen consumption and of aminoacid levels induced by the hormone, were significantly inhibited. CONCLUSION: Altogether, these findings show that S1P biosynthesis is necessary for the electrophysiological properties and oxidative metabolism of Adn in skeletal muscle cells.


Subject(s)
Adiponectin , Lysophospholipids , Muscle Fibers, Skeletal , Sphingosine , Adiponectin/metabolism , Animals , Cell Line , Chromatography, Liquid , Lysophospholipids/metabolism , Mice , Muscle Fibers, Skeletal/metabolism , Oxidative Stress , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Tandem Mass Spectrometry
20.
J Physiol ; 589(Pt 21): 5231-46, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21911618

ABSTRACT

Orexin A (OXA) has been reported to influence gastrointestinal motility, acting at both central and peripheral neural levels. The aim of the present study was to evaluate whether OXA also exerts direct effects on the duodenal smooth muscle. The possible mechanism of action involved was investigated by employing a combined mechanical and electrophysiological approach. Duodenal segments were mounted in organ baths for isometric recording of the mechanical activity. Ionic channel activity was recorded in current- and voltage-clamp conditions by a single microelectrode inserted in a duodenal longitudinal muscle cell. In the duodenal preparations, OXA (0.3 µM) caused a TTX-insensitive transient contraction. Nifedipine (1 µM), as well as 2-aminoethyl diphenyl borate (10 µM), reduced the amplitude and shortened the duration of the response to OXA, which was abolished by Ni(2+) (50 µM) or TEA (1 mM). Electrophysiological studies in current-clamp conditions showed that OXA caused an early depolarization, which paralleled in time the contractile response, followed by a long-lasting depolarization. Such a depolarization was triggered by activation of receptor-operated Ca(2+) channels and enhanced by activation of T- and L-type Ca(2+) channels and store-operated Ca(2+) channels and by inhibition of K(+) channels. Experiments in voltage-clamp conditions demonstrated that OXA affects not only receptor-operated Ca(2+) channels, but also the maximal conductance and kinetics of activation and inactivation of Na(+), T- and L-type Ca(2+) voltage-gated channels. The results demonstrate, for the first time, that OXA exerts direct excitatory effects on the mouse duodenal smooth muscle. Finally, this work demonstrates new findings related to the expression and kinetics of the voltage-gated channel types, as well as store-operated Ca(2+) channels.


Subject(s)
Duodenum/drug effects , Intracellular Signaling Peptides and Proteins/pharmacology , Muscle, Smooth/drug effects , Neuropeptides/pharmacology , Animals , Boron Compounds/pharmacology , Calcium Channel Blockers/pharmacology , Duodenum/physiology , Female , In Vitro Techniques , Isometric Contraction/drug effects , Mice , Muscle, Smooth/physiology , Nifedipine/pharmacology , Orexins , Patch-Clamp Techniques , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL