Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38330312

ABSTRACT

BACKGROUND: Rotavirus is a leading cause of severe pediatric gastroenteritis; two highly effective vaccines are used in the US. We aimed to identify correlates of immune response to rotavirus vaccination in a US cohort. METHODS: PREVAIL is a birth cohort of 245 mother-child pairs enrolled 2017-2018 and followed for 2 years. Infant stool samples and symptom information were collected weekly. Shedding was defined as RT-PCR detection of rotavirus vaccine virus in stools collected 4-28 days after dose one. Seroconversion was defined as a threefold rise in IgA between the six-week and six-month blood draws. Correlates were analyzed using generalized estimating equations and logistic regression. RESULTS: Pre-vaccination IgG (OR=0.84, 95% CI [0.75-0.94] per 100-unit increase) was negatively associated with shedding. Shedding was also less likely among infants with a single-nucleotide polymorphism inactivating FUT2 antigen secretion ("non-secretors") with non-secretor mothers, versus all other combinations (OR 0.37 [0.16-0.83]). Of 141 infants with data, 105 (74%) seroconverted; 78 (77%) had shed vaccine virus following dose one. Pre-vaccination IgG and secretor status were significantly associated with seroconversion. Neither shedding nor seroconversion significantly differed by vaccine product. DISCUSSION: In this US cohort, pre-vaccination IgG and maternal and infant secretor status were associated with rotavirus vaccine response.

2.
J Infect Dis ; 224(9): 1539-1549, 2021 11 16.
Article in English | MEDLINE | ID: mdl-33822119

ABSTRACT

BACKGROUND: Following the implementation of rotavirus vaccination in 2006, severe acute gastroenteritis (AGE) due to group A rotavirus (RVA) has substantially declined in US children. We report the RVA genotype prevalence as well as coinfection data from 7 US New Vaccine Surveillance Network sites during 3 consecutive RVA seasons, 2014-2016. METHODS: A total of 1041 stool samples that tested positive for RVA by Rotaclone enzyme immunoassay were submitted to the Centers for Disease Control and Prevention (CDC) for RVA genotyping and multipathogen testing. RESULTS: A total of 795 (76%) samples contained detectable RVA when tested at the CDC. Rotavirus disease was highest in children < 3 years of age. Four G types (G1, G2, G9, and G12) accounted for 94.6% of strains while 2 P types (P[4] and P[8]) accounted for 94.7% of the strains. Overall, G12P[8] was the most common genotype detected in all 3 seasons. Stepwise conditional logistic analysis found year and study site were significant predictors of genotype. Twenty-four percent of RVA-positive specimens contained other AGE pathogens. CONCLUSIONS: G12P[8] predominated over 3 seasons, but strain predominance varied by year and study site. Ongoing surveillance provides continuous tracking and monitoring of US genotypes during the postvaccine era.


Subject(s)
Gastroenteritis , Population Surveillance/methods , Rotavirus Infections/epidemiology , Rotavirus/isolation & purification , Vaccines , Child , Feces , Gastroenteritis/epidemiology , Genotype , Humans , Infant , Phylogeny , Prevalence , Rotavirus/genetics , United States/epidemiology
3.
Clin Infect Dis ; 73(9): e2729-e2738, 2021 11 02.
Article in English | MEDLINE | ID: mdl-32584956

ABSTRACT

BACKGROUND: Acute gastroenteritis (AGE) burden, etiology, and severity in adults is not well characterized. We implemented a multisite AGE surveillance platform in 4 Veterans Affairs Medical Centers (Atlanta, Georgia; Bronx, New York; Houston, Texas; and Los Angeles, California), collectively serving >320 000 patients annually. METHODS: From 1 July 2016 to 30 June 2018, we actively identified inpatient AGE case patients and non-AGE inpatient controls through prospective screening of admitted patients and passively identified outpatients with AGE through stool samples submitted for clinical diagnostics. We abstracted medical charts and tested stool samples for 22 pathogens by means of multiplex gastrointestinal polymerase chain reaction panel followed by genotyping of norovirus- and rotavirus-positive samples. We determined pathogen-specific prevalence, incidence, and modified Vesikari severity scores. RESULTS: We enrolled 724 inpatients with AGE, 394 non-AGE inpatient controls, and 506 outpatients with AGE. Clostridioides difficile and norovirus were most frequently detected among inpatients (for AGE case patients vs controls: C. difficile, 18.8% vs 8.4%; norovirus, 5.1% vs 1.5%; P < .01 for both) and outpatients (norovirus, 10.7%; C. difficile, 10.5%). The incidence per 100 000 population was highest among outpatients (AGE, 2715; C. difficile, 285; norovirus, 291) and inpatients ≥65 years old (AGE, 459; C. difficile, 91; norovirus, 26). Clinical severity scores were highest for inpatient norovirus, rotavirus, and Shigella/enteroinvasive Escherichia coli cases. Overall, 12% of inpatients with AGE had intensive care unit stays, and 2% died; 3 deaths were associated with C. difficile and 1 with norovirus. C. difficile and norovirus were detected year-round with a fall/winter predominance. CONCLUSIONS: C. difficile and norovirus were leading AGE pathogens in outpatient and hospitalized US veterans, resulting in severe disease. Clinicians should remain vigilant for bacterial and viral causes of AGE year-round.


Subject(s)
Caliciviridae Infections , Clostridioides difficile , Gastroenteritis , Rotavirus , Veterans , Adult , Aged , Caliciviridae Infections/epidemiology , Feces , Gastroenteritis/epidemiology , Hospitals, Veterans , Humans , Incidence , Infant , Outpatients , Prospective Studies , United States/epidemiology
4.
J Clin Microbiol ; 59(11): e0260220, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34432486

ABSTRACT

Since 2013, group A rotavirus strains characterized as novel DS-1-like intergenogroup reassortant "equine-like G3" strains have emerged and spread across 5 continents among human populations in at least 14 countries. Here, we report a novel one-step TaqMan quantitative real-time reverse transcription-PCR assay developed to genotype and quantify the viral load for samples containing rotavirus equine-like G3 strains. Using a universal G forward primer and a newly designed reverse primer and TaqMan probe, we developed and validated an assay with a linear dynamic range of 227 to 2.3 × 109 copies per reaction and a limit of detection of 227 copies. The percent positive agreement, percent negative agreement, and precision of our assay were 100.00%, 99.63%, and 100.00%, respectively. This assay can simultaneously detect and quantify the viral load for samples containing DS-1-like intergenogroup reassortant equine-like G3 strains with high sensitivity and specificity, faster turnaround time, and decreased cost. It will be valuable for high-throughput screening of stool samples collected to monitor equine-like G3 strain prevalence and circulation among human populations throughout the world.


Subject(s)
Rotavirus Infections , Rotavirus , Animals , Feces , Genotype , Horses , Humans , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcription , Rotavirus/genetics , Rotavirus Infections/diagnosis , Rotavirus Infections/veterinary
5.
BMC Infect Dis ; 21(1): 614, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34182936

ABSTRACT

BACKGROUND: Despite the global roll-out of rotavirus vaccines (RotaTeq/Rotarix / ROTAVAC/Rotasiil), mortality and morbidity due to group A rotavirus (RVA) remains high in sub-Saharan Africa, causing 104,000 deaths and 600,000 hospitalizations yearly. In Cameroon, Rotarix™ was introduced in March 2014, but, routine laboratory diagnosis of rotavirus infection is not yet a common practice, and vaccine effectiveness studies to determine the impact of vaccine introduction have not been done. Thus, studies examining RVA prevalence post vaccine introduction are needed. The study aim was to determine RVA prevalence in severe diarrhoea cases in Littoral region, Cameroon and investigate the role of other diarrheagenic pathogens in RVA-positive cases. METHODS: We carried out a study among hospitalized children < 5 years of age, presenting with acute gastroenteritis in selected hospitals of the Littoral region of Cameroon, from May 2015 to April 2016. Diarrheic stool samples and socio-demographic data including immunization and breastfeeding status were collected from these participating children. Samples were screened by ELISA (ProSpecT™ Rotavirus) for detection of RVA antigen and by gel-based RT-PCR for detection of the VP6 gene. Co-infection was assessed by multiplexed molecular detection of diarrheal pathogens using the Luminex xTAG GPP assay. RESULTS: The ELISA assay detected RVA antigen in 54.6% (71/130) of specimens, with 45, positive by VP6 RT-PCR and 54, positive using Luminex xTAG GPP. Luminex GPP was able to detect all 45 VP6 RT-PCR positive samples. Co-infections were found in 63.0% (34/54) of Luminex positive RVA infections, with Shigella (35.3%; 12/34) and ETEC (29.4%; 10/34) detected frequently. Of the 71 ELISA positive RVA cases, 57.8% (41/71) were fully vaccinated, receiving two doses of Rotarix. CONCLUSION: This study provides insight on RVA prevalence in Cameroon, which could be useful for post-vaccine epidemiological studies, highlights higher than expected RVA prevalence in vaccinated children hospitalized for diarrhoea and provides the trend of RVA co-infection with other enteric pathogens. RVA genotyping is needed to determine circulating rotavirus genotypes in Cameroon, including those causing disease in vaccinated children.


Subject(s)
Antigens, Viral/isolation & purification , Capsid Proteins/isolation & purification , Coinfection/epidemiology , Diarrhea/virology , Rotavirus Infections/epidemiology , Rotavirus/genetics , Biological Assay , Cameroon/epidemiology , Child, Hospitalized , Child, Preschool , Coinfection/diagnosis , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Male , Prevalence , Reverse Transcriptase Polymerase Chain Reaction , Rotavirus Infections/diagnosis , Rotavirus Infections/drug therapy , Rotavirus Vaccines/therapeutic use , Vaccination , Vaccines, Attenuated/therapeutic use
6.
Emerg Infect Dis ; 26(6): 1266-1273, 2020 06.
Article in English | MEDLINE | ID: mdl-32160149

ABSTRACT

The etiologic agent of an outbreak of pneumonia in Wuhan, China, was identified as severe acute respiratory syndrome coronavirus 2 in January 2020. A patient in the United States was given a diagnosis of infection with this virus by the state of Washington and the US Centers for Disease Control and Prevention on January 20, 2020. We isolated virus from nasopharyngeal and oropharyngeal specimens from this patient and characterized the viral sequence, replication properties, and cell culture tropism. We found that the virus replicates to high titer in Vero-CCL81 cells and Vero E6 cells in the absence of trypsin. We also deposited the virus into 2 virus repositories, making it broadly available to the public health and research communities. We hope that open access to this reagent will expedite development of medical countermeasures.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Animals , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , Cell Line , Chlorocebus aethiops , Genome, Viral , Humans , Nasopharynx/virology , Oropharynx/virology , Pandemics , SARS-CoV-2 , Vero Cells , Viral Tropism , Virus Replication , Washington
7.
J Med Virol ; 91(11): 2025-2028, 2019 11.
Article in English | MEDLINE | ID: mdl-31286526

ABSTRACT

Group A Rotaviruses (RVAs) are the most important etiological agents of acute gastroenteritis (AGE) in children less than 5 years of age. Mortality resulting from RVA gastroenteritis is higher in developing countries than in developed ones, causing a huge public health burden in global regions like Africa and South-East Asia. This study reports RVA genotypes detected in Ashaiman, Greater Accra Region, Ghana, in the postvaccine introduction era for the period 2014-2016. Stool samples were collected from children less than 5 years of age who visited Ashaiman Polyclinic with AGE from November 2014 to May 2015 and from December 2015 to June 2016. The samples were tested by enzyme immunoassay (EIA), and one-step multiplex reverse transcription polymerase chain reaction was performed on the EIA positive samples for gel-based binomial genotyping. Of the 369 stool samples collected from children with AGE, 145 (39%) tested positive by EIA. Five VP7 (G1, G3, G9, G10, and G12) and three VP4 (P[4], P[6] and P[8]) genotypes were detected. Eight G/P combinations were identified of which, G3P[6], G12P[8], G1P[8], and G9P[4] were the most prevalent and responsible for 93 (68%) of the AGE cases, and seven mixed-types were detected which represented 8% of the RVA cases. High prevalence, diversity, and mixed-types of RVAs were detected from Ashaiman with the emergence of unusual genotypes.


Subject(s)
Feces/virology , Gastroenteritis/virology , Genotype , Rotavirus Infections/epidemiology , Rotavirus/genetics , Animals , Child, Preschool , Gastroenteritis/epidemiology , Ghana/epidemiology , Humans , Infant , Phylogeny , Prevalence , RNA, Viral/genetics , Rotavirus Infections/transmission , Rotavirus Infections/virology , Sequence Analysis, DNA , Zoonoses/epidemiology , Zoonoses/virology
8.
MMWR Morb Mortal Wkly Rep ; 67(16): 470-472, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29698381

ABSTRACT

Before the introduction of rotavirus vaccine in 2006, rotavirus was the most common cause of severe diarrhea among U.S. children (1). Currently, two rotavirus vaccines are licensed for use in the United States, both of which have demonstrated good field effectiveness (78%-89%) against moderate to severe rotavirus illness (2), and the use of these vaccines has substantially reduced the prevalence of rotavirus in the United States (3). However, the most recent national vaccine coverage estimates indicate lower full rotavirus vaccine-series completion (73%) compared with receipt of at least 3 doses of vaccines containing diphtheria, tetanus, and pertussis antigens (95%), given on a similar schedule to rotavirus vaccines (4). In the postvaccine era in the United States, rotavirus activity persists in a biennial pattern (3). This report describes three rotavirus outbreaks that occurred in California in 2017. One death was reported; however, the majority of cases were associated with mild to moderate illness, and illness occurred across the age spectrum as well as among vaccinated children. Rotavirus vaccines are designed to mimic the protective effects of natural infection and are most effective against severe rotavirus illness (2). Even in populations with high vaccination coverage, some rotavirus infections and mild to moderate illnesses will occur. Rotavirus vaccination should continue to be emphasized as the best means of reducing disease prevalence in the United States.


Subject(s)
Assisted Living Facilities , Child Day Care Centers , Disease Outbreaks/statistics & numerical data , Health Facilities , Rotavirus Infections/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , California/epidemiology , Child , Child, Preschool , Humans , Infant , Middle Aged , Rotavirus Infections/prevention & control , Rotavirus Vaccines/administration & dosage , Young Adult
9.
J Infect Dis ; 214(5): 732-8, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27302190

ABSTRACT

BACKGROUND: Group A rotaviruses (RVA) are a significant cause of pediatric gastroenteritis worldwide. The New Vaccine Surveillance Network (NVSN) has conducted active surveillance for RVA at pediatric hospitals and emergency departments at 3-7 geographically diverse sites in the United States since 2006. METHODS: Over 6 consecutive years, from 2008 to 2013, 1523 samples from NVSN sites that were tested positive by a Rotaclone enzyme immunoassay were submitted to the Centers for Disease Control and Prevention for genotyping. RESULTS: In the 2009, 2010, and 2011 seasons, genotype G3P[8] was the predominant genotype throughout the network, with a 46%-84% prevalence. In the 2012 season, G12P[8] replaced G3P[8] as the most common genotype, with a 70% prevalence, and this trend persisted in 2013 (68.0% prevalence). Vaccine (RotaTeq; Rotarix) strains were detected in 0.6%-3.4% of genotyped samples each season. Uncommon and unusual strains (eg, G8P[4], G3P[24], G2P[8], G3P[4], G3P[6], G24P[14], G4P[6], and G9P[4]) were detected sporadically over the study period. Year, study site, and race were found to be significant predictors of genotype. CONCLUSIONS: Continued active surveillance is needed to monitor RVA genotypes in the United States and to detect potential changes since vaccine licensure.


Subject(s)
Genotype , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus Vaccines/administration & dosage , Rotavirus/classification , Rotavirus/isolation & purification , Child , Child, Preschool , Epidemiological Monitoring , Female , Humans , Infant , Male , Rotavirus/genetics , Rotavirus Infections/prevention & control , United States/epidemiology
10.
Infect Genet Evol ; 118: 105566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316245

ABSTRACT

Rotavirus group A (RVA) is the most common cause of severe childhood diarrhea worldwide. The introduction of rotavirus vaccination programs has contributed to a reduction in hospitalizations and mortality caused by RVA. From 2016 to 2021, we conducted surveillance to monitor RVA prevalence and genotype distribution in Nam Dinh and Thua Thien Hue (TT Hue) provinces where a pilot Rotavin-M1 vaccine (Vietnam) implementation took place from 2017 to 2020. Out of 6626 stool samples, RVA was detected in 2164 (32.6%) by ELISA. RT-PCR using type-specific primers were used to determine the G and P genotypes of RVA-positive specimens. Whole genome sequences of a subset of 52 specimens randomly selected from 2016 to 2021 were mapped using next-generation sequencing. From 2016 to 2021, the G9, G3 and G8 strains dominated, with detected frequencies of 39%, 23%, and 19%, respectively; of which, the most common genotypes identified were G9P[8], G3P[8] and G8P[8]. G1 strains re-emerged in Nam Dinh and TT Hue (29.5% and 11.9%, respectively) from 2020 to 2021. G3 prevalence decreased from 74% to 20% in TT Hue and from 21% to 13% in Nam Dinh province between 2017 and 2021. The G3 strains consisted of 52% human typical G3 (hG3) and 47% equine-like G3 (eG3). Full genome analysis showed substantial diversity among the circulating G3 strains with different backgrounds relating to equine and feline viruses. G9 prevalence decreased sharply from 2016 to 2021 in both provinces. G8 strains peaked during 2019-2020 in Nam Dinh and TT Hue provinces (68% and 46%, respectively). Most G8 and G9 strains had no genetic differences over the surveillance period with very high nucleotide similarities of 99.2-99.9% and 99.1-99.7%, respectively. The G1 strains were not derived from the RVA vaccine. Changes in the genotype distribution and substantial diversity among circulating strains were detected throughout the surveillance period and differed between the two provinces. Determining vaccine effectiveness against circulating strains over time will be important to ensure that observed changes are due to natural secular variation and not from vaccine pressure.


Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus , Vaccines , Child , Animals , Humans , Cats , Horses/genetics , Rotavirus/genetics , Vietnam/epidemiology , Genome, Viral , Phylogeny , Gastroenteritis/epidemiology , Diarrhea/epidemiology , Genotype , Genetic Variation , Feces
11.
J Clin Microbiol ; 51(9): 3047-54, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23850952

ABSTRACT

A real-time quantitative reverse transcription-PCR (qRT-PCR) assay using the recombinant thermostable Thermus thermophilus (rTth) enzyme was developed to detect and quantify rotavirus A (RVA). By using rTth polymerase, significant improvement was achieved over the existing real-time RT-PCR assays, which require denaturation of the RVA double-stranded RNA (dsRNA) prior to assay setup. Using a dsRNA transcript for segment 7, which encodes the assay target NSP3 gene, the limit of detection for the improved assay was calculated to be approximately 1 genome copy per reaction. The NSP3 qRT-PCR assay was validated using a panel of 1,906 stool samples, 23 reference RVA strains, and 14 nontarget enteric virus samples. The assay detected a diverse number of RVA genotypes and did not detect other enteric viruses, demonstrating analytical sensitivity and specificity for RVA in testing stool samples. A XenoRNA internal process control was introduced and detected in a multiplexed qRT-PCR format. Because it does not require an antecedent dsRNA denaturation step, this assay reduces the possibility of sample cross-contamination and requires less hands-on time than other published qRT-PCR protocols for RVA detection.


Subject(s)
Feces/virology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Rotavirus/isolation & purification , Viral Load/methods , Humans , Nucleic Acid Denaturation , RNA, Double-Stranded/genetics , Rotavirus/genetics , Sensitivity and Specificity
12.
Nat Genet ; 33(2): 145-53, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12548288

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous disease involving abnormalities of melanosomes, platelet dense granules and lysosomes. Here we have used positional candidate and transgenic rescue approaches to identify the genes mutated in ruby-eye 2 and ruby-eye mice (ru2 and ru, respectively), two 'mimic' mouse models of HPS. We also show that these genes are orthologs of the genes mutated in individuals with HPS types 5 and 6, respectively, and that their protein products directly interact. Both genes are previously unknown and are found only in higher eukaryotes, and together represent a new class of genes that have evolved in higher organisms to govern the synthesis of highly specialized lysosome-related organelles.


Subject(s)
Adaptor Proteins, Vesicular Transport , Drosophila Proteins , Hermanski-Pudlak Syndrome/genetics , Insect Proteins/genetics , Membrane Proteins/genetics , Membrane Transport Proteins , Mutation/genetics , Proteins/genetics , Adaptor Protein Complex 3 , Adaptor Protein Complex beta Subunits , Adult , Amino Acid Sequence , Animals , COS Cells , Child, Preschool , Chlorocebus aethiops , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, P1 Bacteriophage/genetics , Disease Models, Animal , Female , Hermanski-Pudlak Syndrome/metabolism , Hermanski-Pudlak Syndrome/pathology , Humans , Male , Melanosomes/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Molecular Sequence Data , Oligopeptides , Peptides/immunology , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Proto-Oncogene Proteins c-myc/immunology , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Transfection , Two-Hybrid System Techniques
13.
Nat Genet ; 35(1): 84-9, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12923531

ABSTRACT

Hermansky-Pudlak syndrome (HPS; MIM 203300) is a genetically heterogeneous disorder characterized by oculocutaneous albinism, prolonged bleeding and pulmonary fibrosis due to abnormal vesicle trafficking to lysosomes and related organelles, such as melanosomes and platelet dense granules. In mice, at least 16 loci are associated with HPS, including sandy (sdy; ref. 7). Here we show that the sdy mutant mouse expresses no dysbindin protein owing to a deletion in the gene Dtnbp1 (encoding dysbindin) and that mutation of the human ortholog DTNBP1 causes a novel form of HPS called HPS-7. Dysbindin is a ubiquitously expressed protein that binds to alpha- and beta-dystrobrevins, components of the dystrophin-associated protein complex (DPC) in both muscle and nonmuscle cells. We also show that dysbindin is a component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1; refs. 9-11), which regulates trafficking to lysosome-related organelles and includes the proteins pallidin, muted and cappuccino, which are associated with HPS in mice. These findings show that BLOC-1 is important in producing the HPS phenotype in humans, indicate that dysbindin has a role in the biogenesis of lysosome-related organelles and identify unexpected interactions between components of DPC and BLOC-1.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/genetics , Dystrophin-Associated Proteins , Hermanski-Pudlak Syndrome/genetics , Mutation , Animals , COS Cells , Carrier Proteins/metabolism , Cytoskeletal Proteins/metabolism , Dysbindin , Female , Humans , Intracellular Signaling Peptides and Proteins , Lectins , Macromolecular Substances , Male , Melanosomes/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Middle Aged , Molecular Sequence Data , Phosphoproteins/metabolism , Protein Binding
14.
J Infect Dis ; 206(8): 1275-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22872730

ABSTRACT

Vaccine or vaccine-reassortant rotavirus strains were detected in fecal specimens from 5 of 106 (4.7%) immunocompetent children who required treatment for rotavirus gastroenteritis at a large pediatric hospital in Texas in 2009-2010. Four strains were related to pentavalent rotavirus vaccine, whereas one was related to monovalent rotavirus vaccine. The contribution of these strains to each patient's illness was unclear given that 2 patients had prominent respiratory symptoms and 2 were concurrently infected with another pathogen (group F adenovirus and norovirus). Continued monitoring is necessary to assess the role of vaccine strains and vaccine-reassortant strains in pediatric rotavirus infections.


Subject(s)
Reassortant Viruses/isolation & purification , Rotavirus Infections/diagnosis , Rotavirus Infections/virology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/adverse effects , Rotavirus/isolation & purification , Child, Preschool , Feces/virology , Female , Gastroenteritis/diagnosis , Gastroenteritis/virology , Humans , Infant , Infant, Newborn , Male , Reassortant Viruses/genetics , Rotavirus/genetics , Texas
15.
Microbiol Resour Announc ; 12(11): e0063023, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37823654

ABSTRACT

This study reports the coding-complete genome sequences of three rotavirus A (RVA) reference strains previously adapted in tissue culture: RVA/Mouse-tc/USA/EDIM/XXXX/G16P[16] with a G16-P[16]-I7-R7-C7-M8-A7-N7-T10-E7-H9 genotype constellation, RVA/Human-tc/USA/Ph158/1998/G9P[6] with a G9-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2 genotype constellation, and RVA/Human-tc/USA/CC425/1998/G3P[9] with a G3-P[9]-I2-R2-C2-M2-A3-N2-T1-E2-H3 genotype constellation.

16.
Microbiol Resour Announc ; 12(6): e0000823, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37140434

ABSTRACT

In this study, we report the detection of a G6P[14] rotavirus strain from a human stool sample within the United States. The full genotype constellation of the G6P[14] strain was identified as G6-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3.

17.
Infect Control Hosp Epidemiol ; 44(10): 1680-1682, 2023 10.
Article in English | MEDLINE | ID: mdl-36691772

ABSTRACT

Rotavirus (RV) was a common healthcare-associated infection prior to the introduction of the RV vaccine. Following widespread RV vaccination, healthcare-associated rotavirus cases are rare. We describe an investigation of a cluster of rotavirus infections in a pediatric hospital in which an uncommon genotype not typically circulating in the United States was detected.


Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Child , Humans , Infant , Rotavirus/genetics , Hospitals, Pediatric , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Genotype , Vaccination
19.
Trop Med Int Health ; 17(2): 254-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22175547

ABSTRACT

OBJECTIVES: To assess the burden of rotavirus disease in Guatemala, in view of the recent introduction of a national rotavirus vaccination programme. METHODS: We examined data from an active, facility-based surveillance system in Santa Rosa, Guatemala, from October 2007 through September 2009 among children <5years of age presenting to the hospital or ambulatory clinics with diarrhoea (≥3 loose stools in 24 h during the last 7 days). Demographic and epidemiological data were collected, and specimens were tested for rotavirus via enzyme immunoassay. Genotyping was performed via reverse transcriptase polymerase chain reaction. RESULTS: We enrolled 347 hospitalized patients <5 years of age with diarrhoea and 1215 from ambulatory clinics. Specimens from 275 (79%) hospitalized children and 662 (54%) from ambulatory visits were tested for rotavirus. Rotavirus accounted for 32% of hospitalizations and 9% of ambulatory visits for diarrhoea, resulting in adjusted annual rates of 36 hospitalizations and 372 ambulatory visits per 10 000 children. Ninety-one per cent of hospitalizations and 81% of ambulatory visits for rotavirus diarrhoea occurred in children <2 years. G1P8 represented 71% and 95% of rotavirus genotypes for 2007-2008 and 2008-2009 rotavirus seasons, respectively. CONCLUSIONS: Rotavirus is a major cause of diarrhoea in children <5 years of age in Santa Rosa, Guatemala, highlighting the potential health benefits of vaccination and the need for continued surveillance to assess impact and effectiveness of the rotavirus vaccination programme in Guatemala.


Subject(s)
Cost of Illness , Diarrhea/etiology , Genotype , Rotavirus Infections/complications , Rotavirus/genetics , Age Factors , Ambulatory Care Facilities , Child, Preschool , Diarrhea/virology , Female , Guatemala , Hospitalization , Humans , Infant , Male , Office Visits , Rotavirus Infections/virology , Vaccination
20.
Virus Res ; 313: 198715, 2022 05.
Article in English | MEDLINE | ID: mdl-35247484

ABSTRACT

Species A rotaviruses (RVA) still play a major role in causing acute diarrhea in children under five years old worldwide. Currently, an 11-gene classification system is used to designate the full genotypic constellations of circulating strains. Viral proteins and non-structural proteins in the order VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 are represented by the genotypes Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx, respectively. In Benin, ROTAVAC® vaccine was introduced into the Expanded Programme on Immunization in December 2019. To monitor circulating RVA strains for changes that may affect vaccine performance, in-depth analysis of strains prior to vaccine introduction are needed. Here we report, the whole-gene characterization (11 ORFs) for 72 randomly selected RVA strains of common and unusual genotypes collected in Benin from the 2016 to 2018 seasons. The sequenced strains were 15 G1P[8], 20 G2P[4], 5 G9P[8], 14 G12P[8], 9 G3P[6], 2 G1P[6], 3 G2P[6], 2 G9P[4], 1 G12P[6], and 1 G1G9P[8]/P[4]. The study strains exhibited two genetic constellations designed as Wa-like G1/G9/G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and DS-1-like G2/G3/G12-P[4]/P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Genotype G9P[4] strains possessed a DS-1-like genetic constellation with an E6 NSP4 gene, G9-P[4]-I2-R2-C2-M2-A2-N2-T2-E6-H2. The mixed genotype showed both Wa-like and DS-1-like profiles with a T6 NSP3 gene G1/G9P[8]/[4]-I1/I2-R1/R2-C1/C2-M1/M2-A1/A2-N1/N2-T1/T6-E1/E6-H1/H2. At the allelic level, the analysis of the Benin strains, reference strains (with known alleles), vaccine strains (with known alleles) identified 2-13 and 1-17 alleles for DS-1-like and Wa-like strains, respectively. Most of the study strains clustered into previously defined alleles, but we defined 3 new alleles for the VP7 (G3 = 1 new allele and G12 = 2 new alleles) and VP4 (P[4] = 1 new allele and P[6] = 2 new alleles) genes which formed the basis of the VP7 and VP4 gene clusters, respectively. For the remaining 9 genes, 0-6 new alleles were identified for both Wa-like and DS-1-like strains. This analysis of whole genome sequences of RVA strains circulating in Benin described genetic point mutations and reassortment events as well as novel alleles. Further detailed studies on these new alleles are needed and these data can also provide a baseline for studies on RVA in the post-vaccination period.


Subject(s)
Rotavirus Infections , Rotavirus , Vaccines , Benin/epidemiology , Child , Child, Preschool , Genome, Viral , Genotype , Humans , Phylogeny , Rotavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL