Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Haematologica ; 108(1): 48-60, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35899387

ABSTRACT

Elucidating genetic aberrations in pediatric acute myeloid leukemia (AML) provides insight in biology and may impact on risk-group stratification and clinical outcome. This study aimed to detect such aberrations in a selected series of samples without known (cyto)genetic aberration using molecular profiling. A cohort of 161 patients was selected from various study groups: DCOG, BFM, SJCRH, NOPHO and AEIOP. Samples were analyzed using RNA sequencing (n=152), whole exome (n=135) and/or whole genome sequencing (n=100). In 70 of 156 patients (45%), of whom RNA sequencing or whole genome sequencing was available, rearrangements were detected, 22 of which were novel; five involving ERG rearrangements and four NPM1 rearrangements. ERG rearrangements showed self-renewal capacity in vitro, and a distinct gene expression pattern. Gene set enrichment analysis of this cluster showed upregulation of gene sets derived from Ewing sarcoma, which was confirmed comparing gene expression profiles of AML and Ewing sarcoma. Furthermore, NPM1-rearranged cases showed cytoplasmic NPM1 localization and revealed HOXA/B gene overexpression, as described for NPM1 mutated cases. Single-gene mutations as identified in adult AML were rare. Patients had a median of 24 coding mutations (range, 7-159). Novel recurrent mutations were detected in UBTF (n=10), a regulator of RNA transcription. In 75% of patients an aberration with a prognostic impact could be detected. Therefore, we suggest these techniques need to become standard of care in diagnostics.


Subject(s)
Leukemia, Myeloid, Acute , Sarcoma, Ewing , Child , Adult , Humans , Nucleophosmin , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Transcriptome , Prognosis
3.
Neurooncol Adv ; 6(1): vdae099, 2024.
Article in English | MEDLINE | ID: mdl-39036440

ABSTRACT

Background: Identifying germline predisposition in CNS malignancies is of increasing clinical importance, as it contributes to diagnosis and prognosis, and determines aspects of treatment. The inclusion of germline testing has historically been limited due to challenges surrounding access to genetic counseling, complexity in acquiring a germline comparator specimen, concerns about the impact of findings, or cost considerations. These limitations were further defined by the breadth and scope of clinical testing to precisely identify complex variants as well as concerns regarding the clinical interpretation of variants including those of uncertain significance. Methods: In the course of conducting an IRB-approved protocol that performed genomic, transcriptomic and methylation-based characterization of pediatric CNS malignancies, we cataloged germline predisposition to cancer based on paired exome capture sequencing, coupled with computational analyses to identify variants in known cancer predisposition genes and interpret them relative to established clinical guidelines. Results: In certain cases, these findings refined diagnosis or prognosis or provided important information for treatment planning. Conclusions: We outline our aggregate findings on cancer predisposition within this cohort which identified 16% of individuals (27 of 168) harboring a variant predicting cancer susceptibility and contextualize the impact of these results in terms of treatment-related aspects of precision oncology.

4.
Clin Cancer Res ; 30(13): 2729-2742, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38639919

ABSTRACT

PURPOSE: Outcomes for patients with glioblastoma (GBM) remain poor despite multimodality treatment with surgery, radiation, and chemotherapy. There are few immunotherapy options due to the lack of tumor immunogenicity. Several clinical trials have reported promising results with cancer vaccines. To date, studies have used data from a single tumor site to identify targetable antigens, but this approach limits the antigen pool and is antithetical to the heterogeneity of GBM. We have implemented multisector sequencing to increase the pool of neoantigens across the GBM genomic landscape that can be incorporated into personalized peptide vaccines called NeoVax. PATIENTS AND METHODS: In this study, we report the findings of four patients enrolled onto the NeoVax clinical trial (NCT0342209). RESULTS: Immune reactivity to NeoVax neoantigens was assessed in peripheral blood mononuclear cells pre- and post-NeoVax for patients 1 to 3 using IFNγ-ELISPOT assay. A statistically significant increase in IFNγ producing T cells at the post-NeoVax time point for several neoantigens was observed. Furthermore, a post-NeoVax tumor biopsy was obtained from patient 3 and, upon evaluation, revealed evidence of infiltrating, clonally expanded T cells. CONCLUSIONS: Collectively, our findings suggest that NeoVax stimulated the expansion of neoantigen-specific effector T cells and provide encouraging results to aid in the development of future neoantigen vaccine-based clinical trials in patients with GBM. Herein, we demonstrate the feasibility of incorporating multisector sampling in cancer vaccine design and provide information on the clinical applicability of clonality, distribution, and immunogenicity of the neoantigen landscape in patients with GBM.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Glioblastoma , Precision Medicine , Vaccines, Subunit , Humans , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/genetics , Glioblastoma/pathology , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/therapeutic use , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/therapeutic use , Precision Medicine/methods , Antigens, Neoplasm/immunology , Female , Male , Middle Aged , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Adult , Aged , Immunotherapy/methods , Protein Subunit Vaccines
5.
J Exp Clin Cancer Res ; 43(1): 193, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992659

ABSTRACT

BACKGROUND: Macrophages play important roles in phagocytosing tumor cells. However, tumors escape macrophage phagocytosis in part through the expression of anti-phagocytic signals, most commonly CD47. In Ewing sarcoma (ES), we found that tumor cells utilize dual mechanisms to evade macrophage clearance by simultaneously over-expressing CD47 and down-regulating cell surface calreticulin (csCRT), the pro-phagocytic signal. Here, we investigate the combination of a CD47 blockade (magrolimab, MAG) to inhibit the anti-phagocytic signal and a chemotherapy regimen (doxorubicin, DOX) to enhance the pro-phagocytic signal to induce macrophage phagocytosis of ES cells in vitro and inhibit tumor growth and metastasis in vivo. METHODS: Macrophages were derived from human peripheral blood monocytes by granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). Flow cytometry- and microscopy-based in-vitro phagocytosis assays were performed to evaluate macrophage phagocytosis of ES cells. Annexin-V assay was performed to evaluate apoptosis. CD47 was knocked out by CRISPR/Cas9 approach. ES cell-based and patient-derived-xenograft (PDX)-based mouse models were utilized to assess the effects of MAG and/or DOX on ES tumor development and animal survival. RNA-Seq combined with CIBERSORTx analysis was utilized to identify changes in tumor cell transcriptome and tumor infiltrating immune cell profiling in MAG and/or DOX treated xenograft tumors. RESULTS: We found that MAG significantly increased macrophage phagocytosis of ES cells in vitro (p < 0.01) and had significant effect on reducing tumor burden (p < 0.01) and increasing survival in NSG mouse model (p < 0.001). The csCRT level on ES cells was significantly enhanced by DOX in a dose- and time-dependent manner (p < 0.01). Importantly, DOX combined with MAG significantly enhanced macrophage phagocytosis of ES cells in vitro (p < 0.01) and significantly decreased tumor burden (p < 0.01) and lung metastasis (p < 0.0001) and extended animal survival in vivo in two different mouse models of ES (p < 0.0001). Furthermore, we identified CD38, CD209, CD163 and CD206 as potential markers for ES-phagocytic macrophages. Moreover, we found increased M2 macrophage infiltration and decreased expression of Cd209 in the tumor microenvironment of MAG and DOX combinatorial therapy treated tumors. CONCLUSIONS: By turning "two keys" simultaneously to reactivate macrophage phagocytic activity, our data demonstrated an effective and highly translatable alternative therapeutic approach utilizing innate (tumor associated macrophages) immunotherapy against high-risk metastatic ES.


Subject(s)
Immunotherapy , Macrophages , Sarcoma, Ewing , Sarcoma, Ewing/immunology , Sarcoma, Ewing/pathology , Sarcoma, Ewing/therapy , Sarcoma, Ewing/drug therapy , Animals , Mice , Humans , Macrophages/immunology , Macrophages/metabolism , Immunotherapy/methods , CD47 Antigen/metabolism , Cell Line, Tumor , Phagocytosis , Xenograft Model Antitumor Assays , Female , Immunity, Innate , Disease Models, Animal
6.
Front Immunol ; 15: 1384623, 2024.
Article in English | MEDLINE | ID: mdl-39044819

ABSTRACT

Introduction: Malignant peripheral nerve sheath tumors (MPNST) pose a significant therapeutic challenge due to high recurrence rates after surgical resection and a largely ineffective response to traditional chemotherapy. An alternative treatment strategy is oncolytic viroimmunotherapy, which can elicit a durable and systemic antitumor immune response and is Food and Drug Administration (FDA)-approved for the treatment of melanoma. Unfortunately, only a subset of patients responds completely, underscoring the need to address barriers hindering viroimmunotherapy effectiveness. Methods: Here we investigated the therapeutic utility of targeting key components of the MPNST immunosuppressive microenvironment to enhance viroimmunotherapy's antitumor efficacy in three murine models, one of which showed more immunogenic characteristics than the others. Results: Myelomodulatory therapy with pexidartinib, a small molecule inhibitor of CSF1R tyrosine kinase, and the oncolytic herpes simplex virus T-VEC exhibited the most significant increase in median survival time in the highly immunogenic model. Additionally, targeting myeloid cells with the myelomodulatory therapy trabectedin, a small molecule activator of caspase-8 dependent apoptosis, augmented the survival benefit of T-VEC in a less immunogenic MPNST model. However, tumor regressions or shrinkages were not observed. Depletion experiments confirmed that the enhanced survival benefit relied on a T cell response. Furthermore, flow cytometry analysis following combination viroimmunotherapy revealed decreased M2 macrophages and myeloid-derived suppressor cells and increased tumor-specific gp70+ CD8 T cells within the tumor microenvironment. Discussion: In summary, our findings provide compelling evidence for the potential to leverage viroimmunotherapy with myeloid cell targeting against MPNST and warrant further investigation.


Subject(s)
Disease Models, Animal , Oncolytic Virotherapy , Tumor Microenvironment , Animals , Oncolytic Virotherapy/methods , Mice , Tumor Microenvironment/immunology , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Cell Line, Tumor , Immunotherapy/methods , Humans , Combined Modality Therapy , Female , Mice, Inbred C57BL , Nerve Sheath Neoplasms/therapy , Nerve Sheath Neoplasms/immunology , Nerve Sheath Neoplasms/genetics , Aminopyridines , Pyrroles
8.
Cell Rep ; 42(9): 113084, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37716355

ABSTRACT

Pediatric acute megakaryoblastic leukemia (AMKL) is an aggressive blood cancer associated with poor therapeutic response and high mortality. Here we describe the development of CBFA2T3-GLIS2-driven mouse models of AMKL that recapitulate the phenotypic and transcriptional signatures of the human disease. We show that an activating Ras mutation that occurs in human AMKL increases the penetrance and decreases the latency of CBF2AT3-GLIS2-driven AMKL. CBFA2T3-GLIS2 and GLIS2 modulate similar transcriptional networks. We identify the dominant oncogenic properties of GLIS2 that trigger AMKL in cooperation with oncogenic Ras. We find that both CBFA2T3-GLIS2 and GLIS2 alter the expression of a number of BH3-only proteins, causing AMKL cell sensitivity to the BCL2 inhibitor navitoclax both in vitro and in vivo, suggesting a potential therapeutic option for pediatric patients suffering from CBFA2T3-GLIS2-driven AMKL.


Subject(s)
Leukemia, Megakaryoblastic, Acute , Animals , Mice , Child , Humans , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Aniline Compounds , Sulfonamides , Oncogene Proteins, Fusion/metabolism , Repressor Proteins
9.
Nat Commun ; 14(1): 809, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36781850

ABSTRACT

Rearrangments in Histone-lysine-N-methyltransferase 2A (KMT2Ar) are associated with pediatric, adult and therapy-induced acute leukemias. Infants with KMT2Ar acute lymphoblastic leukemia (ALL) have a poor prognosis with an event-free-survival of 38%. Herein we evaluate 1116 FDA approved compounds in primary KMT2Ar infant ALL specimens and identify a sensitivity to proteasome inhibition. Upon exposure to this class of agents, cells demonstrate a depletion of histone H2B monoubiquitination (H2Bub1) and histone H3 lysine 79 dimethylation (H3K79me2) at KMT2A target genes in addition to a downregulation of the KMT2A gene expression signature, providing evidence that it targets the KMT2A transcriptional complex and alters the epigenome. A cohort of relapsed/refractory KMT2Ar patients treated with this approach on a compassionate basis had an overall response rate of 90%. In conclusion, we report on a high throughput drug screen in primary pediatric leukemia specimens whose results translate into clinically meaningful responses. This innovative treatment approach is now being evaluated in a multi-institutional upfront trial for infants with newly diagnosed ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proteasome Endopeptidase Complex , Infant , Adult , Humans , Child , Proteasome Endopeptidase Complex/genetics , Lysine/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcriptome
11.
J Clin Oncol ; 35(35): 3956-3963, 2017 Dec 10.
Article in English | MEDLINE | ID: mdl-29058986

ABSTRACT

Purpose The clinical features, pathogenesis, and outcomes in children with adrenocortical tumors (ACTs) without germline TP53 mutations have not been systematically studied. Herein, we describe these correlates and analyze their association with outcome. Patients and Methods Genomic DNA was analyzed for TP53, CTNNB1, CDKN1C, ATRX, and chromosome 11p15 abnormalities. ß-catenin expression and Ki-67 labeling index (LI) were evaluated by immunostaining. Primary end points were progression-free (PFS) and overall survival. Results Median age of 42 girls and 18 boys was 3.3 years (range, 0.25 to 21.7 years). Complete resection (stages I and II) was achieved in 32 patients, and 28 patients had stage III or IV disease. Constitutional abnormalities of chromosome 11p15 occurred in nine of 40 patients, with six patients not showing phenotype of Beckwith-Wiedemann syndrome. Three-year PFS and overall survival for all patients were 71.4% and 80.5%, respectively. In single-predictor Cox regression analysis, age, disease stage, tumor weight, somatic TP53 mutations, and Ki-67 LI were associated with prognosis. Ki-67 LI and age remained significantly associated with PFS after adjusting for stage and tumor weight. Three-year PFS for 27 patients with Ki-67 LI ≥ 15% was 48.5% compared with 96.2% for 29 patients with Ki-67 LI < 15% (log-rank P = .002), and the rate of relapse increased by 24% with each 1-year increase in age at diagnosis (hazard ratio, 1.24; P = .0057). Conclusion Clinicopathologic features and outcomes of children with ACTs without germline TP53 mutations overlapped those reported for children with germline TP53 mutations. Our findings highlight the central role of genetic or epigenetic alterations on chromosome 11p15 in pediatric ACTs. Ki-67 LI is a strong prognostic indicator and should be investigated to improve the histologic classification of pediatric ACTs.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/pathology , Germ-Line Mutation , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosome Aberrations , Chromosomes, Human, Pair 11 , Cyclin-Dependent Kinase Inhibitor p57/genetics , Female , Genes, p53 , Humans , Infant , Male , Prognosis , Registries , Retrospective Studies , X-linked Nuclear Protein/genetics , Young Adult , beta Catenin/genetics
12.
Zookeys ; (205): 19-31, 2012.
Article in English | MEDLINE | ID: mdl-22792032

ABSTRACT

North American members in the genus Radiolucina are reviewed. A lectotype for the type species, Radiolucina amianta, is designated and descriptions and illustrations are provided. A description of a new species, Radiolucina jessicae, from the west coast of Mexico is presented. Key diagnostic species characteristics are outlined and compared among members of the genus.

SELECTION OF CITATIONS
SEARCH DETAIL