Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Am J Respir Cell Mol Biol ; 65(5): 513-520, 2021 11.
Article in English | MEDLINE | ID: mdl-34166603

ABSTRACT

Smoking and human immunodeficiency virus 1 (HIV-1) infection are risk factors for chronic obstructive pulmonary disease (COPD), which is among the most common comorbid conditions in people living with HIV-1. HIV-1 infection leads to persistent expansion of CD8+ T cells, and CD8+ T cell-mediated inflammation has been implicated in COPD pathogenesis. In this study, we investigated the effects of HIV-1 infection and smoking on T-cell dynamics in patients at risk of COPD. BAL fluid, endobronchial brushings, and blood from HIV-1 infected and uninfected nonsmokers and smokers were analyzed by flow cytometry, and lungs were imaged by computed tomography. Chemokines were measured in BAL fluid, and CD8+ T-cell chemotaxis in the presence of cigarette smoke extract was assessed in vitro. HIV-1 infection increased CD8+ T cells in the BAL fluid, but this increase was abrogated by smoking. Smokers had reduced BAL fluid concentrations of the T cell-recruiting chemokines CXCL10 and CCL5, and cigarette smoke extract inhibited CXCL10 and CCL5 production by macrophages and CD8+ T-cell transmigration in vitro. In contrast to the T cells in BAL fluid, CD8+ T cells in endobronchial brushings were increased in HIV-1-infected smokers, which was driven by an accumulation of effector memory T cells in the airway mucosa and an increase in tissue-resident memory T cells. Mucosal CD8+ T-cell numbers inversely correlated with lung aeration, suggesting an association with inflammation and remodeling. HIV-1 infection and smoking lead to retention of CD8+ T cells within the airway mucosa.


Subject(s)
CD8-Positive T-Lymphocytes/pathology , HIV Infections/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/pathology , Smoking/adverse effects , Adult , Bronchoalveolar Lavage Fluid , CD8-Positive T-Lymphocytes/virology , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Chemotaxis , Female , HIV-1/pathogenicity , Humans , Male , Middle Aged , Mucous Membrane/pathology , Mucous Membrane/virology , Pulmonary Disease, Chronic Obstructive/etiology , Receptors, CCR5/metabolism , Receptors, CXCR3/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , Risk Factors , Tomography, X-Ray Computed , Viral Load
2.
Cell Rep ; 26(6): 1409-1418.e5, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30726727

ABSTRACT

Lung interstitial CD4+ T cells are critical for protection against pulmonary infections, but the fate of this population during HIV-1 infection is not well described. We studied CD4+ T cells in the setting of HIV-1 infection in human lung tissue, humanized mice, and a Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) nonhuman primate co-infection model. Infection with a CCR5-tropic strain of HIV-1 or SIV results in severe and rapid loss of lung interstitial CD4+ T cells but not blood or lung alveolar CD4+ T cells. This is accompanied by high HIV-1 production in these cells in vitro and in vivo. Importantly, during early SIV infection, loss of lung interstitial CD4+ T cells is associated with increased dissemination of pulmonary Mtb infection. We show that lung interstitial CD4+ T cells serve as an efficient target for HIV-1 and SIV infection that leads to their early depletion and an increased risk of disseminated tuberculosis.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Coinfection/immunology , HIV Infections/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Tuberculosis, Pulmonary/immunology , Animals , CD4-Positive T-Lymphocytes/pathology , Coinfection/pathology , Female , HEK293 Cells , HIV Infections/pathology , HIV-1/pathogenicity , Humans , Lung/immunology , Lung/microbiology , Lung/pathology , Lung/virology , Macaca mulatta , Mice , Mycobacterium tuberculosis/pathogenicity , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/pathogenicity , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL