Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Emerg Infect Dis ; 27(2): 603-607, 2021 02.
Article in English | MEDLINE | ID: mdl-33496217

ABSTRACT

Anopheles stephensi mosquitoes, efficient vectors in parts of Asia and Africa, were found in 75.3% of water sources surveyed and contributed to 80.9% of wild-caught Anopheles mosquitoes in Awash Sebat Kilo, Ethiopia. High susceptibility of these mosquitoes to Plasmodium falciparum and vivax infection presents a challenge for malaria control in the Horn of Africa.


Subject(s)
Anopheles , Plasmodium vivax , Animals , Asia , Ethiopia , Mosquito Vectors , Plasmodium falciparum
2.
Malar J ; 20(1): 59, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33482841

ABSTRACT

BACKGROUND: As countries move to malaria elimination, detecting and targeting asymptomatic malaria infections might be needed. Here, the epidemiology and detectability of asymptomatic Plasmodium falciparum and Plasmodium vivax infections were investigated in different transmission settings in Ethiopia. METHOD: A total of 1093 dried blood spot (DBS) samples were collected from afebrile and apparently healthy individuals across ten study sites in Ethiopia from 2016 to 2020. Of these, 862 were from community and 231 from school based cross-sectional surveys. Malaria infection status was determined by microscopy or rapid diagnostics tests (RDT) and 18S rRNA-based nested PCR (nPCR). The annual parasite index (API) was used to classify endemicity as low (API > 0 and < 5), moderate (API ≥ 5 and < 100) and high transmission (API ≥ 100) and detectability of infections was assessed in these settings. RESULTS: In community surveys, the overall prevalence of asymptomatic Plasmodium infections by microscopy/RDT, nPCR and all methods combined was 12.2% (105/860), 21.6% (183/846) and 24.1% (208/862), respectively. The proportion of nPCR positive infections that was detectable by microscopy/RDT was 48.7% (73/150) for P. falciparum and 4.6% (2/44) for P. vivax. Compared to low transmission settings, the likelihood of detecting infections by microscopy/RDT was increased in moderate (Adjusted odds ratio [AOR]: 3.4; 95% confidence interval [95% CI] 1.6-7.2, P = 0.002) and high endemic settings (AOR = 5.1; 95% CI 2.6-9.9, P < 0.001). After adjustment for site and correlation between observations from the same survey, the likelihood of detecting asymptomatic infections by microscopy/RDT (AOR per year increase = 0.95, 95% CI 0.9-1.0, P = 0.013) declined with age. CONCLUSIONS: Conventional diagnostics missed nearly half of the asymptomatic Plasmodium reservoir detected by nPCR. The detectability of infections was particularly low in older age groups and low transmission settings. These findings highlight the need for sensitive diagnostic tools to detect the entire parasite reservoir and potential infection transmitters.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Vivax/diagnosis , Malaria, Vivax/epidemiology , Adolescent , Adult , Child , Cross-Sectional Studies , Dried Blood Spot Testing , Ethiopia/epidemiology , Female , Humans , Malaria, Falciparum/transmission , Malaria, Vivax/transmission , Male , Microscopy/methods , Middle Aged , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Polymerase Chain Reaction , Prevalence , RNA, Ribosomal, 18S , Young Adult
3.
Int J Infect Dis ; 143: 107010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490637

ABSTRACT

OBJECTIVE: A 15-month longitudinal study was conducted to determine the duration and infectivity of asymptomatic qPCR-detected Plasmodium falciparum and Plasmodium vivax infections in Ethiopia. METHOD: Total parasite and gametocyte kinetics were determined by molecular methods; infectivity to Anopheles arabiensis mosquitoes by repeated membrane feeding assays. Infectivity results were contrasted with passively recruited symptomatic malaria cases. RESULTS: For P. falciparum and P. vivax infections detected at enrolment, median durations of infection were 37 days (95% confidence interval [CI], 15-93) and 60 days (95% CI, 18-213), respectively. P. falciparum and P. vivax parasite densities declined over the course of infections. From 47 feeding assays on 22 asymptomatic P. falciparum infections, 6.4% (3/47) were infectious and these infected 1.8% (29/1579) of mosquitoes. No transmission was observed in feeding assays on asymptomatic P. vivax mono-infections (0/56); one mixed-species infection was highly infectious. Among the symptomatic cases, 4.3% (2/47) of P. falciparum and 73.3% (53/86) of P. vivax patients were infectious to mosquitoes. CONCLUSION: The majority of asymptomatic infections were of short duration and low parasite density. Only a minority of asymptomatic individuals were infectious to mosquitoes. This contrasts with earlier findings and is plausibly due to the low parasite densities in this population.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Ethiopia/epidemiology , Malaria, Vivax/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Humans , Longitudinal Studies , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Animals , Plasmodium vivax/isolation & purification , Plasmodium vivax/physiology , Plasmodium falciparum/isolation & purification , Anopheles/parasitology , Male , Female , Adult , Adolescent , Child , Young Adult , Child, Preschool , Asymptomatic Infections/epidemiology , Mosquito Vectors/parasitology , Middle Aged
4.
Front Cell Infect Microbiol ; 12: 1106369, 2022.
Article in English | MEDLINE | ID: mdl-36726645

ABSTRACT

Naturally acquired antibodies may reduce the transmission of Plasmodium gametocytes to mosquitoes. Here, we investigated associations between antibody prevalence and P. vivax infectivity to mosquitoes. A total of 368 microscopy confirmed P. vivax symptomatic patients were passively recruited from health centers in Ethiopia and supplemented with 56 observations from asymptomatic P. vivax parasite carriers. Direct membrane feeding assays (DMFA) were performed to assess mosquito infectivity; for selected feeds these experiments were also performed after replacing autologous plasma with malaria naïve control serum (n=61). The prevalence of antibodies against 6 sexual stage antigens (Pvs47, Pvs48/45, Pvs230, PvsHAP2, Pvs25 and PvCelTOS) and an array of asexual antigens was determined by ELISA and multiplexed bead-based assays. Gametocyte (ρ< 0.42; p = 0.0001) and parasite (ρ = 0.21; p = 0.0001) densities were positively associated with mosquito infection rates. Antibodies against Pvs47, Pvs230 and Pvs25 were associated with 23 and 34% reductions in mosquito infection rates (p<0.0001), respectively. Individuals who showed evidence of transmission blockade in serum-replacement DMFAs (n=8) were significantly more likely to have PvsHAP2 or Pvs47 antibodies. Further studies may demonstrate causality for the observed associations, improve our understanding of the natural transmission of P. vivax and support vaccine development.


Subject(s)
Anopheles , Malaria, Vivax , Malaria , Animals , Humans , Plasmodium vivax , Anopheles/parasitology , Malaria, Vivax/prevention & control , Antibodies, Protozoan , Plasmodium falciparum
5.
Parasit Vectors ; 13(1): 120, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32143713

ABSTRACT

BACKGROUND: Mosquito-feeding assays that assess transmission of Plasmodium from man-to-mosquito typically use laboratory mosquito colonies. The microbiome and genetic background of local mosquitoes may be different and influence Plasmodium transmission efficiency. In order to interpret transmission studies to the local epidemiology, it is therefore crucial to understand the relationship between infectivity in laboratory-adapted and local mosquitoes. METHODS: We assessed infectivity of Plasmodium vivax-infected patients from Adama, Ethiopia, using laboratory-adapted (colony) and wild-caught (wild) mosquitoes raised from larval collections in paired feeding experiments. Feeding assays used 4-6 day-old female Anopheles arabiensis mosquitoes after starvation for 12 h (colony) and 18 h (wild). Oocyst development was assessed microscopically 7 days post-feeding. Wild mosquitoes were identified morphologically and confirmed by genotyping. Asexual parasites and gametocytes were quantified in donor blood by microscopy. RESULTS: In 36 paired experiments (25 P. vivax infections and 11 co-infections with P. falciparum), feeding efficiency was higher in colony (median: 62.5%; interquartile range, IQR: 47.0-79.0%) compared to wild mosquitoes (median: 27.8%; IQR: 17.0-38.0%; Z = 5.02; P < 0.001). Plasmodium vivax from infectious individuals (51.6%, 16/31) infected a median of 55.0% (IQR: 6.7-85.7%; range: 5.5-96.7%; n = 14) of the colony and 52.7% (IQR: 20.0-80.0%; range: 3.2-95.0%; n = 14) of the wild mosquitoes. A strong association (ρ(16) = 0.819; P < 0.001) was observed between the proportion of infected wild and colony mosquitoes. A positive association was detected between microscopically detected gametocytes and the proportion of infected colony (ρ(31) = 0.452; P = 0.011) and wild (ρ(31) = 0.386; P = 0.032) mosquitoes. CONCLUSIONS: Infectivity assessments with colony and wild mosquitoes yielded similar infection results. This finding supports the use of colony mosquitoes for assessments of the infectious reservoir for malaria in this setting whilst acknowledging the importance of mosquito factors influencing sporogonic development of Plasmodium parasites.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Laboratories , Malaria, Vivax/parasitology , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Plasmodium vivax/physiology , Animals , Ethiopia , Feeding Behavior/physiology , Female , Host-Parasite Interactions , Humans , Larva , Malaria/transmission , Oocysts/growth & development , Plasmodium vivax/genetics
SELECTION OF CITATIONS
SEARCH DETAIL