Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 389(25): 2355-2362, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38118023

ABSTRACT

Melioidosis, caused by Burkholderia pseudomallei, is a rare but potentially fatal bacterial disease endemic to tropical and subtropical regions worldwide. It is typically acquired through contact with contaminated soil or fresh water. Before this investigation, B. pseudomallei was not known to have been isolated from the environment in the continental United States. Here, we report on three patients living in the same Mississippi Gulf Coast county who presented with melioidosis within a 3-year period. They were infected by the same Western Hemisphere B. pseudomallei strain that was discovered in three environmental samples collected from the property of one of the patients. These findings indicate local acquisition of melioidosis from the environment in the Mississippi Gulf Coast region.


Subject(s)
Burkholderia pseudomallei , Environmental Microbiology , Melioidosis , Humans , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/isolation & purification , Melioidosis/epidemiology , Melioidosis/microbiology , United States/epidemiology
2.
N Engl J Med ; 386(9): 861-868, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35235727

ABSTRACT

Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an uncommon infection that is typically associated with exposure to soil and water in tropical and subtropical environments. It is rarely diagnosed in the continental United States. Patients with melioidosis in the United States commonly report travel to regions where melioidosis is endemic. We report a cluster of four non-travel-associated cases of melioidosis in Georgia, Kansas, Minnesota, and Texas. These cases were caused by the same strain of B. pseudomallei that was linked to an aromatherapy spray product imported from a melioidosis-endemic area.


Subject(s)
Aromatherapy/adverse effects , Burkholderia pseudomallei/isolation & purification , Disease Outbreaks , Melioidosis/epidemiology , Aerosols , Brain/microbiology , Brain/pathology , Burkholderia pseudomallei/genetics , COVID-19/complications , Child, Preschool , Fatal Outcome , Female , Genome, Bacterial , Humans , Lung/microbiology , Lung/pathology , Male , Melioidosis/complications , Middle Aged , Phylogeny , Shock, Septic/microbiology , United States/epidemiology
3.
Emerg Infect Dis ; 29(3): 618-621, 2023 03.
Article in English | MEDLINE | ID: mdl-36823515

ABSTRACT

Burkholderia thailandensis, an opportunistic pathogen found in the environment, is a bacterium closely related to B. pseudomallei, the cause of melioidosis. Human B. thailandensis infections are uncommon. We isolated B. thailandensis from water in Texas and Puerto Rico and soil in Mississippi in the United States, demonstrating a potential public health risk.


Subject(s)
Burkholderia Infections , Burkholderia pseudomallei , Burkholderia , Melioidosis , United States , Humans , Burkholderia Infections/microbiology
4.
Emerg Infect Dis ; 27(12): 3182-3184, 2021 12.
Article in English | MEDLINE | ID: mdl-34808079

ABSTRACT

Phylogenetic analysis of a clinical isolate associated with subclinical Burkholderia pseudomallei infection revealed probable exposure in the British Virgin Islands, where reported infections are limited. Clinicians should consider this geographic distribution when evaluating possible infection among persons with compatible travel history.


Subject(s)
Burkholderia pseudomallei , Melioidosis , British Virgin Islands , Burkholderia pseudomallei/genetics , Humans , Melioidosis/diagnosis , Melioidosis/epidemiology , Phylogeny , Travel
5.
Emerg Infect Dis ; 27(2): 655-658, 2021 02.
Article in English | MEDLINE | ID: mdl-33496648

ABSTRACT

We report an analysis of the genomic diversity of isolates of Burkholderia pseudomallei, the cause of melioidosis, recovered in Colombia from routine surveillance during 2016-2017. B. pseudomallei appears genetically diverse, suggesting it is well established and has spread across the region.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Burkholderia pseudomallei/genetics , Colombia/epidemiology , Genomics , Humans , Melioidosis/epidemiology , Multilocus Sequence Typing
6.
Emerg Infect Dis ; 27(12): 3030-3035, 2021 12.
Article in English | MEDLINE | ID: mdl-34570693

ABSTRACT

Nearly all cases of melioidosis in the continental United States are related to international travel to areas to which Burkholderia pseudomallei, the bacterium that causes melioidosis, is endemic. We report the diagnosis and clinical course of melioidosis in a patient from the United States who had no international travel history and the public health investigation to determine the source of exposure. We tested environmental samples collected from the patient's home for B. pseudomallei by PCR and culture. Whole-genome sequencing was conducted on PCR-positive environmental samples, and results were compared with sequences from the patient's clinical specimen. Three PCR-positive environmental samples, all collected from a freshwater home aquarium that had contained imported tropical fish, were a genetic match to the clinical isolate from the patient. This finding suggests a novel route of exposure and a potential for importation of B. pseudomallei, a select agent, into the United States from disease-endemic areas.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Animals , Burkholderia pseudomallei/genetics , Fresh Water , Humans , Melioidosis/diagnosis , Melioidosis/epidemiology , Polymerase Chain Reaction , United States/epidemiology , Whole Genome Sequencing
7.
Emerg Infect Dis ; 26(11): 2773-2775, 2020 11.
Article in English | MEDLINE | ID: mdl-33079041

ABSTRACT

The distribution of Burkholderia pseudomallei in the Caribbean is poorly understood. We isolated B. pseudomallei from US Virgin Islands soil. The soil isolate was genetically similar to other isolates from the Caribbean, suggesting that B. pseudomallei might have been introduced to the islands multiple times through severe weather events.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Soil Microbiology , Burkholderia pseudomallei/genetics , Humans , Islands , Melioidosis/epidemiology , Phylogeny , United States Virgin Islands
8.
Emerg Infect Dis ; 26(2): 358-361, 2020 02.
Article in English | MEDLINE | ID: mdl-31961318

ABSTRACT

Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s). Same-day genomic characterization enhances public health emergency response.


Subject(s)
Anthrax/prevention & control , Bacillus anthracis/isolation & purification , Bacillus anthracis/genetics , Bioterrorism , Civil Defense , Genome, Bacterial , Humans , Public Health , Real-Time Polymerase Chain Reaction , United States , Whole Genome Sequencing
9.
Emerg Infect Dis ; 26(6): 1295-1299, 2020 06.
Article in English | MEDLINE | ID: mdl-32442394

ABSTRACT

To our knowledge, environmental isolation of Burkholderia pseudomallei, the causative agent of melioidosis, from the continental United States has not been reported. We report a case of melioidosis in a Texas resident. Genomic analysis indicated that the isolate groups with B. pseudomallei isolates from patients in the same region, suggesting possible endemicity to this region.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Burkholderia pseudomallei/genetics , Genomics , Humans , Melioidosis/diagnosis , Texas/epidemiology , Travel , United States
10.
Emerg Infect Dis ; 25(10): 1952-1955, 2019 10.
Article in English | MEDLINE | ID: mdl-31538918

ABSTRACT

We report 2 cases of melioidosis in women with diabetes admitted to an emergency department in the US Virgin Islands during October 2017. These cases emerged after Hurricanes Irma and Maria and did not have a definitively identified source. Poor outcomes were observed when septicemia and pulmonary involvement were present.


Subject(s)
Cyclonic Storms , Melioidosis/epidemiology , Natural Disasters , Aged, 80 and over , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Burkholderia pseudomallei/drug effects , Female , Humans , Melioidosis/diagnosis , Melioidosis/drug therapy , Microbial Sensitivity Tests , Middle Aged , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , United States Virgin Islands/epidemiology
11.
Emerg Infect Dis ; 24(11): 2091-2094, 2018 11.
Article in English | MEDLINE | ID: mdl-30334705

ABSTRACT

The bacterium Burkholderia thailandensis, a member of the Burkholderia pseudomallei complex, is generally considered nonpathogenic; however, on rare occasions, B. thailandensis infections have been reported. We describe a clinical isolate of B. thailandensis, BtAR2017, recovered from a patient with an infected wound in Arkansas, USA, in 2017.


Subject(s)
Burkholderia Infections/microbiology , Burkholderia/classification , Genome, Bacterial/genetics , Wound Infection/microbiology , Adult , Arkansas , Bacterial Typing Techniques , Burkholderia/genetics , Burkholderia Infections/diagnosis , Female , Humans , Multilocus Sequence Typing , Phylogeny , Wound Infection/diagnosis
12.
Emerg Infect Dis ; 23(7): 1133-1138, 2017 07.
Article in English | MEDLINE | ID: mdl-28628442

ABSTRACT

The bacterium Burkholderia pseudomallei causes melioidosis, which is mainly associated with tropical areas. We analyzed single-nucleotide polymorphisms (SNPs) among genome sequences from isolates of B. pseudomallei that originated in the Western Hemisphere by comparing them with genome sequences of isolates that originated in the Eastern Hemisphere. Analysis indicated that isolates from the Western Hemisphere form a distinct clade, which supports the hypothesis that these isolates were derived from a constricted seeding event from Africa. Subclades have been resolved that are associated with specific regions within the Western Hemisphere and suggest that isolates might be correlated geographically with cases of melioidosis. One isolate associated with a former World War II prisoner of war was believed to represent illness 62 years after exposure in Southeast Asia. However, analysis suggested the isolate originated in Central or South America.


Subject(s)
Burkholderia pseudomallei/classification , Burkholderia pseudomallei/genetics , Melioidosis/epidemiology , Melioidosis/microbiology , Phylogeny , Phylogeography , Burkholderia pseudomallei/isolation & purification , Genome, Bacterial , Genomics/methods , Global Health , Humans , Multilocus Sequence Typing , Polymorphism, Single Nucleotide
13.
Article in English | MEDLINE | ID: mdl-28396541

ABSTRACT

Burkholderia pseudomallei Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and ß-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in penA, which codes for a class A ß-lactamase and was previously implicated in resistance to ß-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded B. pseudomallei strain Bp82, D240G was found to contribute to ceftazidime resistance and T147A contributed to amoxicillin-clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in penA may alter susceptibility to carbapenems in B. pseudomallei Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene folA, which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely because of a frameshift in the amrB gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of penA to include resistance to carbapenems and may assist in the development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Burkholderia pseudomallei/drug effects , Burkholderia pseudomallei/genetics , Drug Resistance, Multiple, Bacterial/genetics , Imipenem/pharmacology , beta-Lactamases/genetics , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Burkholderia pseudomallei/classification , Ceftazidime/pharmacology , Genome, Bacterial/genetics , Humans , Melioidosis/drug therapy , Melioidosis/microbiology , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Sequence Analysis, DNA , Tetrahydrofolate Dehydrogenase/genetics , Trimethoprim/pharmacology
14.
J Clin Microbiol ; 55(9): 2698-2707, 2017 09.
Article in English | MEDLINE | ID: mdl-28637908

ABSTRACT

Clinical outcomes of melioidosis patients improve when the infecting agent, Burkholderia pseudomallei, is rapidly detected and identified by laboratory testing. Detection of B. pseudomallei DNA or recovery of the pathogen by culture from urine can support a diagnosis of melioidosis and guide patient care. Two new methods, designated filter-capture DNA isolation (FCDI) and filter cellular recovery (FCR), were developed to increase the sensitivity of detection and recovery of viable B. pseudomallei cells from small volumes (0.45 ml) of urine. DNA from eight strains of B. pseudomallei that were spiked into synthetic urine at low concentrations (1 × 102 CFU/ml) was detected in FCDI cell lysates using real-time PCR with greater consistency than with preparations from a QIAamp DNA Blood minikit. The FCR method showed greater B. pseudomallei detection sensitivity than conventional urine culture methods and resulted in typical colony growth at 24 h from as few as 1 × 102 CFU/ml. In addition, the FCR method does not rely on precipitation of a urine pellet by centrifugation and requires a smaller volume of urine. The FCDI and FCR methods described here could improve time-to-results and decrease the number of negative B. pseudomallei reports that are currently observed from urine culture as a consequence of samples containing low or variable bacterial cell concentrations.


Subject(s)
Burkholderia pseudomallei/isolation & purification , Melioidosis/diagnosis , Melioidosis/urine , Urinalysis/methods , Burkholderia pseudomallei/genetics , DNA, Bacterial/genetics , Humans , Melioidosis/microbiology , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
15.
Appl Environ Microbiol ; 83(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-27986727

ABSTRACT

During routine screening for Burkholderia pseudomallei from water wells in northern Australia in areas where it is endemic, Gram-negative bacteria (strains MSMB43T, MSMB121, and MSMB122) with a similar morphology and biochemical pattern to B. pseudomallei and B. thailandensis were coisolated with B. pseudomallei on Ashdown's selective agar. To determine the exact taxonomic position of these strains and to distinguish them from B. pseudomallei and B. thailandensis, they were subjected to a series of phenotypic and molecular analyses. Biochemical and fatty acid methyl ester analysis was unable to distinguish B. humptydooensis sp. nov. from closely related species. With matrix-assisted laser desorption ionization-time of flight analysis, all isolates grouped together in a cluster separate from other Burkholderia spp. 16S rRNA and recA sequence analyses demonstrated phylogenetic placement for B. humptydooensis sp. nov. in a novel clade within the B. pseudomallei group. Multilocus sequence typing (MLST) analysis of the three isolates in comparison with MLST data from 3,340 B. pseudomallei strains and related taxa revealed a new sequence type (ST318). Genome-to-genome distance calculations and the average nucleotide identity of all isolates to both B. thailandensis and B. pseudomallei, based on whole-genome sequences, also confirmed B. humptydooensis sp. nov. as a novel Burkholderia species within the B. pseudomallei complex. Molecular analyses clearly demonstrated that strains MSMB43T, MSMB121, and MSMB122 belong to a novel Burkholderia species for which the name Burkholderia humptydooensis sp. nov. is proposed, with the type strain MSMB43T (American Type Culture Collection BAA-2767; Belgian Co-ordinated Collections of Microorganisms LMG 29471; DDBJ accession numbers CP013380 to CP013382).IMPORTANCEBurkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The genus Burkholderia consists of a diverse group of species, with the closest relatives of B. pseudomallei referred to as the B. pseudomallei complex. A proposed novel species, B. humptydooensis sp. nov., was isolated from a bore water sample from the Northern Territory in Australia. B. humptydooensis sp. nov. is phylogenetically distinct from B. pseudomallei and other members of the B. pseudomallei complex, making it the fifth member of this important group of bacteria.


Subject(s)
Burkholderia pseudomallei/classification , Burkholderia/classification , Burkholderia/genetics , Burkholderia/physiology , Phylogeny , Animals , Australia , Bacterial Typing Techniques/methods , Burkholderia/isolation & purification , Burkholderia Infections/microbiology , DNA, Bacterial/genetics , Disease Models, Animal , Fatty Acids/analysis , Genes, Bacterial/genetics , Genome, Bacterial , Melioidosis/microbiology , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Multilocus Sequence Typing/methods , Northern Territory , Phenotype , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/genetics , Sequence Analysis, DNA , Species Specificity , Virulence , Water Microbiology
18.
Clin Infect Dis ; 60(2): 243-50, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25270646

ABSTRACT

BACKGROUND: Melioidosis results from infection with Burkholderia pseudomallei and is associated with case-fatality rates up to 40%. Early diagnosis and treatment with appropriate antimicrobials can improve survival rates. Fatal and nonfatal melioidosis cases were identified in Puerto Rico in 2010 and 2012, respectively, which prompted contact investigations to identify risk factors for infection and evaluate endemicity. METHODS: Questionnaires were administered and serum specimens were collected from coworkers, neighborhood contacts within 250 m of both patients' residences, and injection drug user (IDU) contacts of the 2012 patient. Serum specimens were tested for evidence of prior exposure to B. pseudomallei by indirect hemagglutination assay. Neighborhood seropositivity results guided soil sampling to isolate B. pseudomallei. RESULTS: Serum specimens were collected from contacts of the 2010 (n = 51) and 2012 (n = 60) patients, respectively. No coworkers had detectable anti-B. pseudomallei antibody, whereas seropositive results among neighborhood contacts was 5% (n = 2) for the 2010 patient and 23% (n = 12) for the 2012 patient, as well as 2 of 3 IDU contacts for the 2012 case. Factors significantly associated with seropositivity were having skin wounds, sores, or ulcers (odds ratio [OR], 4.6; 95% confidence interval [CI], 1.2-17.8) and IDU (OR, 18.0; 95% CI, 1.6-194.0). Burkholderia pseudomallei was isolated from soil collected in the neighborhood of the 2012 patient. CONCLUSIONS: Taken together, isolation of B. pseudomallei from a soil sample and high seropositivity among patient contacts suggest at least regional endemicity of melioidosis in Puerto Rico. Increased awareness of melioidosis is needed to enable early case identification and early initiation of appropriate antimicrobial therapy.


Subject(s)
Burkholderia pseudomallei/immunology , Burkholderia pseudomallei/isolation & purification , Contact Tracing , Endemic Diseases , Melioidosis/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Bacterial/blood , Child , Child, Preschool , Female , Hemagglutination Tests , Humans , Male , Middle Aged , Puerto Rico/epidemiology , Risk Factors , Soil Microbiology , Surveys and Questionnaires , Young Adult
19.
Emerg Infect Dis ; 21(2)2015 Feb.
Article in English | MEDLINE | ID: mdl-25626057

ABSTRACT

Melioidosis is a severe disease that can be difficult to diagnose because of its diverse clinical manifestations and a lack of adequate diagnostic capabilities for suspected cases. There is broad interest in improving detection and diagnosis of this disease not only in melioidosis-endemic regions but also outside these regions because melioidosis may be underreported and poses a potential bioterrorism challenge for public health authorities. Therefore, a workshop of academic, government, and private sector personnel from around the world was convened to discuss the current state of melioidosis diagnostics, diagnostic needs, and future directions.


Subject(s)
Melioidosis/diagnosis , Humans , Practice Guidelines as Topic
20.
Emerg Infect Dis ; 20(4): 682-4, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24655932

ABSTRACT

Burkholderia pseudomallei isolates from the Western Hemisphere are difficult to differentiate from those from regions in which melioidosis is traditionally endemic. We used internal transcribed spacer typing to determine that B. pseudomallei isolates from the Western Hemisphere are consistently type G. Knowledge of this relationship might be useful for epidemiologic investigations.


Subject(s)
Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/isolation & purification , Bacterial Typing Techniques/methods , DNA, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL