Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Small ; 20(10): e2305346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37875723

ABSTRACT

The design of dual-mode fluorescence and Raman tags stimulates a growing interest in biomedical imaging and sensing applications as they offer the possibility to synergistically combine the versatility and velocity of fluorescence imaging with the specificity of Raman spectroscopy. Although lanthanide-doped fluoride nanoparticles (NPs) are among the most studied fluorescent nanoprobes, their use for the development of bimodal fluorescent-Raman probes has never been reported yet, to the best of the authors knowledge, probably due to the difficulty to functionalize them with Raman reporter groups. This gap is filled herein by proposing a fast and straightforward approach based on aryl diazonium salt chemistry to functionalize Eu3+ or Tb3+ doped CaF2 and LaF3 NPs by Raman scatters. The resulting surface-enhanced Raman spectroscopy (SERS)-encoded lanthanide-doped fluoride NPs retain their fluorescence labeling capacity and display efficient SERS activity for cell bioimaging. The potential of this new generation of bimodal nanoprobes is assessed through cell viability assays and intracellular fluorescence and Raman imaging, opening up unprecedented opportunities for biomedical applications.


Subject(s)
Metal Nanoparticles , Nanoparticles , Fluorides , Salts , Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry
2.
Proc Natl Acad Sci U S A ; 117(37): 22639-22648, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32900936

ABSTRACT

Despite an abundant literature on gold nanoparticles use for biomedicine, only a few of the gold-based nanodevices are currently tested in clinical trials, and none of them are approved by health agencies. Conversely, ionic gold has been used for decades to treat human rheumatoid arthritis and benefits from 70-y hindsight on medical use. With a view to open up new perspectives in gold nanoparticles research and medical use, we revisit here the literature on therapeutic gold salts. We first summarize the literature on gold salt pharmacokinetics, therapeutic effects, adverse reactions, and the present repurposing of these ancient drugs. Owing to these readings, we evidence the existence of a common metabolism of gold nanoparticles and gold ions and propose to use gold salts as a "shortcut" to assess the long-term effects of gold nanoparticles, such as their fate and toxicity, which remain challenging questions nowadays. Moreover, one of gold salts side effects (i.e., a blue discoloration of the skin exposed to light) leads us to propose a strategy to biosynthesize large gold nanoparticles from gold salts using light irradiation. These hypotheses, which will be further investigated in the near future, open up new avenues in the field of ionic gold and gold nanoparticles-based therapies.


Subject(s)
Gold/administration & dosage , Metal Nanoparticles/administration & dosage , Nanomedicine/trends , Arthritis, Rheumatoid/drug therapy , Gold/adverse effects , Humans , Metal Nanoparticles/adverse effects , Nanomedicine/methods
3.
Proc Natl Acad Sci U S A ; 117(1): 103-113, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31852822

ABSTRACT

Gold nanoparticles are used in an expanding spectrum of biomedical applications. However, little is known about their long-term fate in the organism as it is generally admitted that the inertness of gold nanoparticles prevents their biodegradation. In this work, the biotransformations of gold nanoparticles captured by primary fibroblasts were monitored during up to 6 mo. The combination of electron microscopy imaging and transcriptomics study reveals an unexpected 2-step process of biotransformation. First, there is the degradation of gold nanoparticles, with faster disappearance of the smallest size. This degradation is mediated by NADPH oxidase that produces highly oxidizing reactive oxygen species in the lysosome combined with a cell-protective expression of the nuclear factor, erythroid 2. Second, a gold recrystallization process generates biomineralized nanostructures consisting of 2.5-nm crystalline particles self-assembled into nanoleaves. Metallothioneins are strongly suspected to participate in buildings blocks biomineralization that self-assembles in a process that could be affected by a chelating agent. These degradation products are similar to aurosomes structures revealed 50 y ago in vivo after gold salt therapy. Overall, we bring to light steps in the lifecycle of gold nanoparticles in which cellular pathways are partially shared with ionic gold, revealing a common gold metabolism.


Subject(s)
Biodegradation, Environmental , Biomineralization/physiology , Cytoplasm/metabolism , Gold/chemistry , Gold/metabolism , Metal Nanoparticles/chemistry , Biomineralization/genetics , Biotransformation/genetics , Biotransformation/physiology , Cell Line , Fibroblasts , Gene Expression , Gold/pharmacology , Humans , Imaging, Three-Dimensional , Inactivation, Metabolic , Lysosomes , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Particle Size , Reactive Oxygen Species , Skin , Transcriptome
4.
Blood ; 136(12): 1381-1393, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32589714

ABSTRACT

Plasmodium falciparum gametocytes, the sexual stage responsible for malaria parasite transmission from humans to mosquitoes, are key targets for malaria elimination. Immature gametocytes develop in the human bone marrow parenchyma, where they accumulate around erythroblastic islands. Notably though, the interactions between gametocytes and this hematopoietic niche have not been investigated. Here, we identify late erythroblasts as a new host cell for P falciparum sexual stages and show that gametocytes can fully develop inside these nucleated cells in vitro and in vivo, leading to infectious mature gametocytes within reticulocytes. Strikingly, we found that infection of erythroblasts by gametocytes and parasite-derived extracellular vesicles delay erythroid differentiation, thereby allowing gametocyte maturation to coincide with the release of their host cell from the bone marrow. Taken together, our findings highlight new mechanisms that are pivotal for the maintenance of immature gametocytes in the bone marrow and provide further insights on how Plasmodium parasites interfere with erythropoiesis and contribute to anemia in malaria patients.


Subject(s)
Erythroblasts/parasitology , Erythropoiesis , Host-Parasite Interactions , Malaria, Falciparum/physiopathology , Plasmodium falciparum/physiology , Adult , Bone Marrow/parasitology , Bone Marrow/physiopathology , Cells, Cultured , Erythroblasts/pathology , Female , Humans , Malaria, Falciparum/parasitology , Young Adult
5.
Sensors (Basel) ; 22(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36081006

ABSTRACT

Photoacoustic (PA) imaging systems are spreading in the biomedical community, and the development of new PA contrast agents is an active area of research. However, PA contrast agents are usually characterized with spectrophotometry or uncalibrated PA imaging systems, leading to partial assessment of their PA efficiency. To enable quantitative PA spectroscopy of contrast agents in vitro with conventional PA imaging systems, we have developed an adapted calibration method. Contrast agents in solution are injected in a dedicated non-scattering tube phantom imaged at different optical wavelengths. The calibration method uses a reference solution of cupric sulfate to simultaneously correct for the spectral energy distribution of excitation light at the tube location and perform a conversion of the tube amplitude in the image from arbitrary to spectroscopic units. The method does not require any precise alignment and provides quantitative PA spectra, even with non-uniform illumination and ultrasound sensitivity. It was implemented on a conventional imaging setup based on a tunable laser operating between 680 nm and 980 nm and a 5 MHz clinical ultrasound array. We demonstrated robust calibrated PA spectroscopy with sample volumes as low as 15 µL of known chromophores and commonly used contrast agents. The validated method will be an essential and accessible tool for the development of new and efficient PA contrast agents by improving their quantitative characterization.


Subject(s)
Photoacoustic Techniques , Contrast Media/chemistry , Phantoms, Imaging , Photoacoustic Techniques/methods , Spectrum Analysis/methods , Ultrasonography/methods
6.
J Nanobiotechnology ; 19(1): 3, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407564

ABSTRACT

BACKGROUND: Despite the highly expected clinical application of nanoparticles (NPs), the translation of NPs from lab to the clinic has been relatively slow. Co-culture 3D spheroids account for the 3D arrangement of tumor cells and stromal components, e.g., cancer-associated fibroblasts (CAFs) and extracellular matrix, recapitulating microenvironment of head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated how the stroma-rich tumor microenvironment affects the uptake, penetration, and photodynamic efficiency of three lipid-based nanoformulations of approved in EU photosensitizer temoporfin (mTHPC): Foslip® (mTHPC in conventional liposomes), drug-in-cyclodextrin-in-liposomes (mTHPC-DCL) and extracellular vesicles (mTHPC-EVs). RESULTS: Collagen expression in co-culture stroma-rich 3D HNSCC spheroids correlates with the amount of CAFs (MeWo cells) in individual spheroid. The assessment of mTHPC loading demonstrated that Foslip®, mTHPC-DCL and mTHPC-EVs encapsulated 0.05 × 10- 15 g, 0.07 × 10- 15 g, and 1.3 × 10- 15 g of mTHPC per nanovesicle, respectively. The mid-penetration depth of mTHPC NPs in spheroids was 47.8 µm (Foslip®), 87.8 µm (mTHPC-DCL), and 49.7 µm (mTHPC-EVs), irrespective of the percentage of stromal components. The cellular uptake of Foslip® and mTHPC-DCL was significantly higher in stroma-rich co-culture spheroids and was increasing upon the addition of serum in the culture medium. Importantly, we observed no significant difference between PDT effect in monoculture and co-culture spheroids treated with lipid-based NPs. Overall, in all types of spheroids mTHPC-EVs demonstrated outstanding total cellular uptake and PDT efficiency comparable to other NPs. CONCLUSIONS: The stromal microenvironment strongly affects the uptake of NPs, while the penetration and PDT efficacy are less sensitive to the presence of stromal components. mTHPC-EVs outperform other lipid nanovesicles due to the extremely high loading capacity. The results of the present study enlarge our understanding of how stroma components affect the delivery of NPs into the tumors.


Subject(s)
Head and Neck Neoplasms/metabolism , Lipid Metabolism , Mesoporphyrins/metabolism , Photochemotherapy/methods , Carcinoma , Coculture Techniques , Extracellular Matrix , Extracellular Vesicles , HT29 Cells , Humans , Lipids , Liposomes , Nanoparticles , Photosensitizing Agents/therapeutic use , Spheroids, Cellular , Tumor Microenvironment
7.
J Nanobiotechnology ; 17(1): 126, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31870376

ABSTRACT

BACKGROUND: An important but rarely addressed question in nano-therapy is to know whether bio-degraded nanoparticles with reduced sizes and weakened heating power are able to maintain sufficient anti-tumor activity to fully eradicate a tumor, hence preventing tumor re-growth. To answer it, we studied magnetosomes, which are nanoparticles synthesized by magnetotactic bacteria with sufficiently large sizes (~ 30 nm on average) to enable a follow-up of nanoparticle sizes/heating power variations under two different altering conditions that do not prevent anti-tumor activity, i.e. in vitro cellular internalization and in vivo intra-tumor stay for more than 30 days. RESULTS: When magnetosomes are internalized in U87-Luc cells by being incubated with these cells during 24 h in vitro, the dominant magnetosome sizes within the magnetosome size distribution (DMS) and specific absorption rate (SAR) strongly decrease from DMS ~ 40 nm and SAR ~ 1234 W/gFe before internalization to DMS ~ 11 nm and SAR ~ 57 W/gFe after internalization, a behavior that does not prevent internalized magnetosomes to efficiently destroy U87-Luc cell, i.e. the percentage of U87-Luc living cells incubated with magnetosomes decreases by 25% between before and after alternating magnetic field (AMF) application. When 2 µl of a suspension containing 40 µg of magnetosomes are administered to intracranial U87-Luc tumors of 2 mm3 and exposed (or not) to 15 magnetic sessions (MS), each one consisting in 30 min application of an AMF of 27 mT and 198 kHz, DMS and SAR decrease between before and after the 15 MS from ~ 40 nm and ~ 4 W/gFe down to ~ 29 nm and ~ 0 W/gFe. Although the magnetosome heating power is weakened in vivo, i.e. no measurable tumor temperature increase is observed after the sixth MS, anti-tumor activity remains persistent up to the 15th MS, resulting in full tumor disappearance among 50% of treated mice. CONCLUSION: Here, we report sustained magnetosome anti-tumor activity under conditions of significant magnetosome size reduction and complete loss of magnetosome heating power.


Subject(s)
Antineoplastic Agents/chemistry , Brain Neoplasms/drug therapy , Magnetite Nanoparticles/chemistry , Magnetosomes/chemistry , Magnetospirillum/chemistry , Animals , Cell Line, Tumor , Cell Survival , Female , Heating , Humans , Hyperthermia, Induced , Magnetic Fields , Mice , Mice, Nude , Particle Size , Theranostic Nanomedicine/methods , Tissue Distribution
8.
Small ; 14(16): e1800020, 2018 04.
Article in English | MEDLINE | ID: mdl-29542273

ABSTRACT

Once injected into a living organism, cells diffuse or migrate around the initial injection point and become impossible to be visualized and tracked in vivo. The present work concerns the development of a new technique for therapeutic cell labeling and subsequent in vivo visualization and magnetic retention. It is hypothesized and subsequently demonstrated that nanohybrids made of persistent luminescence nanoparticles and ultrasmall superparamagnetic iron oxide nanoparticles incorporated into a silica matrix can be used as an effective nanoplatform to label therapeutic cells in a nontoxic way in order to dynamically track them in real-time in vitro and in living mice. As a proof-of-concept, it is shown that once injected, these labeled cells can be visualized and attracted in vivo using a magnet. This first step suggests that these nanohybrids represent efficient multifunctional nanoprobes for further imaging guided cell therapies development.


Subject(s)
Nanoparticles/chemistry , Ferric Compounds/chemistry , Luminescence
9.
Small ; 13(2)2017 Jan.
Article in English | MEDLINE | ID: mdl-28060465

ABSTRACT

Proteins implicated in iron homeostasis are assumed to be also involved in the cellular processing of iron oxide nanoparticles. In this work, the role of an endogenous iron storage protein-namely the ferritin-is examined in the remediation and biodegradation of magnetic iron oxide nanoparticles. Previous in vivo studies suggest the intracellular transfer of the iron ions released during the degradation of nanoparticles to endogenous protein cages within lysosomal compartments. Here, the capacity of ferritin cages to accommodate and store the degradation products of nanoparticles is investigated in vitro in the physiological acidic environment of the lysosomes. Moreover, it is questioned whether ferritin proteins can play an active role in the degradation of the nanoparticles. The magnetic, colloidal, and structural follow-up of iron oxide nanoparticles and proteins in lysosome-like medium confirms the efficient remediation of potentially harmful iron ions generated by nanoparticles within ferritins. The presence of ferritins, however, delays the degradation of particles due to a complex colloidal behavior of the mixture in acidic medium. This study exemplifies the important implications of intracellular proteins in processes of degradation and metabolization of iron oxide nanoparticles.


Subject(s)
Ferric Compounds/chemistry , Ferritins/metabolism , Nanoparticles/chemistry , Acids/chemistry , Animals , Apoferritins/metabolism , Horses , Hydrogen-Ion Concentration , Kinetics , Lysosomes/metabolism , Magnetic Phenomena , Metals/chemistry , Nanoparticles/ultrastructure , Scattering, Small Angle , Time Factors , X-Ray Diffraction
10.
Pharmacol Res ; 126: 123-137, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28720518

ABSTRACT

The structural complexity and physical properties of the tumor microenvironment negatively affect the penetration and efficiency of conventional anticancer drugs. While previously underestimated, the tumor microenvironment now becomes a potential target for cancer treatment. This microenvironment can be modulated either systemically by pharmacological means, or locally, through physical effects mediated by certain nanoparticles. Some of them, such as magnetic, plasmonic or carbon-based nanoparticles, can generate heat on demand in a spatially and temporally controlled manner. In addition, the nanoparticles can be either activated by light or magnetic stimuli. The impact of the resulting local heating can be observed on the ultrastructural level, as it strongly affects the organization of collagen fibers, and on the macroscopic level, since the thermal damages alter the mechanical properties of the tumor. Nanoparticle-based hyperthermia thus improves the effect of conventional anticancer drugs, as it allows their better penetration through the altered extracellular matrix. Here we suggest the use of nanoparticle-generated hyperthermia, obtained after magnetic or light activation, as an adjuvant treatment to prime the tumor microenvironment and improve the efficacy of chemotherapy.


Subject(s)
Extracellular Matrix/drug effects , Fever/chemically induced , Nanoparticles/administration & dosage , Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Animals , Antineoplastic Agents/pharmacology , Humans
11.
Chem Soc Rev ; 45(9): 2440-57, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26862602

ABSTRACT

What happens to inorganic nanoparticles (NPs), such as plasmonic gold or silver, superparamagnetic iron oxide, or fluorescent quantum dot NPs after they have been administrated to a living being? This review discusses the integrity, biodistribution, and fate of NPs after in vivo administration. The hybrid nature of the NPs is described, conceptually divided into the inorganic core, the engineered surface coating comprising of the ligand shell and optionally also bio-conjugates, and the corona of adsorbed biological molecules. Empirical evidence shows that all of these three compounds may degrade individually in vivo and can drastically modify the life cycle and biodistribution of the whole heterostructure. Thus, the NPs may be decomposed into different parts, whose biodistribution and fate would need to be analyzed individually. Multiple labeling and quantification strategies for such a purpose will be discussed. All reviewed data indicate that NPs in vivo should no longer be considered as homogeneous entities, but should be seen as inorganic/organic/biological nano-hybrids with complex and intricately linked distribution and degradation pathways.


Subject(s)
Inorganic Chemicals/chemistry , Inorganic Chemicals/metabolism , Nanoparticles , Animals , Biotransformation , Engineering , Humans , Inorganic Chemicals/pharmacokinetics , Protein Corona/chemistry , Protein Corona/metabolism , Tissue Distribution
12.
Nano Lett ; 15(4): 2574-81, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25738307

ABSTRACT

The growth of colloidal nanoparticles is simultaneously driven by kinetic and thermodynamic effects that are difficult to distinguish. We have exploited in situ scanning transmission electron microscopy in liquid to study the growth of Au nanoplates by radiolysis and unravel the mechanisms influencing their formation and shape. The electron dose provides a straightforward control of the growth rate that allows quantifying the kinetic effects on the planar nanoparticles formation. Indeed, we demonstrate that the surface-reaction rate per unit area has the same dose-rate dependent behavior than the concentration of reducing agents in the liquid cell. Interestingly, we also determine a critical supply rate of gold monomers for nanoparticle faceting, corresponding to three layers per second, above which the formation of nanoplates is not possible because the growth is then dominated by kinetic effects. At lower electron dose, the growth is driven by thermodynamic and the formation and shape of nanoplates are directly related to the twin-planes formed during the growth.

13.
Small ; 11(22): 2696-704, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25653090

ABSTRACT

With the fast development of noninvasive diagnosis, the design of multimodal imaging probes has become a promising challenge. If many monofunctional nanocarriers have already proven their efficiency, only few multifunctional nanoprobes have been able to combine the advantages of diverse imaging modalities. An innovative nanoprobe called mesoporous persistent luminescence magnetic nanohybrids (MPNHs) is described that shows both optical and magnetic resonance imaging (MRI) properties intended for in vivo multimodal imaging in small animals. MPNHs are based on the assembly of chromium-doped zinc gallate oxide and ultrasmall superparamagnetic iron oxide nanoparticles embedded in a mesoporous silica shell. MPNHs combine the optical advantages of persistent luminescence, such as real time imaging with highly sensitive and photostable detection, and MRI negative contrast properties that ensure in vivo imaging with rather high spatial resolution. In addition to their imaging capabilities, these MPNHs can be motioned in vitro with a magnet, which opens multiple perspectives in magnetic vectorization and cell therapy research.


Subject(s)
Contrast Media/chemical synthesis , Luminescent Measurements/methods , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Multimodal Imaging/methods , Whole Body Imaging/methods , Animals , Drug Design , Magnetite Nanoparticles/ultrastructure , Mice , Mice, Inbred BALB C , Organ Specificity , Particle Size , Tissue Distribution
14.
Nanomedicine ; 11(3): 645-55, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25596340

ABSTRACT

Inspired by microvesicle-mediated intercellular communication, we propose a hybrid vector for magnetic drug delivery. It consists of macrophage-derived microvesicles engineered to enclose different therapeutic agents together with iron oxide nanoparticles. Here, we investigated in vitro how magnetic nanoparticles may influence the vector effectiveness in terms of drug uptake and targeting. Human macrophages were loaded with iron oxide nanoparticles and different therapeutic agents: a chemotherapeutic agent (doxorubicin), tissue-plasminogen activator (t-PA) and two photosensitizers (disulfonated tetraphenyl chlorin-TPCS2a and 5,10,15,20-tetra(m-hydroxyphenyl)chlorin-mTHPC). The hybrid cell microvesicles were magnetically responsive, readily manipulated by magnetic forces and MRI-detectable. Using photosensitizer-loaded vesicles, we showed that the uptake of microvesicles by cancer cells could be kinetically modulated and spatially controlled under magnetic field and that cancer cell death was enhanced by the magnetic targeting. From the clinical editor: In this article, the authors devised a biogenic method using macrophages to produce microvesicles containing both iron oxide and chemotherapeutic agents. They showed that the microvesicles could be manipulated by magnetic force for targeting and subsequent delivery of the drug payload against cancer cells. This smart method could provide a novel way for future fight against cancer.


Subject(s)
Antibiotics, Antineoplastic , Cell-Derived Microparticles/chemistry , Doxorubicin , Drug Delivery Systems/methods , Magnetite Nanoparticles/chemistry , Neoplasms/drug therapy , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Humans , Neoplasms/metabolism , Neoplasms/pathology
15.
Small ; 10(16): 3325-37, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-24797733

ABSTRACT

Understanding the relation between the structure and the reactivity of nanomaterials in the organism is a crucial step towards efficient and safe biomedical applications. The multi-scale approach reported here, allows following the magnetic and structural transformations of multicore maghemite nanoflowers in a medium mimicking intracellular lysosomal environment. By confronting atomic-scale and macroscopic information on the biodegradation of these complex nanostuctures, we can unravel the mechanisms involved in the critical alterations of their hyperthermic power and their Magnetic Resonance imaging T1 and T2 contrast effect. This transformation of multicore nanoparticles with outstanding magnetic properties into poorly magnetic single core clusters highlights the harmful influence of cellular medium on the therapeutic and diagnosis effectiveness of iron oxide-based nanomaterials. As biodegradation occurs through surface reactivity mechanism, we demonstrate that the inert activity of gold nanoshells can be exploited to protect iron oxide nanostructures. Such inorganic nanoshields could be a relevant strategy to modulate the degradability and ultimately the long term fate of nanomaterials in the organism.


Subject(s)
Biodegradation, Environmental , Ferric Compounds/chemistry , Gold/chemistry , Nanostructures , Magnetic Resonance Imaging , Microscopy, Electron, Transmission
17.
Front Immunol ; 15: 1355845, 2024.
Article in English | MEDLINE | ID: mdl-38390327

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.


Subject(s)
Extracellular Vesicles , Lupus Erythematosus, Systemic , Mesenchymal Stem Cells , MicroRNAs , Humans , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/metabolism , Mesenchymal Stem Cells/metabolism
18.
Nanoscale ; 16(25): 12037-12049, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38809107

ABSTRACT

A better understanding of the molecular and cellular events involved in the inflammation process has opened novel perspectives in the treatment of inflammatory diseases, particularly through the development of well-designed nanomedicines. Here we describe the design of a novel class of anti-inflammatory nanomedicine (denoted as Au@MIL) synthesized through a one-pot, cost-effective and green approach by coupling a benchmark mesoporous iron(III) carboxylate metal organic framework (MOF) (i.e. MIL-100(Fe)) and glutathionate protected gold nanoclusters (i.e. Au25SG18 NCs). This nano-carrier exhibits low toxicity and excellent colloidal stability combined with the high loading capacity of the glucocorticoid dexamethasone phosphate (DexP) whose pH-dependent delivery was observed. The drug loaded Au@MIL nanocarrier shows high anti-inflammatory activity due to its capacity to specifically hinder inflammatory cell growth, scavenge intracellular reactive oxygen species (ROS) and downregulate pro-inflammatory cytokine secretion. In addition, this formulation has the capacity to inhibit the Toll-like receptor (TLR) signaling cascade namely the nuclear factor kappa B (NF-κB) and the interferon regulatory factor (IRF) pathways. This not only provides a new avenue for the nanotherapy of inflammatory diseases but also enhances our fundamental knowledge of the role of nanoMOF based nanomedicine in the regulation of innate immune signaling.


Subject(s)
Anti-Inflammatory Agents , Dexamethasone , Gold , Inflammation , Metal Nanoparticles , Metal-Organic Frameworks , Signal Transduction , Toll-Like Receptors , Gold/chemistry , Mice , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Signal Transduction/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Toll-Like Receptors/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Inflammation/drug therapy , Dexamethasone/chemistry , Dexamethasone/pharmacology , Reactive Oxygen Species/metabolism , RAW 264.7 Cells , Drug Carriers/chemistry , Humans , NF-kappa B/metabolism
19.
J Nanobiotechnology ; 11 Suppl 1: S7, 2013.
Article in English | MEDLINE | ID: mdl-24564857

ABSTRACT

This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Magnetite Nanoparticles/chemistry , Molecular Imaging/methods , Single-Cell Analysis/methods , Animals , Cell Line , Cell Survival/drug effects , Contrast Media/chemistry , Humans , Magnetite Nanoparticles/toxicity , Mice
20.
Nano Lett ; 12(9): 4830-7, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22928721

ABSTRACT

The fate of carbon nanotubes in the organism is still controversial. Here, we propose a statistical high-throughput imaging method to localize and quantify functionalized multiwalled carbon nanotubes in cells. We give the first experimental evidence of an intercellular translocation of carbon nanotubes. This stress-induced longitudinal transfer of nanomaterials is mediated by cell-released microvesicles known as vectors for intercellular communication. This finding raises new critical issues for nanotoxicology, since carbon nanotubes could be disseminated by circulating extracellular cell-released vesicles and visiting several cells in the course of their passage into the organism.


Subject(s)
Flow Cytometry/methods , Molecular Imaging/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Subcellular Fractions/chemistry , Subcellular Fractions/ultrastructure , Cells, Cultured , Diffusion , Humans
SELECTION OF CITATIONS
SEARCH DETAIL