Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Stem Cells ; 42(5): 445-459, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38587452

ABSTRACT

BACKGROUND: Our previous analyses of cardiomyocyte single-nucleus RNA sequencing (snRNAseq) data from the hearts of fetal pigs and pigs that underwent apical resection surgery on postnatal day (P) 1 (ARP1), myocardial infarction (MI) surgery on P28 (MIP28), both ARP1 and MIP28 (ARP1MIP28), or controls (no surgical procedure or CTL) identified 10 cardiomyocyte subpopulations (clusters), one of which appeared to be primed to proliferate in response to MI. However, the clusters composed of primarily proliferating cardiomyocytes still contained noncycling cells, and we were unable to distinguish between cardiomyocytes in different phases of the cell cycle. Here, we improved the precision of our assessments by conducting similar analyses with snRNAseq data for only the 1646 genes included under the Gene Ontology term "cell cycle." METHODS: Two cardiac snRNAseq datasets, one from mice (GEO dataset number GSE130699) and one from pigs (GEO dataset number GSE185289), were evaluated via our cell-cycle-specific analytical pipeline. Cycling cells were identified via the co-expression of 5 proliferation markers (AURKB, MKI67, INCENP, CDCA8, and BIRC5). RESULTS: The cell-cycle-specific autoencoder (CSA) algorithm identified 7 cardiomyocyte clusters in mouse hearts (mCM1 and mCM3-mCM8), including one prominent cluster of cycling cardiomyocytes in animals that underwent MI or Sham surgery on P1. Five cardiomyocyte clusters (pCM1, pCM3-pCM6) were identified in pig hearts, 2 of which (pCM1 and pCM4) displayed evidence of cell cycle activity; pCM4 was found primarily in hearts from fetal pigs, while pCM1 comprised a small proportion of cardiomyocytes in both fetal hearts and hearts from ARP1MIP28 pigs during the 2 weeks after MI induction, but was nearly undetectable in all other experimental groups and at all other time points. Furthermore, pseudotime trajectory analysis of snRNAseq data from fetal pig cardiomyocytes identified a pathway that began at pCM3, passed through pCM2, and ended at pCM1, whereas pCM3 was enriched for the expression of a cell cycle activator that regulates the G1/S phase transition (cyclin D2), pCM2 was enriched for an S-phase regulator (CCNE2), and pCM1 was enriched for the expression of a gene that regulates the G2M phase transition and mitosis (cyclin B2). We also identified 4 transcription factors (E2F8, FOXM1, GLI3, and RAD51) that were more abundantly expressed in cardiomyocytes from regenerative mouse hearts than from nonregenerative mouse hearts, from the hearts of fetal pigs than from CTL pig hearts, and from ARP1MIP28 pig hearts than from MIP28 pig hearts during the 2 weeks after MI induction. CONCLUSIONS: The CSA algorithm improved the precision of our assessments of cell cycle activity in cardiomyocyte subpopulations and enabled us to identify a trajectory across 3 clusters that appeared to track the onset and progression of cell cycle activity in cardiomyocytes from fetal pigs.


Subject(s)
Cell Cycle , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Cell Cycle/genetics , Swine , Mice , Cluster Analysis , Cell Proliferation
2.
J Mol Cell Cardiol ; 188: 52-60, 2024 03.
Article in English | MEDLINE | ID: mdl-38340541

ABSTRACT

From molecular and cellular perspectives, heart failure is caused by the loss of cardiomyocytes-the fundamental contractile units of the heart. Because mammalian cardiomyocytes exit the cell cycle shortly after birth, the cardiomyocyte damage induced by myocardial infarction (MI) typically leads to dilatation of the left ventricle (LV) and often progresses to heart failure. However, recent findings indicate that the hearts of neonatal pigs completely regenerated the cardiomyocytes that were lost to MI when the injury occurred on postnatal day 1 (P1). This recovery was accompanied by increases in the expression of markers for cell-cycle activity in cardiomyocytes. These results suggest that the repair process was driven by cardiomyocyte proliferation. This review summarizes findings from recent studies that found evidence of cardiomyocyte proliferation in 1) the uninjured hearts of newborn pigs on P1, 2) neonatal pig hearts after myocardial injury on P1, and 3) the hearts of pigs that underwent apical resection surgery (AR) on P1 followed by MI on postnatal day 28 (P28). Analyses of cardiomyocyte single-nucleus RNA sequencing data collected from the hearts of animals in these three experimental groups, their corresponding control groups, and fetal pigs suggested that although the check-point regulators and other molecules that direct cardiomyocyte cell-cycle progression and proliferation in fetal, newborn, and postnatal pigs were identical, the mechanisms that activated cardiomyocyte proliferation in response to injury may differ from those that regulate cardiomyocyte proliferation during development.


Subject(s)
Heart Failure , Myocardial Infarction , Swine , Animals , Myocytes, Cardiac , Mammals , Cell Division
3.
BMC Bioinformatics ; 25(1): 81, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378442

ABSTRACT

The breakthrough high-throughput measurement of the cis-regulatory activity of millions of randomly generated promoters provides an unprecedented opportunity to systematically decode the cis-regulatory logic that determines the expression values. We developed an end-to-end transformer encoder architecture named Proformer to predict the expression values from DNA sequences. Proformer used a Macaron-like Transformer encoder architecture, where two half-step feed forward (FFN) layers were placed at the beginning and the end of each encoder block, and a separable 1D convolution layer was inserted after the first FFN layer and in front of the multi-head attention layer. The sliding k-mers from one-hot encoded sequences were mapped onto a continuous embedding, combined with the learned positional embedding and strand embedding (forward strand vs. reverse complemented strand) as the sequence input. Moreover, Proformer introduced multiple expression heads with mask filling to prevent the transformer models from collapsing when training on relatively small amount of data. We empirically determined that this design had significantly better performance than the conventional design such as using the global pooling layer as the output layer for the regression task. These analyses support the notion that Proformer provides a novel method of learning and enhances our understanding of how cis-regulatory sequences determine the expression values.


Subject(s)
Electric Power Supplies , Learning , Promoter Regions, Genetic
4.
Am J Physiol Heart Circ Physiol ; 326(2): H396-H407, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38099842

ABSTRACT

Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD), characterized by the progressive replacement of contractile tissue with scar tissue. Effective therapies for dystrophic cardiomyopathy will require addressing the disease before the onset of fibrosis, however, the mechanisms of the early disease are poorly understood. To understand the pathophysiology of DMD, we perform a detailed functional assessment of cardiac function of the mdx mouse, a model of DMD. These studies use a combination of functional, metabolomic, and spectroscopic approaches to fully characterize the contractile, energetic, and mitochondrial function of beating hearts. Through these innovative approaches, we demonstrate that the dystrophic heart has reduced cardiac reserve and is energetically limited. We show that this limitation does not result from poor delivery of oxygen. Using spectroscopic approaches, we provide evidence that mitochondria in the dystrophic heart have attenuated mitochondrial membrane potential and deficits in the flow of electrons in complex IV of the electron transport chain. These studies provide evidence that poor myocardial energetics precede the onset of significant cardiac fibrosis and likely results from mitochondrial dysfunction centered around complex IV and reduced membrane potential. The multimodal approach used here implicates specific molecular components in the etiology of reduced energetics. Future studies focused on these targets may provide therapies that improve the energetics of the dystrophic heart leading to improved resiliency against damage and preservation of myocardial contractile tissue.NEW & NOTEWORTHY Dystrophic hearts have poor contractile reserve that is associated with a reduction in myocardial energetics. We demonstrate that oxygen delivery does not contribute to the limited energy production of the dystrophic heart even with increased workloads. Cytochrome optical spectroscopy of the contracting heart reveals alterations in complex IV and evidence of depolarized mitochondrial membranes. We show specific alterations in the electron transport chain of the dystrophic heart that may contribute to poor myocardial energetics.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Animals , Mice , Humans , Mice, Inbred mdx , Myocardium , Heart , Muscular Dystrophy, Duchenne/complications , Oxygen , Disease Models, Animal
5.
Development ; 147(19)2020 10 05.
Article in English | MEDLINE | ID: mdl-32907847

ABSTRACT

Pattern formation is influenced by transcriptional regulation as well as by morphogenetic mechanisms that shape organ primordia, although factors that link these processes remain under-appreciated. Here we show that, apart from their established transcriptional roles in pattern formation, IRX3/5 help to shape the limb bud primordium by promoting the separation and intercalation of dividing mesodermal cells. Surprisingly, IRX3/5 are required for appropriate cell cycle progression and chromatid segregation during mitosis, possibly in a nontranscriptional manner. IRX3/5 associate with, promote the abundance of, and share overlapping functions with co-regulators of cell division such as the cohesin subunits SMC1, SMC3, NIPBL and CUX1. The findings imply that IRX3/5 coordinate early limb bud morphogenesis with skeletal pattern formation.


Subject(s)
Chromatids/metabolism , Homeodomain Proteins/metabolism , Limb Buds/embryology , Limb Buds/metabolism , Transcription Factors/metabolism , Animals , Blotting, Western , Chromosome Segregation/genetics , Chromosome Segregation/physiology , Female , Fluorescent Antibody Technique , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Immunoprecipitation , Mass Spectrometry , Mice , Mitosis/genetics , Mitosis/physiology , Pregnancy , RNA-Seq , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics
6.
Xenotransplantation ; 30(1): e12786, 2023 01.
Article in English | MEDLINE | ID: mdl-36367201

ABSTRACT

Cardiovascular disease is common and has a high mortality. Due to the limited number of organs available for orthotopic heart transplantation, alternative therapies have received intense interest. In this commentary we contrast xenotransplantation and blastocyst complementation to produce pigs that will serve as donors for organ transplantation. These strategies hold tremendous promise and have the potential to provide an unlimited number of organs for chronic, terminal diseases.


Subject(s)
Heart Transplantation , Organ Transplantation , Transplants , Animals , Swine , Humans , Transplantation, Heterologous , Tissue Donors
7.
J Mol Cell Cardiol ; 172: 109-119, 2022 11.
Article in English | MEDLINE | ID: mdl-36030840

ABSTRACT

End stage heart failure is a terminal disease, and the only curative therapy is orthotopic heart transplantation. Due to limited organ availability, alternative strategies have received intense interest for treatment of patients with advanced heart failure. Recent studies using gene-edited porcine organs suggest that cardiac xenotransplantation may provide a future source of organs. In this review, we highlight the historical milestones for cardiac xenotransplantation and the gene editing strategies designed to overcome immunological barriers, which have culminated in a recent cardiac pig-to-human xenotransplant. We also discuss recent results of studies on the engineering of human-porcine chimeric organs that may provide an alternative and complementary strategy to overcome some of the major immunological barriers to producing a new source of transplantable organs.


Subject(s)
Heart Failure , Heart Transplantation , Transplants , Humans , Swine , Animals , Transplantation, Heterologous/adverse effects , Transplantation, Heterologous/methods , Heart Transplantation/methods , Heart Failure/genetics , Heart Failure/therapy , Gene Editing
8.
BMC Bioinformatics ; 23(1): 103, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35331133

ABSTRACT

BACKGROUND: DCLEAR is an R package used for single cell lineage reconstruction. The advances of CRISPR-based gene editing technologies have enabled the prediction of cell lineage trees based on observed edited barcodes from each cell. However, the performance of existing reconstruction methods of cell lineage trees was not accessed until recently. In response to this problem, the Allen Institute hosted the Cell Lineage Reconstruction Dream Challenge in 2020 to crowdsource relevant knowledge from across the world. Our team won sub-challenges 2 and 3 in the challenge competition. RESULTS: The DCLEAR package contained the R codes, which was submitted in response to sub-challenges 2 and 3. Our method consists of two steps: (1) distance matrix estimation and (2) the tree reconstruction from the distance matrix. We proposed two novel methods for distance matrix estimation as outlined in the DCLEAR package. Using our method, we find that two of the more sophisticated distance methods display a substantially improved level of performance compared to the traditional Hamming distance method. DCLEAR is open source and freely available from R CRAN and from under the GNU General Public License, version 3. CONCLUSIONS: DCLEAR is a powerful resource for single cell lineage reconstruction.


Subject(s)
Algorithms , Software , Cell Lineage
9.
Am J Transplant ; 22(12): 2786-2790, 2022 12.
Article in English | MEDLINE | ID: mdl-36052557

ABSTRACT

Organ transplantation is limited due to the scarcity of donor organs. In order to expand the supply of organs for transplantation, interspecies chimeras have been examined as a potential future source of humanized organs. Recent studies using gene editing technologies in combination with somatic cell nuclear transfer technology and hiPSCs successfully engineered humanized skeletal muscle in the porcine embryo. As these technologies progress, there are ethical issues that warrant consideration and dialogue.


Subject(s)
Induced Pluripotent Stem Cells , Organ Transplantation , Swine , Animals , Gene Editing
10.
Development ; 146(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31235634

ABSTRACT

Bi-potential neuromesodermal progenitors (NMPs) produce both neural and paraxial mesodermal progenitors in the trunk and tail during vertebrate body elongation. We show that Sall4, a pluripotency-related transcription factor gene, has multiple roles in regulating NMPs and their descendants in post-gastrulation mouse embryos. Sall4 deletion using TCre caused body/tail truncation, reminiscent of early depletion of NMPs, suggesting a role of Sall4 in NMP maintenance. This phenotype became significant at the time of the trunk-to-tail transition, suggesting that Sall4 maintenance of NMPs enables tail formation. Sall4 mutants exhibit expanded neural and reduced mesodermal tissues, indicating a role of Sall4 in NMP differentiation balance. Mechanistically, we show that Sall4 promotion of WNT/ß-catenin signaling contributes to NMP maintenance and differentiation balance. RNA-Seq and SALL4 ChIP-Seq analyses support the notion that Sall4 regulates both mesodermal and neural development. Furthermore, in the mesodermal compartment, genes regulating presomitic mesoderm differentiation are downregulated in Sall4 mutants. In the neural compartment, we show that differentiation of NMPs towards post-mitotic neuron is accelerated in Sall4 mutants. Our results collectively provide evidence supporting the role of Sall4 in regulating NMPs and their descendants.


Subject(s)
Body Patterning/genetics , Cell Lineage/genetics , DNA-Binding Proteins/physiology , Mesoderm/cytology , Mesoderm/embryology , Neural Stem Cells/cytology , Transcription Factors/physiology , Animals , Cell Differentiation/genetics , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Male , Mesoderm/metabolism , Mice , Neural Stem Cells/physiology , Pregnancy , Wnt Signaling Pathway/physiology
11.
PLoS Biol ; 17(2): e3000153, 2019 02.
Article in English | MEDLINE | ID: mdl-30807574

ABSTRACT

The transcriptional mechanisms driving lineage specification during development are still largely unknown, as the interplay of multiple transcription factors makes it difficult to dissect these molecular events. Using a cell-based differentiation platform to probe transcription function, we investigated the role of the key paraxial mesoderm and skeletal myogenic commitment factors-mesogenin 1 (Msgn1), T-box 6 (Tbx6), forkhead box C1 (Foxc1), paired box 3 (Pax3), Paraxis, mesenchyme homeobox 1 (Meox1), sine oculis-related homeobox 1 (Six1), and myogenic factor 5 (Myf5)-in paraxial mesoderm and skeletal myogenesis. From this study, we define a genetic hierarchy, with Pax3 emerging as the gatekeeper between the presomitic mesoderm and the myogenic lineage. By assaying chromatin accessibility, genomic binding and transcription profiling in mesodermal cells from mouse and human Pax3-induced embryonic stem cells and Pax3-null embryonic day (E)9.5 mouse embryos, we identified conserved Pax3 functions in the activation of the skeletal myogenic lineage through modulation of Hedgehog, Notch, and bone morphogenetic protein (BMP) signaling pathways. In addition, we demonstrate that Pax3 molecular function involves chromatin remodeling of its bound elements through an increase in chromatin accessibility and cooperation with sine oculis-related homeobox 4 (Six4) and TEA domain family member 2 (Tead2) factors. To our knowledge, these data provide the first integrated analysis of Pax3 function, demonstrating its ability to remodel chromatin in mesodermal cells from developing embryos and proving a mechanistic footing for the transcriptional hierarchy driving myogenesis.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Mesoderm/metabolism , Muscle Cells/metabolism , Muscle Development/genetics , PAX3 Transcription Factor/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cell Line , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Humans , Mesoderm/cytology , Mesoderm/growth & development , Mice , Mice, Transgenic , Muscle Cells/cytology , Muscle, Skeletal/cytology , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , PAX3 Transcription Factor/metabolism , Signal Transduction , T-Box Domain Proteins , TEA Domain Transcription Factors , Trans-Activators/metabolism , Transcription Factors/metabolism
12.
FASEB J ; 34(4): 5642-5657, 2020 04.
Article in English | MEDLINE | ID: mdl-32100368

ABSTRACT

The adult mammalian heart has a limited regenerative capacity. Therefore, identification of endogenous cells and mechanisms that contribute to cardiac regeneration is essential for the development of targeted therapies. The side population (SP) phenotype has been used to enrich for stem cells throughout the body; however, SP cells isolated from the heart have been studied exclusively in cell culture or after transplantation, limiting our understanding of their function in vivo. We generated a new Abcg2-driven lineage-tracing mouse model with efficient labeling of SP cells. Labeled SP cells give rise to terminally differentiated cells in bone marrow and intestines. In the heart, labeled SP cells give rise to lineage-traced cardiomyocytes under homeostatic conditions with an increase in this contribution following cardiac injury. Instead of differentiating into cardiomyocytes like proposed cardiac progenitor cells, cardiac SP cells fuse with preexisting cardiomyocytes to stimulate cardiomyocyte cell cycle reentry. Our study is the first to show that fusion between cardiomyocytes and non-cardiomyocytes, identified by the SP phenotype, contribute to endogenous cardiac regeneration by triggering cardiomyocyte cell cycle reentry in the adult mammalian heart.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/physiology , Cell Differentiation , Myocardial Ischemia/pathology , Myocytes, Cardiac/cytology , Regeneration , Side-Population Cells/cytology , Animals , Bone Marrow Transplantation , Cell Lineage , Cells, Cultured , Female , Male , Mice , Mice, Knockout , Myocardial Ischemia/therapy , Myocytes, Cardiac/metabolism , Side-Population Cells/metabolism
13.
Circ Res ; 124(1): 161-169, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30605412

ABSTRACT

On March 1 and 2, 2018, the National Institutes of Health 2018 Progenitor Cell Translational Consortium, Cardiovascular Bioengineering Symposium, was held at the University of Alabama at Birmingham. Convergence of life sciences and engineering to advance the understanding and treatment of heart failure was the theme of the meeting. Over 150 attendees were present, and >40 scientists presented their latest work on engineering human functional myocardium for disease modeling, drug development, and heart failure research. The scientists, engineers, and physicians in the field of cardiovascular sciences met and discussed the most recent advances in their work and proposed future strategies for overcoming the major roadblocks of cardiovascular bioengineering and therapy. Particular emphasis was given for manipulation and using of stem/progenitor cells, biomaterials, and methods to provide molecular, chemical, and mechanical cues to cells to influence their identity and fate in vitro and in vivo. Collectively, these works are profoundly impacting and progressing toward deciphering the mechanisms and developing novel treatments for left ventricular dysfunction of failing hearts. Here, we present some important perspectives that emerged from this meeting.


Subject(s)
Biological Science Disciplines , Biomedical Engineering , Biomedical Research , Heart Failure , Interdisciplinary Communication , Animals , Cooperative Behavior , Diffusion of Innovation , Heart/physiopathology , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Myocardium/metabolism , Myocardium/pathology , Recovery of Function , Regeneration
14.
Arterioscler Thromb Vasc Biol ; 40(12): 2875-2890, 2020 12.
Article in English | MEDLINE | ID: mdl-33115267

ABSTRACT

OBJECTIVE: Endothelial progenitors migrate early during embryogenesis to form the primary vascular plexus. The regulatory mechanisms that govern their migration are not completely defined. Here, we describe a novel role for ETV2 (Ets variant transcription factor 2) in cell migration and provide evidence for an ETV2-Rhoj network as a mechanism responsible for this process. Approach and Results: Analysis of RNAseq datasets showed robust enrichment of migratory/motility pathways following overexpression of ETV2 during mesodermal differentiation. We then analyzed ETV2 chromatin immunoprecipitation-seq and assay for transposase accessible chromatin-seq datasets, which showed enrichment of chromatin immunoprecipitation-seq peaks with increased chromatin accessibility in migratory genes following overexpression of ETV2. Migratory assays showed that overexpression of ETV2 enhanced cell migration in mouse embryonic stem cells, embryoid bodies, and mouse embryonic fibroblasts. Knockout of Etv2 led to migratory defects of Etv2-EYFP+ angioblasts to their predefined regions of developing embryos relative to wild-type controls at embryonic day (E) 8.5, supporting its role during migration. Mechanistically, we showed that ETV2 binds the promoter region of Rhoj serving as an upstream regulator of cell migration. Single-cell RNAseq analysis of Etv2-EYFP+ sorted cells revealed coexpression of Etv2 and Rhoj in endothelial progenitors at E7.75 and E8.25. Overexpression of ETV2 led to a robust increase in Rhoj in both embryoid bodies and mouse embryonic fibroblasts, whereas, its expression was abolished in the Etv2 knockout embryoid bodies. Finally, shRNA-mediated knockdown of Rhoj resulted in migration defects, which were partially rescued by overexpression of ETV2. CONCLUSIONS: These results define an ETV2-Rhoj cascade, which is important for the regulation of endothelial progenitor cell migration.


Subject(s)
Cell Movement , Embryonic Stem Cells/enzymology , Endothelial Progenitor Cells/enzymology , Transcription Factors/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Cells, Cultured , Embryonic Development , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Gestational Age , Mice, Transgenic , Signal Transduction , Transcription Factors/genetics , rho GTP-Binding Proteins/genetics
15.
Reproduction ; 159(5): 539-547, 2020 05.
Article in English | MEDLINE | ID: mdl-31990674

ABSTRACT

Blind enucleation is used in porcine somatic cell nuclear transfer (SCNT) to remove the metaphase II (MII) spindle from the oocyte. Deviation of the MII spindle location, however, leads to incomplete enucleation (IE). Here, we report that the rate of complete enucleation (CE) using the blind method was 80.2 ± 1.7%, although this significantly increased when the polar body-MII deviation was minimized (≦45°). While it is established that IE embryos will not survive to full term, the effect of IE on early stage development is unknown. We have previously demonstrated in mice and pigs that ETV2 deletion results in embryonic lethality due to the lack of hematoendothelial lineages. We observed that ETV2-null cloned embryos derived from blindly and incompletely enucleated oocytes had both WT and mutant sequences at E18 and, using FISH analysis, we observed triploidy. We also compared SCNT embryos generated from either CE or intentionally IE oocytes using the spindle viewer system. We observed a higher in vitro blastocyst rate in the IE versus the CE-SCNT embryos (31.9 ± 3.2% vs 21.0 ± 2.1%). Based on known processes in normal fertilization, we infer that the IE-SCNT embryos extruded the haploid second PB after fusion with donor fibroblasts and formed a near-triploid aneuploid nucleus in each blastomere. These studies demonstrate the peri-implantation survival of residual haploid nuclei following IE and emphasize the need for complete enucleation especially for the analysis of SCNT embryos in the peri-implantation stage and will, further, impact the field of reverse xenotransplantation.


Subject(s)
Embryo Implantation/genetics , Embryonic Development/genetics , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Cloning, Organism/methods , Embryo Culture Techniques , In Vitro Oocyte Maturation Techniques , Nuclear Transfer Techniques , Swine , Transcription Factors/metabolism
16.
Dev Biol ; 434(1): 74-83, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29197504

ABSTRACT

Isl1 is required for two processes during hindlimb development: initiation of the processes directing hindlimb development in the lateral plate mesoderm and configuring posterior hindlimb field in the nascent hindlimb buds. During these processes, Isl1 expression is restricted to the posterior mesenchyme of hindlimb buds. How this dynamic change in Isl1 expression is regulated remains unknown. We found that two evolutionarily conserved sequences, located 3' to the Isl1 gene, regulate LacZ transgene expression in the hindlimb-forming region in mouse embryos. Both sequences contain GATA binding motifs, and expression pattern analysis identified that Gata6 is expressed in the flank and the anterior portion of nascent hindlimb buds. Recent studies have shown that conditional inactivation of Gata6 in mice causes hindlimb-specific pre-axial polydactyly, indicating a role of Gata6 in anterior-posterior patterning of hindlimbs. We studied whether Gata6 restricts Isl1 in the nascent hindlimb bud through the cis-regulatory modules. In vitro experiments demonstrate that GATA6 binds to the conserved GATA motifs in the cis-regulatory modules. GATA6 repressed expression of a luciferase reporter that contains the cis-regulatory modules by synergizing with Zfpm2. Analyses of Gata6 mutant embryos showed that ISL1 levels are higher in the anterior of nascent hindlimb buds than in wild type. Moreover, we detected a greater number of Isl1-transcribing cells in the anterior of nascent hindlimb buds in Gata6 mutants. Our results support a model in which Gata6 contributes to repression of Isl1 expression in the anterior of nascent hindlimb buds.


Subject(s)
Embryo, Mammalian/embryology , GATA6 Transcription Factor/metabolism , Gene Expression Regulation, Developmental/physiology , Hindlimb/embryology , LIM-Homeodomain Proteins/biosynthesis , Models, Biological , Nucleotide Motifs , Transcription Factors/biosynthesis , Animals , Embryo, Mammalian/cytology , GATA6 Transcription Factor/genetics , Hindlimb/cytology , LIM-Homeodomain Proteins/genetics , Mice , Mice, Transgenic , Transcription Factors/genetics
17.
BMC Bioinformatics ; 19(1): 220, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29884114

ABSTRACT

BACKGROUND: The single cell RNA sequencing (scRNA-seq) technique begin a new era by allowing the observation of gene expression at the single cell level. However, there is also a large amount of technical and biological noise. Because of the low number of RNA transcriptomes and the stochastic nature of the gene expression pattern, there is a high chance of missing nonzero entries as zero, which are called dropout events. RESULTS: We develop DrImpute to impute dropout events in scRNA-seq data. We show that DrImpute has significantly better performance on the separation of the dropout zeros from true zeros than existing imputation algorithms. We also demonstrate that DrImpute can significantly improve the performance of existing tools for clustering, visualization and lineage reconstruction of nine published scRNA-seq datasets. CONCLUSIONS: DrImpute can serve as a very useful addition to the currently existing statistical tools for single cell RNA-seq analysis. DrImpute is implemented in R and is available at https://github.com/gongx030/DrImpute .


Subject(s)
RNA/genetics , Sequence Analysis, RNA/methods , Humans
18.
Biochemistry ; 57(31): 4607-4619, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29629759

ABSTRACT

Strand-displacing polymerases are a crucial component of isothermal amplification (IA) reactions, where the lack of thermal cycling reduces equipment needs and improves the time to answer, especially for point-of-care applications. In order to improve the function of strand-displacing polymerases, we have developed an emulsion-based directed evolution scheme, high-temperature isothermal compartmentalized self-replication (HTI-CSR) that does not rely on thermal cycling. Starting from an algorithm-optimized shuffled library of exonuclease-deficient Family A polymerases from Geobacillus stearothermophilus (Bst LF) and Thermus aquaticus (Klentaq), we have applied HTI-CSR to generate a more thermostable strand-displacing polymerase variant that performs well in loop-mediated isothermal amplification and rolling circle amplification, even after thermal challenges of up to 95 °C that lead to better primer annealing. The new enzyme (v5.9) is also capable of a variety of new reactions, including isothermal hyperbranched rolling circle amplification. The HTI-CSR method should now prove useful for evolving additional beneficial phenotypes in strand-displacing polymerases.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , DNA Replication/genetics , DNA Replication/physiology , DNA-Directed DNA Polymerase/genetics , Geobacillus stearothermophilus/enzymology , Nucleic Acid Amplification Techniques/methods , Recombination, Genetic/genetics , Temperature , Thermus/enzymology
20.
Circulation ; 136(24): 2359-2372, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29021323

ABSTRACT

BACKGROUND: Although cardiac c-kit+ cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit+ cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit+ cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit+ cells. METHODS: We used single-cell sequencing and genetic lineage tracing of c-kit+ cells to determine whether various pathological stimuli would result in different fates of c-kit+ cells. RESULTS: Single-cell sequencing of cardiac CD45-c-kit+ cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit+ cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit+ cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. CONCLUSIONS: These results demonstrate that different pathological stimuli induce different cell fates of c-kit+ cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit+ cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit+ cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit+ cells.


Subject(s)
Endothelial Cells/physiology , Mesenchymal Stem Cells/physiology , Myocardium/cytology , Myocytes, Cardiac/physiology , Tumor Suppressor Protein p53/metabolism , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Doxorubicin/toxicity , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Proto-Oncogene Proteins c-kit/metabolism , Sequence Analysis, DNA , Single-Cell Analysis , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL