Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(2): 275-286, 2022 02.
Article in English | MEDLINE | ID: mdl-35102342

ABSTRACT

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.


Subject(s)
COVID-19/immunology , Immunity, Humoral , Receptors, Pattern Recognition/immunology , SARS-CoV-2/immunology , Animals , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Complement Activation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Glycosylation , HEK293 Cells , Host-Pathogen Interactions , Humans , Male , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Mannose-Binding Lectin/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , Polymorphism, Genetic , Protein Binding , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serum Amyloid P-Component/immunology , Serum Amyloid P-Component/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
2.
Cell ; 178(2): 346-360.e24, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31257026

ABSTRACT

Neutrophils are a component of the tumor microenvironment and have been predominantly associated with cancer progression. Using a genetic approach complemented by adoptive transfer, we found that neutrophils are essential for resistance against primary 3-methylcholantrene-induced carcinogenesis. Neutrophils were essential for the activation of an interferon-γ-dependent pathway of immune resistance, associated with polarization of a subset of CD4- CD8- unconventional αß T cells (UTCαß). Bulk and single-cell RNA sequencing (scRNA-seq) analyses unveiled the innate-like features and diversity of UTCαß associated with neutrophil-dependent anti-sarcoma immunity. In selected human tumors, including undifferentiated pleomorphic sarcoma, CSF3R expression, a neutrophil signature and neutrophil infiltration were associated with a type 1 immune response and better clinical outcome. Thus, neutrophils driving UTCαß polarization and type 1 immunity are essential for resistance against murine sarcomas and selected human tumors.


Subject(s)
Disease Resistance , Neoplasms/pathology , Neutrophils/immunology , Sarcoma/pathology , T-Lymphocytes/metabolism , Animals , Chromones/toxicity , Disease Resistance/immunology , Humans , Immunity, Innate , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-12/genetics , Interleukin-12/metabolism , Kaplan-Meier Estimate , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/immunology , Neoplasms/mortality , Neutrophil Infiltration , Neutrophils/cytology , Neutrophils/metabolism , Receptors, Colony-Stimulating Factor/metabolism , Sarcoma/chemically induced , Sarcoma/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tumor Microenvironment
3.
Nat Immunol ; 22(1): 19-24, 2021 01.
Article in English | MEDLINE | ID: mdl-33208929

ABSTRACT

Long pentraxin 3 (PTX3) is an essential component of humoral innate immunity, involved in resistance to selected pathogens and in the regulation of inflammation1-3. The present study was designed to assess the presence and significance of PTX3 in Coronavirus Disease 2019 (COVID-19)4-7. RNA-sequencing analysis of peripheral blood mononuclear cells, single-cell bioinformatics analysis and immunohistochemistry of lung autopsy samples revealed that myelomonocytic cells and endothelial cells express high levels of PTX3 in patients with COVID-19. Increased plasma concentrations of PTX3 were detected in 96 patients with COVID-19. PTX3 emerged as a strong independent predictor of 28-d mortality in multivariable analysis, better than conventional markers of inflammation, in hospitalized patients with COVID-19. The prognostic significance of PTX3 abundance for mortality was confirmed in a second independent cohort (54 patients). Thus, circulating and lung myelomonocytic cells and endothelial cells are a major source of PTX3, and PTX3 plasma concentration can serve as an independent strong prognostic indicator of short-term mortality in COVID-19.


Subject(s)
C-Reactive Protein/genetics , COVID-19/genetics , Gene Expression Profiling/methods , Macrophages/metabolism , SARS-CoV-2/isolation & purification , Serum Amyloid P-Component/genetics , A549 Cells , Adult , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/virology , Cell Line, Tumor , Cells, Cultured , Cohort Studies , Endothelial Cells/metabolism , Epidemics , Female , Humans , Male , Middle Aged , Monocytes/metabolism , Neutrophils/metabolism , Prognosis , SARS-CoV-2/physiology , Serum Amyloid P-Component/metabolism
4.
Annu Rev Immunol ; 28: 157-83, 2010.
Article in English | MEDLINE | ID: mdl-19968561

ABSTRACT

The innate immune system consists of a cellular and a humoral arm. Pentraxins (e.g., the short pentraxin C reactive protein and the long pentraxin PTX3) are key components of the humoral arm of innate immunity which also includes complement components, collectins, and ficolins. In response to microorganisms and tissue damage, neutrophils, macrophages, and dendritic cells are major sources of fluid-phase pattern-recognition molecules (PRMs) belonging to different molecular classes. Humoral PRMs in turn interact with and regulate cellular effectors. Effector mechanisms of the humoral innate immune system include activation and regulation of the complement cascade; agglutination and neutralization; facilitation of recognition via cellular receptors (opsonization); and regulation of inflammation. Thus, the humoral arm of innate immunity is an integrated system consisting of different molecules and sharing functional outputs with antibodies.


Subject(s)
C-Reactive Protein/immunology , Immunity, Humoral , Immunity, Innate , Animals , Antibodies/immunology , Humans , Ligands
5.
Immunity ; 56(7): 1429-1431, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37437532

ABSTRACT

Interleukin-1 (IL-1) is a primary pro-inflammatory cytokine requiring tightly controlled negative regulation. In this issue of Immunity, Wang et al.,1 inspired by an IL-1 receptor missense mutation associated with unleashed IL-1-mediated inflammation, design a new drug to selectively inhibit IL-1.


Subject(s)
Cytokines , Interleukin-1 , Humans , Interleukin-1/genetics , Inflammation/genetics
6.
Cell ; 160(4): 700-714, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25679762

ABSTRACT

PTX3 is an essential component of the humoral arm of innate immunity, playing a nonredundant role in resistance against selected microbes and in the regulation of inflammation. PTX3 activates and regulates the Complement cascade by interacting with C1q and with Factor H. PTX3 deficiency was associated with increased susceptibility to mesenchymal and epithelial carcinogenesis. Increased susceptibility of Ptx3(-/-) mice was associated with enhanced macrophage infiltration, cytokine production, angiogenesis, and Trp53 mutations. Correlative evidence, gene-targeted mice, and pharmacological blocking experiments indicated that PTX3 deficiency resulted in amplification of Complement activation, CCL2 production, and tumor-promoting macrophage recruitment. PTX3 expression was epigenetically regulated in selected human tumors (e.g., leiomyosarcomas and colorectal cancer) by methylation of the promoter region and of a putative enhancer. Thus, PTX3, an effector molecule belonging to the humoral arm of innate immunity, acts as an extrinsic oncosuppressor gene in mouse and man by regulating Complement-dependent, macrophage-sustained, tumor-promoting inflammation.


Subject(s)
C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Inflammation/metabolism , Neoplasms/immunology , Serum Amyloid P-Component/genetics , Serum Amyloid P-Component/metabolism , Animals , Complement System Proteins/metabolism , DNA Methylation , Genes, p53 , Humans , Mice , Mutation
8.
Immunity ; 50(4): 778-795, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995499

ABSTRACT

Forty years after its naming, interleukin-1 (IL-1) is experiencing a renaissance brought on by the growing understanding of its context-dependent roles and advances in the clinic. Recent studies have identified important roles for members of the IL-1 family-IL-18, IL-33, IL-36, IL-37, and IL-38-in inflammation and immunity. Here, we review the complex functions of IL-1 family members in the orchestration of innate and adaptive immune responses and their diversity and plasticity. We discuss the varied roles of IL-1 family members in immune homeostasis and their contribution to pathologies, including autoimmunity and auto-inflammation, dysmetabolism, cardiovascular disorders, and cancer. The trans-disease therapeutic activity of anti-IL-1 strategies argues for immunity and inflammation as a metanarrative of modern medicine.


Subject(s)
Adaptive Immunity/immunology , Cytokines/physiology , Immunity, Innate/immunology , Inflammation/immunology , Interleukin-1/physiology , Animals , Cardiovascular Diseases/immunology , Cytokines/genetics , Cytokines/immunology , Gastrointestinal Diseases/immunology , Hematopoiesis/immunology , Humans , Interleukin-1/immunology , Lymphocytes/immunology , Mice , Mice, Knockout , Multigene Family , Neoplasms/immunology , Neurodegenerative Diseases/immunology , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology
9.
Nat Immunol ; 16(4): 354-65, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25729923

ABSTRACT

Interleukin 37 (IL-37) and IL-1R8 (SIGIRR or TIR8) are anti-inflammatory orphan members of the IL-1 ligand family and IL-1 receptor family, respectively. Here we demonstrate formation and function of the endogenous ligand-receptor complex IL-37-IL-1R8-IL-18Rα. The tripartite complex assembled rapidly on the surface of peripheral blood mononuclear cells upon stimulation with lipopolysaccharide. Silencing of IL-1R8 or IL-18Rα impaired the anti-inflammatory activity of IL-37. Whereas mice with transgenic expression of IL-37 (IL-37tg mice) with intact IL-1R8 were protected from endotoxemia, IL-1R8-deficient IL-37tg mice were not. Proteomic and transcriptomic investigations revealed that IL-37 used IL-1R8 to harness the anti-inflammatory properties of the signaling molecules Mer, PTEN, STAT3 and p62(dok) and to inhibit the kinases Fyn and TAK1 and the transcription factor NF-κB, as well as mitogen-activated protein kinases. Furthermore, IL-37-IL-1R8 exerted a pseudo-starvational effect on the metabolic checkpoint kinase mTOR. IL-37 thus bound to IL-18Rα and exploited IL-1R8 to activate a multifaceted intracellular anti-inflammatory program.


Subject(s)
Interleukin-18 Receptor alpha Subunit/immunology , Interleukin-1/immunology , Leukocytes, Mononuclear/immunology , Receptors, Interleukin-1/immunology , Signal Transduction/immunology , Animals , Cell Line , Gene Expression Regulation , Humans , Immunity, Innate , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-1/genetics , Interleukin-18 Receptor alpha Subunit/antagonists & inhibitors , Interleukin-18 Receptor alpha Subunit/genetics , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/immunology , Mice , Mice, Transgenic , NF-kappa B/genetics , NF-kappa B/immunology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/immunology , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/immunology , RNA, Small Interfering/genetics , RNA, Small Interfering/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/deficiency , Receptors, Interleukin-1/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , c-Mer Tyrosine Kinase
10.
Trends Immunol ; 45(10): 721-723, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39327204

ABSTRACT

Thromboinflammation is a peculiar and key component of acute COVID-19 pathogenesis, which contributes to long COVID. In a recent study, Ryu et al. demonstrate that the SARS-CoV-2 spike protein interacts with fibrinogen, promoting fibrin polymerization and its inflammatory activity. Targeting the inflammatory fibrin peptide protected mice from spike-dependent fibrin clotting and neuropathology.


Subject(s)
COVID-19 , Fibrin , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/immunology , Humans , Fibrin/metabolism , Animals , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Thromboinflammation/immunology , Thromboinflammation/metabolism , Mice , Fibrinogen/metabolism , Blood Coagulation
11.
Semin Immunol ; 66: 101712, 2023 03.
Article in English | MEDLINE | ID: mdl-36753974

ABSTRACT

Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.


Subject(s)
Immunity, Innate , Neoplasms , Animals , Humans , Inflammation , Killer Cells, Natural , Neoplasms/metabolism , Receptors, Interleukin-1/metabolism
12.
Semin Immunol ; 60: 101642, 2022 03.
Article in English | MEDLINE | ID: mdl-35842274

ABSTRACT

Cancer-related inflammation plays a central role in the establishment of tumor-promoting mechanisms. Tumor-associated myeloid cells, which engage in complex interactions with cancer cells, as well as stromal and tumor immune infiltrating cells, promote cancer cell proliferation and survival, angiogenesis, and the generation of an immunosuppressive microenvironment. The complement system is one of the inflammatory mechanisms activated in the tumor microenvironment. Beside exerting anti-tumor mechanisms such as complement-dependent cytotoxicity and phagocytosis induced by therapeutic monoclonal antibodies, the complement system may promote immunosuppression and tumor growth and invasiveness, in particular, through the anaphylatoxins which target both leukocytes and cancer cells. In this review, we will discuss complement-mediated mechanisms acting on leukocytes, in particular on cells of the myelomonocytic cell lineage (macrophages, neutrophils, myeloid derived suppressor cells), which promote myeloid cell recruitment and functional skewing, leading to immunosuppression and resistance to tumor-specific immunity. Pre-clinical studies, which have elucidated the role of complement in activating pro-tumor mechanisms in myeloid cells, showing the relevance of these mechanisms in human, and therapeutic approaches based on complement targeting support the hypothesis that complement directly and indirectly interferes with many of the effector pathways associated with the cancer-immunity cycle, suggesting the relevance of complement targeting to improve responses to immunotherapeutic approaches.


Subject(s)
Neoplasms , Humans , Myeloid Cells , Tumor Microenvironment , Immunosuppression Therapy , Complement Activation , Complement System Proteins/metabolism , Immunotherapy
13.
Physiol Rev ; 98(2): 623-639, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29412047

ABSTRACT

Innate immunity includes a cellular and a humoral arm. PTX3 is a fluid-phase pattern recognition molecule conserved in evolution which acts as a key component of humoral innate immunity in infections of fungal, bacterial, and viral origin. PTX3 binds conserved microbial structures and self-components under conditions of inflammation and activates effector functions (complement, phagocytosis). Moreover, it has a complex regulatory role in inflammation, such as ischemia/reperfusion injury and cancer-related inflammation, as well as in extracellular matrix organization and remodeling, with profound implications in physiology and pathology. Finally, PTX3 acts as an extrinsic oncosuppressor gene by taming tumor-promoting inflammation in murine and selected human tumors. Thus evidence suggests that PTX3 is a key homeostatic component at the crossroad of innate immunity, inflammation, tissue repair, and cancer. Dissecting the complexity of PTX3 pathophysiology and human genetics paves the way to diagnostic and therapeutic exploitation.


Subject(s)
C-Reactive Protein/metabolism , Immunity, Innate/immunology , Inflammation/immunology , Neoplasms/metabolism , Serum Amyloid P-Component/metabolism , Wound Healing/immunology , Animals , Humans , Immunity, Humoral/immunology , Neoplasms/immunology
14.
Brain Behav Immun ; 117: 493-509, 2024 03.
Article in English | MEDLINE | ID: mdl-38307446

ABSTRACT

In the last years, the hypothesis that elevated levels of proinflammatory cytokines contribute to the pathogenesis of neurodevelopmental diseases has gained popularity. IL-1 is one of the main cytokines found to be elevated in Autism spectrum disorder (ASD), a complex neurodevelopmental condition characterized by defects in social communication and cognitive impairments. In this study, we demonstrate that mice lacking IL-1 signaling display autistic-like defects associated with an excessive number of synapses. We also show that microglia lacking IL-1 signaling at early neurodevelopmental stages are unable to properly perform the process of synapse engulfment and display excessive activation of mammalian target of rapamycin (mTOR) signaling. Notably, even the acute inhibition of IL-1R1 by IL-1Ra is sufficient to enhance mTOR signaling and reduce synaptosome phagocytosis in WT microglia. Finally, we demonstrate that rapamycin treatment rescues the defects in IL-1R deficient mice. These data unveil an exclusive role of microglial IL-1 in synapse refinement via mTOR signaling and indicate a novel mechanism possibly involved in neurodevelopmental disorders associated with defects in the IL-1 pathway.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Mice , Microglia , TOR Serine-Threonine Kinases , Cytokines , Sirolimus/pharmacology , Synapses , Interleukin-1 , Mammals
15.
EMBO J ; 38(1)2019 01 03.
Article in English | MEDLINE | ID: mdl-30396995

ABSTRACT

Control of synapse number and function in the developing central nervous system is critical to the formation of neural circuits. Astrocytes play a key role in this process by releasing factors that promote the formation of excitatory synapses. Astrocyte-secreted thrombospondins (TSPs) induce the formation of structural synapses, which however remain post-synaptically silent, suggesting that completion of early synaptogenesis may require a two-step mechanism. Here, we show that the humoral innate immune molecule Pentraxin 3 (PTX3) is expressed in the developing rodent brain. PTX3 plays a key role in promoting functionally-active CNS synapses, by increasing the surface levels and synaptic clustering of AMPA glutamate receptors. This process involves tumor necrosis factor-induced protein 6 (TSG6), remodeling of the perineuronal network, and a ß1-integrin/ERK pathway. Furthermore, PTX3 activity is regulated by TSP1, which directly interacts with the N-terminal region of PTX3. These data unveil a fundamental role of PTX3 in promoting the first wave of synaptogenesis, and show that interplay of TSP1 and PTX3 sets the proper balance between synaptic growth and synapse function in the developing brain.


Subject(s)
C-Reactive Protein/physiology , Extracellular Matrix/metabolism , Integrin beta1/metabolism , Nerve Tissue Proteins/physiology , Receptors, AMPA/metabolism , Synapses/physiology , Animals , Astrocytes/metabolism , Brain/growth & development , Brain/metabolism , C-Reactive Protein/genetics , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Extracellular Matrix/genetics , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Neuronal Plasticity/genetics , Protein Transport/genetics , Thrombospondin 1/metabolism
16.
Nat Immunol ; 13(2): 144-51, 2011 Nov 20.
Article in English | MEDLINE | ID: mdl-22101730

ABSTRACT

Innate lymphoid cells (ILCs) of the ILC22 type protect the intestinal mucosa from infection by secreting interleukin 22 (IL-22). ILC22 cells include NKp46(+) and lymphoid tissue-inducer (LTi)-like subsets that express the aryl hydrocarbon receptor (AHR). Here we found that Ahr(-/-) mice had a considerable deficit in ILC22 cells that resulted in less secretion of IL-22 and inadequate protection against intestinal bacterial infection. Ahr(-/-) mice also lacked postnatally 'imprinted' cryptopatches and isolated lymphoid follicles (ILFs), but not embryonically 'imprinted' Peyer's patches. AHR induced the transcription factor Notch, which was required for NKp46(+) ILCs, whereas LTi-like ILCs, cryptopatches and ILFs were partially dependent on Notch signaling. Thus, AHR was essential for ILC22 cells and postnatal intestinal lymphoid tissues. Moreover, ILC22 subsets were heterogeneous in their requirement for Notch and their effect on the generation of intestinal lymphoid tissues.


Subject(s)
Receptor, Notch1/metabolism , Receptor, Notch2/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Antigens, Ly/metabolism , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Interleukins/genetics , Interleukins/immunology , Interleukins/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Natural Cytotoxicity Triggering Receptor 1/metabolism , Signal Transduction/immunology , Interleukin-22
17.
Immunity ; 40(4): 621-32, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24745336

ABSTRACT

Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs.


Subject(s)
C-Reactive Protein/metabolism , Escherichia coli Infections/immunology , Escherichia coli/immunology , Neutrophils/immunology , Pyelonephritis/immunology , Receptors, Pattern Recognition/metabolism , Serum Amyloid P-Component/metabolism , Urinary Tract Infections/immunology , Animals , C-Reactive Protein/genetics , Cell Line , Child , DNA Mutational Analysis , Disease Models, Animal , Escherichia coli Infections/complications , Female , Genetic Predisposition to Disease , Genotype , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Neutrophils/microbiology , Phagocytosis , Polymorphism, Genetic , Pyelonephritis/etiology , Receptors, Pattern Recognition/genetics , Serum Amyloid P-Component/genetics , Sweden , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Urinary Tract Infections/complications
18.
J Immunol ; 207(2): 651-660, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34253575

ABSTRACT

SIGIRR has been described as a negative regulator of several IL-1R/TLR family members and has been implicated in several inflammatory disease conditions. However, it is unknown whether it can suppress IL-36 family cytokines, which are members of the broader IL-1 superfamily that have emerged as critical orchestrators of psoriatic inflammation in both humans and mice. In this study, we demonstrate that SIGIRR is downregulated in psoriatic lesions in humans and mice, and this correlates with increased expression of IL-36 family cytokines. Using Sigirr -/- mice, we identify, for the first time (to our knowledge), SIGIRR as a negative regulator of IL-36 responses in the skin. Mechanistically, we identify dendritic cells and keratinocytes as the primary cell subsets in which IL-36 proinflammatory responses are regulated by SIGIRR. Both cell types displayed elevated IL-36 responsiveness in absence of SIGIRR activity, characterized by enhanced expression of neutrophil chemoattractants, leading to increased neutrophil infiltration to the inflamed skin. Blockade of IL-36R signaling ameliorated exacerbated psoriasiform inflammation in Sigirr -/- mice and inhibited neutrophil infiltration. These data identify SIGIRR activity as an important regulatory node in suppressing IL-36-dependent psoriatic inflammation in humans and mice.


Subject(s)
Inflammation/metabolism , Interleukin-1/metabolism , Neutrophil Infiltration/physiology , Receptors, Interleukin-1/metabolism , Skin/metabolism , Animals , Cytokines/metabolism , Down-Regulation/physiology , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Psoriasis/metabolism , Signal Transduction/physiology
19.
Nature ; 551(7678): 110-114, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29072292

ABSTRACT

Interleukin-1 receptor 8 (IL-1R8, also known as single immunoglobulin IL-1R-related receptor, SIGIRR, or TIR8) is a member of the IL-1 receptor (ILR) family with distinct structural and functional characteristics, acting as a negative regulator of ILR and Toll-like receptor (TLR) downstream signalling pathways and inflammation. Natural killer (NK) cells are innate lymphoid cells which mediate resistance against pathogens and contribute to the activation and orientation of adaptive immune responses. NK cells mediate resistance against haematopoietic neoplasms but are generally considered to play a minor role in solid tumour carcinogenesis. Here we report that IL-1R8 serves as a checkpoint for NK cell maturation and effector function. Its genetic blockade unleashes NK-cell-mediated resistance to hepatic carcinogenesis, haematogenous liver and lung metastasis, and cytomegalovirus infection.


Subject(s)
Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Liver Neoplasms/immunology , Muromegalovirus/immunology , Receptors, Interleukin-1/immunology , Animals , Cell Differentiation/genetics , Female , Herpesviridae Infections/genetics , Herpesviridae Infections/immunology , Humans , Killer Cells, Natural/metabolism , Liver Neoplasms/genetics , Lymphocyte Activation/genetics , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/genetics , Neoplasm Metastasis/immunology , Receptors, Interleukin-1/genetics
20.
Cell Mol Life Sci ; 79(4): 206, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333979

ABSTRACT

Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3iECKO), we show that endothelial cells from Ccm3iECKO mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3iECKO mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3iECKO mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas  of patients with CCM confirms the clinical relevance of NETs in CCM.


Subject(s)
Extracellular Traps , Hemangioma, Cavernous, Central Nervous System , Animals , Apoptosis Regulatory Proteins/genetics , Endothelial Cells/metabolism , Extracellular Traps/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Humans , Inflammation/pathology , Membrane Proteins/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL