Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 20(2): 141-151, 2019 02.
Article in English | MEDLINE | ID: mdl-30643265

ABSTRACT

Rheumatoid arthritis is characterized by progressive joint inflammation and affects ~1% of the human population. We noted single-nucleotide polymorphisms (SNPs) in the apoptotic cell-engulfment genes ELMO1, DOCK2, and RAC1 linked to rheumatoid arthritis. As ELMO1 promotes cytoskeletal reorganization during engulfment, we hypothesized that ELMO1 loss would worsen inflammatory arthritis. Surprisingly, Elmo1-deficient mice showed reduced joint inflammation in acute and chronic arthritis models. Genetic and cell-biology studies revealed that ELMO1 associates with receptors linked to neutrophil function in arthritis and regulates activation and early neutrophil recruitment to the joints, without general inhibition of inflammatory responses. Further, neutrophils from the peripheral blood of human donors that carry the SNP in ELMO1 associated with arthritis display increased migratory capacity, whereas ELMO1 knockdown reduces human neutrophil migration to chemokines linked to arthritis. These data identify 'noncanonical' roles for ELMO1 as an important cytoplasmic regulator of specific neutrophil receptors and promoter of arthritis.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Neutrophils/immunology , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis/immunology , Arthritis, Experimental/diagnosis , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Chemotaxis/genetics , Chemotaxis/immunology , Collagen/immunology , Complement C5a/immunology , Complement C5a/metabolism , Cytoplasm/immunology , Cytoplasm/metabolism , Disease Models, Animal , Female , Gene Expression Profiling , Healthy Volunteers , Humans , Intravital Microscopy , Joints/cytology , Joints/immunology , Leukotriene B4/immunology , Leukotriene B4/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Polymorphism, Single Nucleotide , Proteomics , Severity of Illness Index , Signal Transduction/immunology , Time-Lapse Imaging
2.
PLoS Biol ; 21(2): e3002000, 2023 02.
Article in English | MEDLINE | ID: mdl-36787309

ABSTRACT

Multiple sclerosis (MS) is a T cell-driven autoimmune disease that attacks the myelin of the central nervous system (CNS) and currently has no cure. MS etiology is linked to both the gut flora and external environmental factors but this connection is not well understood. One immune system regulator responsive to nonpathogenic external stimuli is the aryl hydrocarbon receptor (AHR). The AHR, which binds diverse molecules present in the environment in barrier tissues, is a therapeutic target for MS. However, AHR's precise function in T lymphocytes, the orchestrators of MS, has not been described. Here, we show that in a mouse model of MS, T cell-specific Ahr knockout leads to recovery driven by a decrease in T cell fitness. At the mechanistic level, we demonstrate that the absence of AHR changes the gut microenvironment composition to generate metabolites that impact T cell viability, such as bile salts and short chain fatty acids. Our study demonstrates a newly emerging role for AHR in mediating the interdependence between T lymphocytes and the microbiota, while simultaneously identifying new potential molecular targets for the treatment of MS and other autoimmune diseases.


Subject(s)
Autoimmune Diseases , Multiple Sclerosis , Mice , Animals , Autoimmunity , T-Lymphocytes , Neuroinflammatory Diseases , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
3.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38565291

ABSTRACT

Microglia undergo two-stage activation in neurodegenerative diseases, known as disease-associated microglia (DAM). TREM2 mediates the DAM2 stage transition, but what regulates the first DAM1 stage transition is unknown. We report that glucose dyshomeostasis inhibits DAM1 activation and PKM2 plays a role. As in tumors, PKM2 was aberrantly elevated in both male and female human AD brains, but unlike in tumors, it is expressed as active tetramers, as well as among TREM2+ microglia surrounding plaques in 5XFAD male and female mice. snRNAseq analyses of microglia without Pkm2 in 5XFAD mice revealed significant increases in DAM1 markers in a distinct metabolic cluster, which is enriched in genes for glucose metabolism, DAM1, and AD risk. 5XFAD mice incidentally exhibited a significant reduction in amyloid pathology without microglial Pkm2 Surprisingly, microglia in 5XFAD without Pkm2 exhibited increases in glycolysis and spare respiratory capacity, which correlated with restoration of mitochondrial cristae alterations. In addition, in situ spatial metabolomics of plaque-bearing microglia revealed an increase in respiratory activity. These results together suggest that it is not only glycolytic but also respiratory inputs that are critical to the development of DAM signatures in 5XFAD mice.


Subject(s)
Glucose , Homeostasis , Mice, Transgenic , Microglia , Animals , Microglia/metabolism , Microglia/pathology , Mice , Homeostasis/physiology , Glucose/metabolism , Male , Female , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Glycolysis/physiology , Thyroid Hormone-Binding Proteins
4.
Brain Behav Immun ; 115: 458-469, 2024 01.
Article in English | MEDLINE | ID: mdl-37924959

ABSTRACT

The gut microbiome consists of trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea, has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea: L. intestinalis and L. murinus. Using this microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and provide novel methods to study potential therapies to treat mood disorders.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus , Probiotics , Resilience, Psychological , Animals , Mice , Gastrointestinal Tract/microbiology , Homeostasis , Probiotics/pharmacology
5.
Brain Behav Immun ; 119: 665-680, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579936

ABSTRACT

Depression is a prevalent psychological condition with limited treatment options. While its etiology is multifactorial, both chronic stress and changes in microbiome composition are associated with disease pathology. Stress is known to induce microbiome dysbiosis, defined here as a change in microbial composition associated with a pathological condition. This state of dysbiosis is known to feedback on depressive symptoms. While studies have demonstrated that targeted restoration of the microbiome can alleviate depressive-like symptoms in mice, translating these findings to human patients has proven challenging due to the complexity of the human microbiome. As such, there is an urgent need to identify factors upstream of microbial dysbiosis. Here we investigate the role of mucin 13 as an upstream mediator of microbiome composition changes in the context of stress. Using a model of chronic stress, we show that the glycocalyx protein, mucin 13, is selectively reduced after psychological stress exposure. We further demonstrate that the reduction of Muc13 is mediated by the Hnf4 transcription factor family. Finally, we determine that deleting Muc13 is sufficient to drive microbiome shifts and despair behaviors. These findings shed light on the mechanisms behind stress-induced microbial changes and reveal a novel regulator of mucin 13 expression.


Subject(s)
Depression , Dysbiosis , Gastrointestinal Microbiome , Stress, Psychological , Animals , Male , Mice , Behavior, Animal/physiology , Depression/metabolism , Depression/microbiology , Dysbiosis/metabolism , Dysbiosis/microbiology , Gastrointestinal Microbiome/physiology , Hepatocyte Nuclear Factor 4/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mucins/metabolism , Stress, Psychological/metabolism , Stress, Psychological/microbiology
6.
Stem Cells ; 39(1): 115-128, 2021 01.
Article in English | MEDLINE | ID: mdl-33166420

ABSTRACT

Mesenchymal stromal cells (MSCs) are widely used in clinical trials because of their ability to modulate inflammation. The success of MSCs has been variable over 25 years, most likely due to an incomplete understanding of their mechanism. After MSCs are injected, they traffic to the lungs and other tissues where they are rapidly cleared. Despite being cleared, MSCs suppress the inflammatory response in the long term. Using human cord tissue-derived MSCs (hCT-MSCs), we demonstrated that hCT-MSCs directly interact and reprogram monocytes and macrophages. After engaging hCT-MSCs, monocytes and macrophages engulfed cytoplasmic components of live hCT-MSCs, then downregulated gene programs for antigen presentation and costimulation, and functionally suppressed the activation of helper T cells. We determined that low-density lipoprotein receptor-related proteins on monocytes and macrophages mediated the engulfment of hCT-MSCs. Since a large amount of cellular information can be packaged in cytoplasmic RNA processing bodies (p-bodies), we generated p-body deficient hCT-MSCs and confirmed that they failed to reprogram monocytes and macrophages in vitro and in vivo. hCT-MSCs suppressed an inflammatory response caused by a nasal lipopolysaccharide challenge. Although both control and p-body deficient hCT-MSCs were engulfed by infiltrating lung monocytes and macrophages, p-body deficient hCT-MSCs failed to suppress inflammation and downregulate MHC-II. Overall, we identified a novel mechanism by which hCT-MSCs indirectly suppressed a T-cell response by directly interacting and reprogramming monocytes and macrophages via p-bodies. The results of this study suggest a novel mechanism for how MSCs can reprogram the inflammatory response and have long-term effects to suppress inflammation.


Subject(s)
Cellular Reprogramming/immunology , Macrophages/immunology , Mesenchymal Stem Cells/immunology , Monocytes/immunology , Animals , Cellular Reprogramming/genetics , Heterografts , Humans , Mesenchymal Stem Cell Transplantation , Mice
7.
Proc Natl Acad Sci U S A ; 115(48): E11264-E11273, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30420518

ABSTRACT

Chronically undernourished children become stunted during their first 2 years and thereafter bear burdens of ill health for the rest of their lives. Contributors to stunting include poor nutrition and exposure to pathogens, and parental history may also play a role. However, the epigenetic impact of a poor environment on young children is largely unknown. Here we show the unfolding pattern of histone H3 lysine 4 trimethylation (H3K4me3) in children and mothers living in an urban slum in Dhaka, Bangladesh. A pattern of chromatin modification in blood cells of stunted children emerges over time and involves a global decrease in methylation at canonical locations near gene start sites and increased methylation at ectopic sites throughout the genome. This redistribution occurs at metabolic and immune genes and was specific for H3K4me3, as it was not observed for histone H3 lysine 27 acetylation in the same samples. Methylation changes in stunting globally resemble changes that occur in vitro in response to altered methylation capacity, suggesting that reduced levels of one-carbon nutrients in the diet play a key role in stunting in this population. A network of differentially expressed genes in stunted children reveals effects on chromatin modification machinery, including turnover of H3K4me3, as well as posttranscriptional gene regulation affecting immune response pathways and lipid metabolism. Consistent with these changes, reduced expression of the endocytic receptor gene LDL receptor 1 (LRP1) is a driver of stunting in a mouse model, suggesting a target for intervention.


Subject(s)
Histones/genetics , Malnutrition/genetics , Animals , Epigenesis, Genetic , Female , Humans , Infant , Infant, Newborn , Male , Malnutrition/metabolism , Methylation , Mice
8.
Acta Neuropathol ; 139(2): 365-382, 2020 02.
Article in English | MEDLINE | ID: mdl-31552482

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) account for about 5% of total brain and spinal cord cells, giving rise to myelinating oligodendrocytes that provide electrical insulation to neurons of the CNS. OPCs have also recently been shown to regulate inflammatory responses and glial scar formation, suggesting functions that extend beyond myelination. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifaceted phagocytic receptor that is highly expressed in several CNS cell types, including OPCs. Here, we have generated an oligodendroglia-specific knockout of LRP1, which presents with normal myelin development, but is associated with better outcomes in two animal models of demyelination (EAE and cuprizone). At a mechanistic level, LRP1 did not directly affect OPC differentiation into mature oligodendrocytes. Instead, animals lacking LRP1 in OPCs in the demyelinating CNS were characterized by a robust dampening of inflammation. In particular, LRP1-deficient OPCs presented with impaired antigen cross-presentation machinery, suggesting a failure to propagate the inflammatory response and thus promoting faster myelin repair and neuroprotection. Our study places OPCs as major regulators of neuroinflammation in an LRP1-dependent fashion.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/physiology , Multiple Sclerosis/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/pathology , Animals , Cell Culture Techniques , Cell Differentiation , Cuprizone , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Histocompatibility Antigens Class I , Humans , Mice , Mice, Inbred C57BL , Multiple Sclerosis/etiology , Multiple Sclerosis/pathology
9.
J Immunol ; 198(12): 4607-4617, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28507026

ABSTRACT

Multiple sclerosis (MS) is a disease that is characterized by immune-mediated destruction of CNS myelin. Current MS therapies aim to block peripheral immune cells from entering the CNS. Although these treatments limit new inflammatory activity in the CNS, no treatment effectively prevents long-term disease progression and disability accumulation in MS patients. One explanation for this paradox is that current therapies are ineffective at targeting immune responses already present in the CNS. To this end, we sought to understand the metabolic properties of T cells that mediate ongoing inflammation in the demyelinating CNS. Using experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice, a well-studied model of MS, we showed that the CD4+ and CD8+ T cells that invade the EAE CNS are highly glycolytic. Elevated glycolytic rates in T cells isolated from the EAE CNS correlate with upregulated expression of glycolytic machinery and is essential for inflammatory responses to myelin. Surprisingly, we found that an inhibitor of GAPDH, 3-bromopyruvic acid (3-BrPa), blocks IFN-γ, but not IL-17A, production in immune cells isolated from the EAE CNS. Indeed, in vitro studies confirmed that the production of IFN-γ by differentiated Th1 cells is more sensitive to 3-BrPa than is the production of IL-17A by Th17 cells. Finally, in transfer models of EAE, 3-BrPa robustly attenuates the encephalitogenic potential of EAE-driving immune cells. To our knowledge, these data are among the first to demonstrate the metabolic properties of T cells in the demyelinating CNS in vivo.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Glycolysis , Multiple Sclerosis/immunology , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Central Nervous System/immunology , Central Nervous System/physiopathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Interferon-gamma/drug effects , Interferon-gamma/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Pyruvates/administration & dosage , Pyruvates/pharmacology , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
10.
Brain Behav Immun ; 57: 1-7, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26796621

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) are the often-overlooked fourth glial cell type in the central nervous system (CNS), comprising about 5% of the CNS. For a long time, our vision of OPC function was limited to the generation of mature oligodendrocytes. However, new studies have highlighted the multifaceted nature of OPCs. During homeostatic and pathological conditions, OPCs are the most proliferative cell type in the CNS, a property not consistent with the need to generate new oligodendrocytes. Indeed, OPCs modulate neuronal activity and OPC depletion in the brain can trigger depressive-like behavior. More importantly, OPCs are actively recruited to injury sites, where they orchestrate glial scar formation and contribute to the immune response. The following is a comprehensive analysis of the literature on OPC function beyond myelination, in the context of the healthy and diseased adult CNS.


Subject(s)
Central Nervous System Diseases , Central Nervous System/physiology , Oligodendrocyte Precursor Cells/physiology , Adult , Animals , Humans
11.
J Cell Sci ; 126(Pt 1): 209-20, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23132925

ABSTRACT

In the injured adult mammalian central nervous system (CNS), products are generated that inhibit neuronal sprouting and regeneration. In recent years, most attention has focused on the myelin-associated inhibitory proteins (MAIs) Nogo-A, OMgp, and myelin-associated glycoprotein (MAG). Binding of MAIs to neuronal cell-surface receptors leads to activation of RhoA, growth cone collapse, and neurite outgrowth inhibition. In the present study, we identify low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) as a high-affinity, endocytic receptor for MAG. In contrast with previously identified MAG receptors, binding of MAG to LRP1 occurs independently of terminal sialic acids. In primary neurons, functional inactivation of LRP1 with receptor-associated protein, depletion by RNA interference (RNAi) knock-down, or LRP1 gene deletion is sufficient to significantly reverse MAG and myelin-mediated inhibition of neurite outgrowth. Similar results are observed when LRP1 is antagonized in PC12 and N2a cells. By contrast, inhibiting LRP1 does not attenuate inhibition of neurite outgrowth caused by chondroitin sulfate proteoglycans. Mechanistic studies in N2a cells showed that LRP1 and p75NTR associate in a MAG-dependent manner and that MAG-mediated activation of RhoA may involve both LRP1 and p75NTR. LRP1 derivatives that include the complement-like repeat clusters CII and CIV bind MAG and other MAIs. When CII and CIV were expressed as Fc-fusion proteins, these proteins, purified full-length LRP1 and shed LRP1 all attenuated the inhibition of neurite outgrowth caused by MAG and CNS myelin in primary neurons. Collectively, our studies identify LRP1 as a novel MAG receptor that functions in neurite outgrowth inhibition.


Subject(s)
Central Nervous System/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Myelin Sheath/metabolism , Myelin-Associated Glycoprotein/metabolism , N-Acetylneuraminic Acid/metabolism , Neurites/metabolism , Animals , CHO Cells , COS Cells , Cell Line , Cricetinae , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Mass Spectrometry , Myelin Sheath/genetics , Myelin-Associated Glycoprotein/genetics , Nerve Tissue Proteins , PC12 Cells , Protein Binding , Rats , Receptors, Growth Factor , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism
12.
J Neurosci ; 33(13): 5590-602, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23536074

ABSTRACT

Trophic support and myelination of axons by Schwann cells in the PNS are essential for normal nerve function. Herein, we show that deletion of the LDL receptor-related protein-1 (LRP1) gene in Schwann cells (scLRP1(-/-)) induces abnormalities in axon myelination and in ensheathment of axons by nonmyelinating Schwann cells in Remak bundles. These anatomical changes in the PNS were associated with mechanical allodynia, even in the absence of nerve injury. In response to crush injury, sciatic nerves in scLRP1(-/-) mice showed accelerated degeneration and Schwann cell death. Remyelinated axons were evident 20 d after crush injury in control mice, yet were largely absent in scLRP1(-/-) mice. In the partial nerve ligation model, scLRP1(-/-) mice demonstrated significantly increased and sustained mechanical allodynia and loss of motor function. Evidence for central sensitization in pain processing included increased p38MAPK activation and activation of microglia in the spinal cord. These studies identify LRP1 as an essential mediator of normal Schwann cell-axonal interactions and as a pivotal regulator of the Schwann cell response to PNS injury in vivo. Mice in which LRP1 is deficient in Schwann cells represent a model for studying how abnormalities in Schwann cell physiology may facilitate and sustain chronic pain.


Subject(s)
Axons/physiology , Axons/ultrastructure , Receptors, LDL/metabolism , Schwann Cells/pathology , Sciatica/pathology , Sciatica/prevention & control , Tumor Suppressor Proteins/metabolism , Actins/metabolism , Analysis of Variance , Animals , CD11b Antigen/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Cytoplasm/ultrastructure , Disease Models, Animal , Gene Expression Regulation/genetics , Hyperalgesia/etiology , Hyperalgesia/genetics , In Situ Nick-End Labeling , Indoles , Low Density Lipoprotein Receptor-Related Protein-1 , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission , Movement Disorders/etiology , Movement Disorders/genetics , Myelin Basic Protein/metabolism , Nerve Degeneration/etiology , Nerve Degeneration/genetics , Pain Measurement , Phosphorylation/genetics , Posterior Horn Cells/pathology , Posterior Horn Cells/ultrastructure , Receptors, LDL/deficiency , S100 Proteins/metabolism , Schwann Cells/ultrastructure , Sciatica/complications , Sciatica/genetics , Sensation Disorders/etiology , Spinal Cord/pathology , Tumor Suppressor Proteins/deficiency , p38 Mitogen-Activated Protein Kinases/metabolism
13.
J Biol Chem ; 288(7): 4538-48, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23264627

ABSTRACT

In the central nervous system (CNS), fast neuronal signals are facilitated by the oligodendrocyte-produced myelin sheath. Oligodendrocyte turnover or injury generates myelin debris that is usually promptly cleared by phagocytic cells. Failure to remove dying oligodendrocytes leads to accumulation of degraded myelin, which, if recognized by the immune system, may contribute to the development of autoimmunity in diseases such as multiple sclerosis. We recently identified low density lipoprotein receptor-related protein-1 (LRP1) as a novel phagocytic receptor for myelin debris. Here, we report characterization of the LRP1 interactome in CNS myelin. Fusion proteins were designed corresponding to the extracellular ligand-binding domains of LRP1. LRP1 partners were isolated by affinity purification and characterized by mass spectrometry. We report that LRP1 binds intracellular proteins via its extracellular domain and functions as a receptor for necrotic cells. Peptidyl arginine deiminase-2 and cyclic nucleotide phosphodiesterase are novel LRP1 ligands identified in our screen, which interact with full-length LRP1. Furthermore, the extracellular domain of LRP1 is a target of peptidyl arginine deiminase-2-mediated deimination in vitro. We propose that LRP1 functions as a receptor for endocytosis of intracellular components released during cellular damage and necrosis.


Subject(s)
Central Nervous System/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Myelin Sheath/metabolism , Animals , Apoptosis , Citrulline/chemistry , Cloning, Molecular , Endocytosis , Glutathione Transferase/metabolism , Green Fluorescent Proteins/metabolism , Homeostasis , Humans , Jurkat Cells , Ligands , Mass Spectrometry/methods , Mice , Multiple Sclerosis/metabolism , Necrosis , Phagocytosis , Proteomics/methods
14.
J Neuroimmunol ; 393: 578402, 2024 08 15.
Article in English | MEDLINE | ID: mdl-38996717

ABSTRACT

Few T cells infiltrate into primary brain tumors, fundamentally hampering the effectiveness of immunotherapy. We hypothesized that Toxoplasma gondii, a microorganism that naturally elicits a Th1 response in the brain, can promote T cell infiltration into brain tumors despite their immune suppressive microenvironment. Using a mouse genetic model for medulloblastoma, we found that T. gondii infection induced the infiltration of activatable T cells into the tumor mass and led to myeloid cell reprogramming toward a T cell-supportive state, without causing severe health issues in mice. The study provides a concrete foundation for future studies to take advantage of the immune modulatory capacity of T. gondii to facilitate brain tumor immunotherapy.


Subject(s)
Brain Neoplasms , Toxoplasmosis , Animals , Mice , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Toxoplasmosis/immunology , Toxoplasma/immunology , Medulloblastoma/immunology , Medulloblastoma/pathology , Mice, Inbred C57BL , T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Transgenic , Female
15.
Res Sq ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38853911

ABSTRACT

Background: White matter loss is a well-documented phenomenon in Alzheimer's disease (AD) patients that has been recognized for decades. However, the underlying reasons for the failure of oligodendrocyte progenitor cells (OPCs) to repair myelin deficits in these patients remain elusive. A single nucleotide polymorphism (SNP) in Clusterin has been identified as a risk factor for late-onset Alzheimer's disease and linked to a decrease in white matter integrity in healthy adults, but its specific role in oligodendrocyte function and myelin maintenance in Alzheimer's disease pathology remains unclear. Methods: To investigate the impact of Clusterin on OPCs in the context of Alzheimer's disease, we employed a combination of immunofluorescence and transmission electron microscopy techniques, primary culture of OPCs, and an animal model of Alzheimer's disease. Results: Our findings demonstrate that Clusterin, a risk factor for late-onset AD, is produced by OPCs and inhibits their differentiation into oligodendrocytes. Specifically, we observed upregulation of Clusterin in OPCs in the 5xFAD mouse model of AD. We also found that the phagocytosis of debris, including amyloid beta (Aß), myelin, and apoptotic cells leads to the upregulation of Clusterin in OPCs. In vivo experiments confirmed that Aß oligomers stimulate Clusterin upregulation and that OPCs are capable of phagocytosing Aß. Furthermore, we discovered that Clusterin significantly inhibits OPC differentiation and hinders the production of myelin proteins. Finally, we demonstrate that Clusterin inhibits OPC differentiation by reducing the production of IL-9 by OPCs. Conclusion: Our data suggest that Clusterin may play a key role in the impaired myelin repair observed in AD and could serve as a promising therapeutic target for addressing AD-associated cognitive decline.

16.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214985

ABSTRACT

The gut microbiome consists of the trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea , has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, for the first time, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea . Using this novel microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and give novel methods to study potential therapies developed to treat mood disorders.

17.
Sci Rep ; 12(1): 8594, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35597802

ABSTRACT

Current treatments for major depressive disorder are limited to neuropharmacological approaches and are ineffective for large numbers of patients. Recently, alternative means have been explored to understand the etiology of depression. Specifically, changes in the microbiome and immune system have been observed in both clinical settings and in mouse models. As such, microbial supplements and probiotics have become a target for potential therapeutics. A current hypothesis for the mechanism of action of these supplements is via the aryl hydrocarbon receptor's (Ahr) modulation of the T helper 17 cell (Th17) and T regulatory cell axis. As inflammatory RORγt + CD4 + Th17 T cells and their primary cytokine IL-17 have been implicated in the development of stress-induced depression, the connection between stress, the Ahr, Th17s and depression remains critical to understanding mood disorders. Here, we utilize genetic knockouts to examine the role of the microbial sensor Ahr in the development of stressinduced despair behavior. We observe an Ahr-independent increase in gut-associated Th17s in stressed mice, indicating that the Ahr is not responsible for this communication. Further, we utilized a CD4-specific RAR Related Orphan Receptor C (Rorc) knockout line to disrupt the production of Th17s. Mice lacking Rorc-produced IL-17 did not show any differences in behavior before or after stress when compared to controls. Finally, we utilize an unsupervised machine learning system to examine minute differences in behavior that could not be observed by traditional behavioral assays. Our data demonstrate that neither CD4 specific Ahr nor Rorc are necessary for the development of stress-induced anxiety- or depressive-like behaviors. These data suggest that research approaches should focus on other sources or sites of IL-17 production in stress-induced depression.


Subject(s)
Depressive Disorder, Major , Nuclear Receptor Subfamily 1, Group F, Member 3 , Animals , CD4-Positive T-Lymphocytes , Depressive Disorder, Major/metabolism , Humans , Interleukin-17/metabolism , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Th17 Cells
18.
Sci Rep ; 12(1): 12921, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902669

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) account for approximately 5% of the adult brain and have been historically studied for their role in myelination. In the adult brain, OPCs maintain their proliferative capacity and ability to differentiate into oligodendrocytes throughout adulthood, even though relatively few mature oligodendrocytes are produced post-developmental myelination. Recent work has begun to demonstrate that OPCs likely perform multiple functions in both homeostasis and disease and can significantly impact behavioral phenotypes such as food intake and depressive symptoms. However, the exact mechanisms through which OPCs might influence brain function remain unclear. The first step in further exploration of OPC function is to profile the transcriptional repertoire and assess the heterogeneity of adult OPCs. In this work, we demonstrate that adult OPCs are transcriptionally diverse and separate into two distinct populations in the homeostatic brain. These two groups show distinct transcriptional signatures and enrichment of biological processes unique to individual OPC populations. We have validated these OPC populations using multiple methods, including multiplex RNA in situ hybridization and RNA flow cytometry. This study provides an important resource that profiles the transcriptome of adult OPCs and will provide a toolbox for further investigation into novel OPC functions.


Subject(s)
Adult Stem Cells , Oligodendrocyte Precursor Cells , Animals , Brain , Cell Differentiation/genetics , Mice , Oligodendroglia , RNA
19.
J Clin Invest ; 118(1): 161-72, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18060043

ABSTRACT

Injury to the peripheral nervous system (PNS) initiates a response controlled by multiple extracellular mediators, many of which contribute to the development of neuropathic pain. Schwann cells in an injured nerve demonstrate increased expression of LDL receptor-related protein-1 (LRP1), an endocytic receptor for diverse ligands and a cell survival factor. Here we report that a fragment of LRP1, in which a soluble or shed form of LRP1 with an intact alpha-chain (sLRP-alpha), was shed by Schwann cells in vitro and in the PNS after injury. Injection of purified sLRP-alpha into mouse sciatic nerves prior to chronic constriction injury (CCI) inhibited p38 MAPK activation (P-p38) and decreased expression of TNF-alpha and IL-1beta locally. sLRP-alpha also inhibited CCI-induced spontaneous neuropathic pain and decreased inflammatory cytokine expression in the spinal dorsal horn, where neuropathic pain processing occurs. In cultures of Schwann cells, astrocytes, and microglia, sLRP-alpha inhibited TNF-alpha-induced activation of p38 MAPK and ERK/MAPK. The activity of sLRP-alpha did not involve TNF-alpha binding, but rather glial cell preconditioning, so that the subsequent response to TNF-alpha was inhibited. Our results show that sLRP-alpha is biologically active and may attenuate neuropathic pain. In the PNS, the function of LRP1 may reflect the integrated activities of the membrane-anchored and shed forms of LRP1.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-1/therapeutic use , MAP Kinase Signaling System/drug effects , Pain/prevention & control , Sciatic Nerve/injuries , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cells, Cultured , Chronic Disease , Constriction , Endocytosis/drug effects , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Humans , Interleukin-1beta/biosynthesis , Ligands , Low Density Lipoprotein Receptor-Related Protein-1/isolation & purification , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Male , Mice , Microglia/metabolism , Microglia/pathology , Pain/metabolism , Pain/pathology , Posterior Horn Cells/metabolism , Posterior Horn Cells/pathology , Rats , Rats, Sprague-Dawley , Schwann Cells/metabolism , Schwann Cells/pathology , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Tumor Necrosis Factor-alpha/biosynthesis , p38 Mitogen-Activated Protein Kinases/metabolism
20.
J Neurosci Res ; 89(4): 544-51, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21290408

ABSTRACT

Binding of activated α(2)-macroglobulin (α(2)M) to LDL receptor-related protein-1 (LRP1) in Schwann cells activates ERK/MAP kinase and Akt and thereby promotes cell survival and migration. The goal of this study was to determine whether α(2)M binding to LRP1 regulates expression of cytokines and chemokines. To assess the LRP1 response selectively, we studied primary cultures of rat Schwann cells. In a screening assay that detects 84 gene products, monocyte chemoattractant protein-1 (MCP-1/CCL2) mRNA expression was increased more than 13-fold in Schwann cells treated with activated α(2)M. The effects of α(2)M on MCP-1 expression were selective, because expression of the general proinflammatory cytokine tumor necrosis factor-α (TNF-α) was not induced. We confirmed that α(2)M selectively induces expression of MCP-1 and not TNF-α in single-target qPCR assays. MCP-1 protein accumulated at increased levels in conditioned medium of α(2)M-treated cells. LRP1 was necessary for induction of MCP-1 expression, as determined in experiments with the LRP1 antagonist receptor-associated protein, a mutated form of full-length α(2)M that does not bind LRP1, and in studies with Schwann cells in which LRP1 was silenced. Inhibiting ERK/MAP kinase activation blocked expression of MCP-1. These studies support a model in which LRP1 regulates multiple aspects of Schwann cell physiology in the response to PNS injury.


Subject(s)
Chemokine CCL2/biosynthesis , Gene Expression Regulation , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Schwann Cells/metabolism , Signal Transduction/physiology , alpha-Macroglobulins/metabolism , Animals , Blotting, Western , Cytokines/biosynthesis , Humans , Mice , Nerve Crush , Polymerase Chain Reaction , Protein Binding , RNA, Messenger/analysis , RNA, Small Interfering , Rats , Rats, Sprague-Dawley , Sciatic Nerve/injuries
SELECTION OF CITATIONS
SEARCH DETAIL