Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Clin Genet ; 105(4): 453-454, 2024 04.
Article in English | MEDLINE | ID: mdl-38072398

ABSTRACT

This graphic abstract combines pedigree, dysmorphology features, radiographs, and the PRKG2 protein domain, specifically the CNB-A regulatory domain, which harbors a mutation resulting in premature protein termination.


Subject(s)
Exome , Family , Humans , Cyclic GMP-Dependent Protein Kinase Type II/genetics , Exome/genetics , Mutation/genetics , Pedigree
2.
Mov Disord ; 39(2): 339-349, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014556

ABSTRACT

BACKGROUND: Recent studies have advanced our understanding of the genetic drivers of Parkinson's disease (PD). Rare variants in more than 20 genes are considered causal for PD, and the latest PD genome-wide association study (GWAS) identified 90 independent risk loci. However, there remains a gap in our understanding of PD genetics outside of the European populations in which the vast majority of these studies were focused. OBJECTIVE: The aim was to identify genetic risk factors for PD in a South Asian population. METHODS: A total of 674 PD subjects predominantly with age of onset (AoO) ≤50 years (encompassing juvenile, young, or early-onset PD) were recruited from 10 specialty movement disorder centers across India over a 2-year period; 1376 control subjects were selected from the reference population GenomeAsia, Phase 2. We performed various case-only and case-control genetic analyses for PD diagnosis and AoO. RESULTS: A genome-wide significant signal for PD diagnosis was identified in the SNCA region, strongly colocalizing with SNCA region signal from European PD GWAS. PD cases with pathogenic mutations in PD genes exhibited, on average, lower PD polygenic risk scores than PD cases lacking any PD gene mutations. Gene burden studies of rare, predicted deleterious variants identified BSN, encoding the presynaptic protein Bassoon that has been previously associated with neurodegenerative disease. CONCLUSIONS: This study constitutes the largest genetic investigation of PD in a South Asian population to date. Future work should seek to expand sample numbers in this population to enable improved statistical power to detect PD genes in this understudied group. © 2023 Denali Therapeutics and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Middle Aged , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Parkinson Disease/diagnosis , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Mutation
3.
J Med Genet ; 60(2): 204-211, 2023 02.
Article in English | MEDLINE | ID: mdl-35477554

ABSTRACT

BACKGROUND: Dyggve-Melchior-Clausen dysplasia (DMC) and Smith-McCort dysplasia (SMC types 1 and 2) are rare spondyloepimetaphyseal dysplasias with identical radiological findings. The presence of intellectual disability in DMC and normal intellect in SMC differentiates the two. DMC and SMC1 are allelic and caused by homozygous or compound heterozygous variants in DYM. SMC2 is caused by variations in RAB33B. Both DYM and RAB33B are important in intravesicular transport and function in the Golgi apparatus. METHODS: Detailed clinical phenotyping and skeletal radiography followed by molecular testing were performed in all affected individuals. Next-generation sequencing and Sanger sequencing were used to confirm DYM and RAB33B variants. Sanger sequencing of familial variants was done in all parents. RESULTS: 24 affected individuals from seven centres are described. 18 had DMC and 6 had SMC2. Parental consanguinity was present in 15 of 19 (79%). Height <3 SD and gait abnormalities were seen in 20 and 14 individuals, respectively. The characteristic radiological findings of lacy iliac crests and double-humped vertebral bodies were seen in 96% and 88% of the affected. Radiological findings became attenuated with age. 23 individuals harboured biallelic variants in either DYM or RAB33B. Fourteen different variants were identified, out of which 10 were novel. The most frequently occurring variants in this group were c.719 C>A (3), c.1488_1489del (2), c.1484dup (2) and c.1563+2T>C (2) in DYM and c.400C>T (2) and c.186del (2) in RAB33B. The majority of these have not been reported previously. CONCLUSION: This large cohort from India contributes to the increasing knowledge of clinical and molecular findings in these rare 'Golgipathies'.


Subject(s)
Dwarfism , Intellectual Disability , Osteochondrodysplasias , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Mutation , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Dwarfism/diagnostic imaging , Dwarfism/genetics
4.
J Med Genet ; 60(8): 801-809, 2023 08.
Article in English | MEDLINE | ID: mdl-36894310

ABSTRACT

BACKGROUND: Fanconi anaemia (FA) is a rare inherited bone marrow failure disease caused by germline pathogenic variants in any of the 22 genes involved in the FA-DNA interstrand crosslink (ICL) repair pathway. Accurate laboratory investigations are required for FA diagnosis for the clinical management of the patients. We performed chromosome breakage analysis (CBA), FANCD2 ubiquitination (FANCD2-Ub) analysis and exome sequencing of 142 Indian patients with FA and evaluated the efficiencies of these methods in FA diagnosis. METHODS: We performed CBA and FANCD2-Ub analysis in the blood cells and fibroblasts of patients with FA. Exome sequencing with improved bioinformatics to detect the single number variants and CNV was carried out for all the patients. Functional validation of the variants with unknown significance was done by lentiviral complementation assay. RESULTS: Our study showed that FANCD2-Ub analysis and CBA on peripheral blood cells could diagnose 97% and 91.5% of FA cases, respectively. Exome sequencing identified the FA genotypes consisting of 45 novel variants in 95.7% of the patients with FA. FANCA (60.2%), FANCL (19.8%) and FANCG (11.7%) were the most frequently mutated genes in the Indian population. A FANCL founder mutation c.1092G>A; p.K364=was identified at a very high frequency (~19%) in our patients. CONCLUSION: We performed a comprehensive analysis of the cellular and molecular tests for the accurate diagnosis of FA. A new algorithm for rapid and cost-effective molecular diagnosis for~90% of FA cases has been established.


Subject(s)
Fanconi Anemia , Pancytopenia , Humans , Fanconi Anemia/diagnosis , Fanconi Anemia/genetics , Fibroblasts , Genotype , Clinical Laboratory Techniques
5.
Neurogenetics ; 24(1): 43-53, 2023 01.
Article in English | MEDLINE | ID: mdl-36580222

ABSTRACT

Dysferlinopathies are a group of limb-girdle muscular dystrophies causing significant disability in the young population. There is a need for studies on large cohorts to describe the clinical, genotypic and natural history in our subcontinent. To describe and correlate the clinical, genetic profile and natural history of genetically confirmed dysferlinopathies. We analysed a retrospective cohort of patients with dysferlinopathy from a single quaternary care centre in India. A total of 124 patients with dysferlinopathy were included (40 females). Median age at onset and duration of illness were 21 years (range, 13-50) and 48 months (range, 8-288), respectively. The average follow-up period was 60 months (range, 12-288). Fifty-one percent had LGMD pattern of weakness at onset; 23.4% each had Miyoshi and proximo-distal type while isolated hyperCKemia was noted in 1.6%. About 60% were born to consanguineous parents and 26.6% had family history of similar illness. Twenty-three patients (18.6%) lost ambulation at follow-up; the median time to loss of independent ambulation was 120 months (range, 72-264). Single-nucleotide variants (SNVs) constituted 78.2% of patients; INDELs 14.5% and 7.3% had both SNVs and INDELs. Earlier age at onset was noted with SNVs. There was no correlation between the other clinical parameters and ambulatory status with the genotype. Thirty-seven (45.7%) novel pathogenic/likely pathogenic (P/LP) variants were identified out of a total of 81 variations. The c.3191G > A variant was the most recurrent mutation. Our cohort constitutes a clinically and genetically heterogeneous group of dysferlinopathies. There is no significant correlation between the clinico-genetic profile and the ambulatory status.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Female , Humans , Retrospective Studies , Muscular Dystrophies, Limb-Girdle/epidemiology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Genetic Association Studies , India
6.
Neurogenetics ; 23(3): 187-202, 2022 07.
Article in English | MEDLINE | ID: mdl-35416532

ABSTRACT

The clinico-genetic architecture of sarcoglycanopathies in Indian patients is reported only as short series. In the present study, we aimed to investigate the clinical picture, genetic basis, and disease progression of patients genetically confirmed to have sarcoglycanopathy. Next-generation sequencing was performed in 68 probands with suspected sarcoglycanopathy. A total of 35 different variants were detected in the sarcoglycan genes in 68 probands (M = 37; age range, 5-50 years). Consanguinity was present in 44 families. Thirty-two variants are predicted to be pathogenic/likely pathogenic, among which 25 (78.13%) are reported, and 7 (21.87%) are novel. The clinical diagnosis was confirmed in a total of 64 (94.12%) probands with biallelic variations [SGCA(n=18); SGCB(n=34); SGCG(n=7); SGCD(n=5)]. The most common mutation was c.544A > C (p.Thr182Pro) in SGCB, and detected in 20 patients (29.42%). The majority of pathogenic mutations are homozygous (n = 30; 93.75%). Variants in 4 cases are of uncertain significance. Thirty-three patients lost ambulation at a mean age of 15.12 ± 9.47 years, after 7.76 ± 5.95 years into the illness. Only 2 patients had cardiac symptoms, and one had respiratory muscle involvement. The results from this study suggest that mutations in SGCB are most common, followed by SGCA, SGCG, and SGCD. The novel variations identified in this study expand the mutational spectrum of sarcoglycanopathies. To the best of our knowledge, this is the first study from India to describe a large cohort of genetically confirmed patients with sarcoglycanopathy and report its disease progression.


Subject(s)
Sarcoglycanopathies , Sarcoglycans , Adolescent , Adult , Child , Child, Preschool , Disease Progression , Genetic Profile , Humans , Middle Aged , Prevalence , Sarcoglycanopathies/epidemiology , Sarcoglycanopathies/genetics , Sarcoglycanopathies/pathology , Sarcoglycans/genetics , Young Adult
7.
Ann Hum Genet ; 86(5): 245-256, 2022 09.
Article in English | MEDLINE | ID: mdl-35451063

ABSTRACT

Primary microcephaly and Seckel syndrome are rare genetically and clinically heterogenous brain development disorders. Several exonic/splicing mutations are reported for these disorders to date, but ∼40% of all cases remain unexplained. We aimed to uncover the genetic correlate(s) in a family of multiple siblings with microcephaly. A novel homozygous intronic variant (NC_000013.10:g.25459823T>C) in CENPJ (13q12) segregating with all four affected male siblings was identified by exome sequencing and validated by targeted linkage approach (logarithm of the odds score 1.8 at θ 0.0). RT-PCR of CENPJ in affected siblings using their EBV derived cell lines showed aberrant transcripts suggestive of exon skipping confirmed by Sanger sequencing. Significantly reduced wild type transcript/protein in the affected siblings having the splice variant indicates a leaky gene expression of pathological relevance. Based on known CENPJ function, assessing for mitotic alterations revealed defect in centrosome duplication causing mono/multicentrosome(s) at prophase, delayed metaphase, and unequal chromosomal segregation in patient cells. Clinical features witnessed in this study expand the spectrum of CENPJ-associated primary microcephaly and Seckel syndrome. Furthermore, besides the importance of regulatory variants in classical monogenic disorders these findings provide new insights into splice site biology with possible implications for ASO-based therapies.


Subject(s)
Dwarfism , Microcephaly , Centromere/pathology , Dwarfism/genetics , Humans , Male , Microcephaly/genetics , Microcephaly/pathology , Microtubule-Associated Proteins/genetics , Mutation , Pedigree , RNA Splice Sites , RNA Splicing
8.
Can J Neurol Sci ; 49(1): 93-101, 2022 01.
Article in English | MEDLINE | ID: mdl-33685545

ABSTRACT

OBJECTIVE: To determine the demographic pattern of juvenile-onset parkinsonism (JP, <20 years), young-onset (YOPD, 20-40 years), and early onset (EOPD, 40-50 years) Parkinson's disease (PD) in India. MATERIALS AND METHODS: We conducted a 2-year, pan-India, multicenter collaborative study to analyze clinical patterns of JP, YOPD, and EOPD. All patients under follow-up of movement disorders specialists and meeting United Kingdom (UK) Brain Bank criteria for PD were included. RESULTS: A total of 668 subjects (M:F 455:213) were recruited with a mean age at onset of 38.7 ± 8.1 years. The mean duration of symptoms at the time of study was 8 ± 6 years. Fifteen percent had a family history of PD and 13% had consanguinity. JP had the highest consanguinity rate (53%). YOPD and JP cases had a higher prevalence of consanguinity, dystonia, and gait and balance issues compared to those with EOPD. In relation to nonmotor symptoms, panic attacks and depression were more common in YOPD and sleep-related issues more common in EOPD subjects. Overall, dyskinesias were documented in 32.8%. YOPD subjects had a higher frequency of dyskinesia than EOPD subjects (39.9% vs. 25.5%), but they were first noted later in the disease course (5.7 vs. 4.4 years). CONCLUSION: This large cohort shows differing clinical patterns in JP, YOPD, and EOPD cases. We propose that cutoffs of <20, <40, and <50 years should preferably be used to define JP, YOPD, and EOPD.


Subject(s)
Dyskinesias , Dystonia , Parkinson Disease , Parkinsonian Disorders , Age of Onset , Brain , Humans , Parkinson Disease/diagnosis , Parkinson Disease/epidemiology
9.
Pediatr Nephrol ; 36(4): 881-887, 2021 04.
Article in English | MEDLINE | ID: mdl-33033857

ABSTRACT

BACKGROUND: Distal renal tubular acidosis (RTA) is typically caused by defects in ATP6V0A4, ATP6V1B1, and SLC4A1, accounting for 60-80% of patients. Genes recently implicated include FOXI1, ATP6V1C2, and WDR72, of which WDR72 is associated with dental enamel defects. METHODS: We describe 4 patients, from three unrelated consanguineous families, with RTA and amelogenesis imperfecta. Distal tubular acidification was evaluated by furosemide-fludrocortisone test, urine-to-blood PCO2 gradient and fractional excretion of bicarbonate. Exome sequencing was performed using a panel of genes implicated in human disease. RESULTS: Patients had polyuria, hypokalemia, hypercalciuria, and nephrocalcinosis, but metabolic acidosis varied in severity. Although all patients acidified urine to pH < 5.3 during furosemide-fludrocortisone test, urine-to-blood PCO2 gradient was < 20 mmHg during bicarbonate loading. All patients had transient proximal tubular dysfunction with urinary losses of phosphate and beta-2-microglobulin, and generalized aminoaciduria. Homozygous pathogenic truncating variants in WDR72 was detected in all probands. CONCLUSION: Patients with WDR72 mutations show mild rate-dependent distal RTA with variable metabolic acidosis, and intact ability to acidify the urine on provocative testing. Concomitant proximal tubular dysfunction may be present. Mutations in WDR72 should be considered in patients with suspected distal RTA, especially if associated with dental defects.


Subject(s)
Acidosis, Renal Tubular , Acidosis , Vacuolar Proton-Translocating ATPases , Acidosis/genetics , Acidosis, Renal Tubular/genetics , Bicarbonates , Biological Variation, Population , Fludrocortisone , Forkhead Transcription Factors , Furosemide , Humans , Hydrogen-Ion Concentration , Mutation , Proteins , Vacuolar Proton-Translocating ATPases/genetics
10.
Hum Mutat ; 35(1): 41-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24115387

ABSTRACT

We report a novel missense mutation (c.1040G>A, p.Arg347Gln) in MID2, which encodes ubiquitin ligase E3, as the likely cause of X-linked mental retardation in a large kindred. The mutation was observed in all affected and obligate carriers but not in any unaffected males of the family or in population controls (n = 200). When transiently expressed in HEK293T cell line, the mutation was found to abolish the function of the COS domain in the protein. The GFP-tagged mutant protein accumulated in the cytoplasm instead of binding to the cytoskeleton resulting in its altered subcellular localization. Screening of coding exons of this gene in additional 480 unrelated individuals with idiopathic intellectual disability identified another novel variation p.Asn343Ser. This study highlights the growing role of the ubiquitin pathway in intellectual disability and also, the difference in MID2 determined phenotype observed in this study compared with that of its paralogue MID1 reported in literature.


Subject(s)
High-Throughput Nucleotide Sequencing , Mental Retardation, X-Linked/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Binding Sites , Chromosomes, Human, X/genetics , Cytoplasm/metabolism , Cytoskeleton/metabolism , Exons , Female , Genetic Variation , HEK293 Cells , Humans , India , Male , Microtubule Proteins/genetics , Mutation, Missense , Nuclear Proteins/genetics , Pedigree , Polymorphism, Single Nucleotide , Ubiquitin-Protein Ligases
11.
Indian Heart J ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009076

ABSTRACT

OBJECTIVES: This study aims to analyze the results of comprehensive genetic testing in patients presenting to a dedicated multidisciplinary inherited heart disease clinic in India. METHODS: All patients presenting to our clinic from August 2017 to October 2023 with a suspected inherited heart disease and consenting for genetic testing were included. The probands were grouped into familial cardiomyopathies namely hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), arrhythmogenic cardiomyopathy (ACM) and peripartum cardiomyopathy (PPCM), channelopathies namely congenital long QT syndrome (LQTS) and Brugada syndrome (BrS), and heritable connective tissue disorder namely Marfan Syndrome (MFS). Next generation sequencing (NGS) was used, and pre-test and post-test counseling were provided to probands and cascade screening offered to relatives. RESULTS: Mean age of the subjects (n = 77; 48 probands, 29 relatives) was 43 ± 18 years, 68 % male and 44 % symptomatic, with 36 HCM, 3 DCM, 3 ACM, 1 PPCM, 3 LQTS, 1 BrS and 1 MFS probands. The diagnostic yield of NGS-based genetic testing was 31 %; variants of uncertain significance (VUS) were identified in 54 %; and 15 % were genotype-negative. Twenty-nine relatives from 18 families with HCM (n = 12), DCM (n = 3), ACM (n = 2) and MFS (n = 1) underwent genetic testing. The genotype positive probands/relatives and VUS carriers with strong disease phenotype and/or high risk variant were advised periodic follow-up; the remaining probands/relatives were discharged from further clinical surveillance. CONCLUSIONS: Genetic testing guides treatment and follow-up of patients with inherited heart diseases and should be carried out in dedicated multidisciplinary clinics with expertise for counseling and cascade screening of family members.

12.
Indian J Dermatol Venereol Leprol ; 89(6): 819-827, 2023.
Article in English | MEDLINE | ID: mdl-37067103

ABSTRACT

Background Filaggrin (FLG) gene encoding the protein filaggrin plays an important role in barrier function of the skin and its alteration is a predisposing factor for atopic dermatitis. FLG gene variants result in absent or decreased filaggrin protein. Worldwide, the prevalence of FLG variants ranges from 14 to 56%. FLG null variants are distinct in each population. Objectives To study the FLG gene polymorphisms in Indian children and attempt a genotype-phenotype correlation in atopic dermatitis. Methods This was a cross-sectional, multicentre study conducted on 75 Indian children. Demographic details, clinical features and identified FLG null variants were recorded. We performed a whole gene sequencing of the entire FLG coding region using next-generation sequencing technology. Results The prevalence of FLG null variants was 34.7%. A total of 20 different FLG loss of function variants in 26 children were documented. Sixteen (80%) variants were novel and four (20%) were previously reported in Asian and European populations. We found a statistically significant association between FLG variants with early age of onset of atopic dermatitis (P = 0.016) and elevated serum IgE levels (P = 0.051). There was no significant difference between atopic dermatitis phenotypes in children having one variant as compared to children harbouring two or more null variants. Limitation Small sample size. Conclusion Our study reports a unique set of FLG variants different from Asian and European populations, with these variants being significantly associated with an early age of onset of atopic dermatitis and elevated serum IgE levels.


Subject(s)
Dermatitis, Atopic , Humans , Child , Filaggrin Proteins , Cross-Sectional Studies , Polymorphism, Genetic , Immunoglobulin E , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Mutation , Genetic Predisposition to Disease
13.
Sci Rep ; 13(1): 15095, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699968

ABSTRACT

Sarcoglycanopathy is the most frequent form of autosomal recessive limb-girdle muscular dystrophies caused by mutations in SGCB gene encoding beta-sarcoglycan proteins. In this study, we describe a shared, common haplotype co-segregating in 14 sarcoglycanopathy cases from 13 unrelated families from south Indian region with the likely pathogenic homozygous mutation c.544 T > G (p.Thr182Pro) in SGCB. Haplotype was reconstructed based on 10 polymorphic markers surrounding the c.544 T > G mutation in the cases and related family members as well as 150 unrelated controls from Indian populations using PLINK1.9. We identified haplotype H1 = G, A, G, T, G, G, A, C, T, G, T at a significantly higher frequency in cases compared to related controls and unrelated control Indian population. Upon segregation analysis within the family pedigrees, H1 is observed to co-segregate with c.544 T > G in a homozygous state in all the pedigrees of cases except one indicating a probable event of founder effect. Furthermore, Identical-by-descent and inbreeding coefficient analysis revealed relatedness among 33 new pairs of seemingly unrelated individuals from sarcoglycanopathy cohort and a higher proportion of homozygous markers, thereby indicating common ancestry. Since all these patients are from the south Indian region, we suggest this region to be a primary target of mutation screening in patients diagnosed with sarcoglycanopathy.


Subject(s)
Sarcoglycanopathies , Sarcoglycans , Humans , Asian People , Haplotypes , Mutation , Sarcoglycanopathies/genetics , Sarcoglycans/genetics
14.
Brain Commun ; 5(5): fcad243, 2023.
Article in English | MEDLINE | ID: mdl-38074073

ABSTRACT

In this study, we have evaluated the underlying aetiologies, yield of genetic testing and long-term outcomes in patients with early-infantile developmental and epileptic encephalopathies. We have prospectively studied patients with seizure onset before 3 months of age. Based on the clinical details, neuroimaging, metabolic testing and comprehensive genetic evaluation, patients were classified into different aetiological groups. The phenotypic differences between genetic/unknown groups and remaining aetiologies were compared. Factors that could affect seizure control were also assessed. A total of 80 children (M:F ratio-1.5:1) were recruited. The median seizure onset age was 28 days (range, 1-90 days). The aetiologies were confirmed in 66 patients (83%). The patients were further classified into four aetiological groups: genetic (50%), structural (19%), metabolic (14%; all were vitamin responsive) and unknown (17%). On comparing for the phenotypic differences between the groups, children in the 'genetic/unknown' groups were more frequently observed to have severe developmental delay (Odds Ratio = 57; P < 0.0001), autistic behaviours (Odds Ratio = 37; P < 0.0001), tone abnormalities (Odds Ratio = 9; P = 0.0006) and movement disorder (Odds Ratio = 19; P < 0.0001). Clonic seizures were more common in the vitamin responsive/structural groups (Risk Ratio = 1.36; P = 0.05) as compared to patients with 'genetic/unknown' aetiologies. On the contrary, vitamin responsive/structural aetiology patients were less likely to have tonic seizures (Risk Ratio = 0.66; P = 0.04). Metabolic testing was diagnostic in three out of 41 patients tested (all three had biotinidase deficiency). MRI was abnormal in 35/80 patients (malformation observed in 16/35; 19/35 had non-specific changes that did not contribute to underlying aetiology). A molecular diagnosis was achieved in 53 out of 77 patients tested (69%). Next-generation sequencing had a yield of 51%, while microarray had a yield of 14%. STXBP1 was the most common (five patients) single-gene defect identified. There were 24 novel variants. The mean follow-up period was 30 months (range, 4-72 months). On multivariate logistic regression for the important factors that could affect seizure control (seizure onset age, time lag of first visit to paediatric neurologist and aetiologies), only vitamin responsive aetiology had a statistically significant positive effect on seizure control (P = 0.02). Genetic aetiologies are the most common cause of early-infantile developmental and epileptic encephalopathies. Patients in the genetic/unknown groups had a more severe phenotype. Patients with vitamin responsive epilepsies had the best probability of seizure control.

15.
J Clin Exp Hepatol ; 12(2): 701-704, 2022.
Article in English | MEDLINE | ID: mdl-35535055

ABSTRACT

We report a novel homozygous missense variant in ABCB4 gene in a Yemeni child born to consanguineous parents, with a significant family history of liver disease-related deaths, resulting in a progressive familial intrahepatic cholestasis (PFIC) type 3 phenotype requiring liver transplantation for intractable pruritus.

16.
Indian J Pediatr ; 89(12): 1243-1250, 2022 12.
Article in English | MEDLINE | ID: mdl-35819704

ABSTRACT

OBJECTIVE: To evaluate metabolic and genetic abnormalities in children with nephrolithiasis attending a referral center in North India. METHODS: The patients aged 1-18 y old with nephrolithiasis underwent biochemical evaluation and whole-exome sequencing. The authors evaluated for monogenic variants in 56 genes and compared allele frequency of 39 reported polymorphisms between patients and 1739 controls from the GenomeAsia 100 K database. RESULTS: Fifty-four patients, aged 9.1 ± 3.7 y were included. Stones were bilateral in 42.6%, familial in 33.3%, and recurrent in 25.9%. The most common metabolic abnormalities were hypercalciuria (35.2%), hyperoxaluria (24.1%), or both (11.1%), while xanthinuria (n = 3), cystinuria (n = 1), and hyperuricosuria (n = 1) were rare. Exome sequencing identified an etiology in 6 (11.1%) patients with pathogenic/likely pathogenic causative variants. Three variants in MOCOS and one in ATP7B were pathogenic; likely pathogenic variants included MOCOS (n = 2), AGXT, and SLC7A9 (n = 1, each). Causality was not attributed to two SLC34A1 likely pathogenic variants, due to lack of matching phenotype and dominant family history. Compared to controls, allele frequency of the polymorphism TRPV5 rs4252402 was significantly higher in familial stone disease (allele frequency 0.47 versus 0.53; OR 3.2, p = 0.0001). CONCLUSION: The chief metabolic abnormalities were hypercalciuria and hyperoxaluria. A monogenic etiology was identified in 11% with pathogenic or likely pathogenic variants using a gene panel for nephrolithiasis. Heterozygous missense variants in the sodium-phosphate cotransporter SLC34A1 were common and required evaluation for attributing pathogenicity. Rare polymorphisms in TRPV5 might increase the risk of familial stones. These findings suggest that a combination of metabolic and genetic evaluation is useful for determining the etiology of nephrolithiasis.


Subject(s)
Hypercalciuria , Hyperoxaluria , Nephrolithiasis , Humans , Hypercalciuria/complications , Hyperoxaluria/complications , India , Nephrolithiasis/genetics , Phenotype , Sulfurtransferases/genetics , Child
17.
Adv Biol (Weinh) ; 6(11): e2101326, 2022 11.
Article in English | MEDLINE | ID: mdl-35810474

ABSTRACT

Parkinson's disease (PD) is a genetically heterogeneous neurodegenerative disease with poorly defined environmental influences. Genomic studies of PD patients have identified disease-relevant monogenic genes, rare variants of significance, and polygenic risk-associated variants. In this study, whole genome sequencing data from 90 young onset Parkinson's disease (YOPD) individuals are analyzed for both monogenic and polygenic risk. The genetic variant analysis identifies pathogenic/likely pathogenic variants in eight of the 90 individuals (8.8%). It includes large homozygous coding exon deletions in PRKN and SNV/InDels in VPS13C, PLA2G6, PINK1, SYNJ1, and GCH1. Eleven rare heterozygous GBA coding variants are also identified in 13 (14.4%) individuals. In 34 (56.6%) individuals, one or more variants of uncertain significance (VUS) in PD/PD-relevant genes are observed. Though YOPD patients with a prioritized pathogenic variant show a low polygenic risk score (PRS), patients with prioritized VUS or no significant rare variants show an increased PRS odds ratio for PD. This study suggests that both significant rare variants and polygenic risk from common variants together may contribute to the genesis of PD. Further validation using a larger cohort of patients will confirm the interplay between monogenic and polygenic variants and their use in routine genetic PD diagnosis and risk assessment.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Genetic Predisposition to Disease/genetics , Neurodegenerative Diseases/genetics , Multifactorial Inheritance/genetics , Genetic Testing
18.
J Clin Neurol ; 17(3): 409-418, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34184449

ABSTRACT

BACKGROUND AND PURPOSE: Pathogenic variants in the myopalladin gene (MYPN) are known to cause mildly progressive nemaline/cap myopathy. Only nine cases have been reported in the English literature. METHODS: A detailed evaluation was conducted of the clinical, muscle magnetic resonance imaging (MRI), and genetic findings of two unrelated adults with MYPN-related cap myopathy. Genetic analysis was performed using whole-exome sequencing. MRI was performed on a 1.5-T device in patient 1. RESULTS: Two unrelated adults born to consanguineous parents, a 28-year-old male and a 23-year-old female, were diagnosed with pathogenic variants in MYPN that cause cap myopathy. Both patients presented with early-onset, insidiously progressive, and minimally disabling proximodistal weakness with mild ptosis, facial weakness, and bulbar symptoms. Patient 1 had a prominent foot drop from the onset. Both patients were followed up at age 30 years, at which point serum creatine kinase concentrations were minimally elevated. There were no cardiac symptoms; electrocardiograms and two-dimensional echocardiograms were normal in both patients. Muscle MRI revealed preferential involvement of the glutei, posterior thigh muscles, and anterior leg muscles. Whole-exome sequencing revealed significant homozygous splice-site variants in both of the probands, affecting intron 10 of MYPN: c.1973+1G>C (patient 1) and c.1974-2A>C (patient 2). CONCLUSIONS: This study elaborates on two patients with homozygous MYPN pathogenic variants, presenting as slowly progressive congenital myopathy. These patients are only the tenth and eleventh cases reported in the English literature, and the first from South Asia. The clinical phenotype reiterates the mild form of nemaline rod/cap myopathy. A comprehensive literature review is presented.

19.
Epilepsy Behav Rep ; 14: 100397, 2020.
Article in English | MEDLINE | ID: mdl-33196034

ABSTRACT

This study explores the etiology and lead time to treatment for infantile spasm (IS) patients and their effect on treatment responsiveness, in a limited resource setting. Patients with IS onset age ≤12 months', seen over 3 years were recruited retrospectively. Clinical information, neuroimaging and genetic results retrieved. Patients categorized into three primary etiological groups: Structural (including Structural Genetic), Genetic, and Unknown. The effect of etiology and lead time from IS onset to initiating appropriate treatment on spasm resolution, evaluated. Total 113 patients were eligible. Mean IS onset age was 6.86(±4.25) months (M: F 3.3:1). Patients were grouped into: Structural 85, Genetic 11 and Unknown 17. Etiology was ascertained in 94/113 (83.1%) with neonatal hypoglycemic brain injury (NHBI) being the most common (40/113, 36%). A genetic etiology identified in 17 (including 6 Structural Genetic, of which five had Tuberous Sclerosis). Structural group was less likely to be treatment resistant (p = 0.013, OR 0.30 [0.12-0.76]). Median treatment lead time - 60 days. Longer lead time to treatment was significantly associated with resistant spasms (χ2 for trend = 10.0, p = 0.0015). NHBI was the commonest underlying cause of IS. There was significant time lag to initiating appropriate treatment, affecting treatment responsiveness.

20.
Mol Genet Genomic Med ; 6(2): 282-287, 2018 03.
Article in English | MEDLINE | ID: mdl-29271071

ABSTRACT

BACKGROUND: Several genes have been implicated in a highly variable presentation of developmental delay with psychomotor retardation. Mutations in EMC1 gene have recently been reported. Herein, we describe a proband born of a consanguineous marriage, who presented with early infantile onset epilepsy, scaphocephaly, developmental delay, central hypotonia, muscle wasting, and severe cerebellar and brainstem atrophy. METHODS: Genetic testing in the proband was performed using custom clinical exome and targeted next-generation sequencing. This was followed by segregation analysis of the variant in the parents by Sanger sequencing and evaluation of the splice variant by RNA sequencing. RESULTS: Clinical exome sequencing identified a novel homozygous intronic splice variant in the EMC1 gene (chr1:19564510C>T, c.1212 + 1G>A, NM_015047.2). Neither population databases (ExAC and 1000 genomes) nor our internal database (n = 1,500) had reported this rare variant, predicted to affect the splicing. RNA sequencing data from the proband confirmed aberrant splicing with intron 11 retention, thereby introducing a stop codon in the resultant mRNA. This nonsense mutation is predicted to result in the premature termination of protein synthesis leading to loss of function of the EMC1 protein. CONCLUSION: We report, for the first time the role of aberrant EMC1RNA splicing as a potential cause of disease pathogenesis. The severe epilepsy observed in our study expands the disease-associated phenotype and also emphasizes the need for comprehensive screening of intronic splice mutations.


Subject(s)
Epilepsy, Complex Partial/genetics , Extracellular Matrix Proteins/genetics , Alternative Splicing , Atrophy/genetics , Cerebellar Diseases/genetics , Cerebellar Diseases/pathology , Child, Preschool , Consanguinity , Exome , Extracellular Matrix Proteins/metabolism , Genetic Variation , Homozygote , Humans , Introns , Male , Pedigree , RNA Splicing/genetics , Vision Disorders/genetics , Exome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL