Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36047828

ABSTRACT

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Subject(s)
Edible Grain , Glucose , Nitrate Transporters , Peptide Transporter 1 , Plant Proteins , Sucrose , Zea mays , Humans , Edible Grain/genetics , Edible Grain/growth & development , Glucose/metabolism , HEK293 Cells , Nitrate Transporters/genetics , Nitrate Transporters/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolism , Zea mays/growth & development , Zea mays/metabolism , Peptide Transporter 1/genetics , Peptide Transporter 1/metabolism , Biological Transport
2.
New Phytol ; 238(1): 270-282, 2023 04.
Article in English | MEDLINE | ID: mdl-36597715

ABSTRACT

Guard cells control the opening of stomatal pores in the leaf surface, with the use of a network of protein kinases and phosphatases. Loss of function of the CBL-interacting protein kinase 23 (CIPK23) was previously shown to decrease the stomatal conductance, but the molecular mechanisms underlying this response still need to be clarified. CIPK23 was specifically expressed in Arabidopsis guard cells, using an estrogen-inducible system. Stomatal movements were linked to changes in ion channel activity, determined with double-barreled intracellular electrodes in guard cells and with the two-electrode voltage clamp technique in Xenopus oocytes. Expression of the phosphomimetic variant CIPK23T190D enhanced stomatal opening, while the natural CIPK23 and a kinase-inactive CIPK23K60N variant did not affect stomatal movements. Overexpression of CIPK23T190D repressed the activity of S-type anion channels, while their steady-state activity was unchanged by CIPK23 and CIPK23K60N . We suggest that CIPK23 enhances the stomatal conductance at favorable growth conditions, via the regulation of several ion transport proteins in guard cells. The inhibition of SLAC1-type anion channels is an important facet of this response.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Anions/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Membrane Proteins/metabolism , Plant Stomata/physiology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism
3.
J Exp Bot ; 72(2): 757-774, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33529339

ABSTRACT

The identification of those prevalent abscisic acid (ABA) receptors and molecular mechanisms that trigger drought adaptation in crops well adapted to harsh conditions such as date palm (Phoenix dactylifera, Pd) sheds light on plant-environment interactions. We reveal that PdPYL8-like receptors are predominantly expressed under abiotic stress, with Pd27 being the most expressed receptor in date palm. Therefore, subfamily I PdPYL8-like receptors have been selected for ABA signaling during abiotic stress response in this crop. Biochemical characterization of PdPYL8-like and PdPYL1-like receptors revealed receptor- and ABA-dependent inhibition of PP2Cs, which triggers activation of the pRD29B-LUC reporter in response to ABA. PdPYLs efficiently abolish PP2C-mediated repression of ABA signaling, but loss of the Trp lock in the seed-specific AHG1-like phosphatase PdPP2C79 markedly impairs its inhibition by ABA receptors. Characterization of Arabidopsis transgenic plants that express PdPYLs shows enhanced ABA signaling in seed, root, and guard cells. Specifically, Pd27-overexpressing plants showed lower ABA content and were more efficient than the wild type in lowering transpiration at negative soil water potential, leading to enhanced drought tolerance. Finally, PdPYL8-like receptors accumulate after ABA treatment, which suggests that ABA-induced stabilization of these receptors operates in date palm for efficient boosting of ABA signaling in response to abiotic stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phoeniceae , Abscisic Acid , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Phoeniceae/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological
4.
Plant Cell ; 30(12): 2973-2987, 2018 12.
Article in English | MEDLINE | ID: mdl-30538155

ABSTRACT

Plants close stomata when root water availability becomes limiting. Recent studies have demonstrated that soil-drying induces root-to-shoot sulfate transport via the xylem and that sulfate closes stomata. Here we provide evidence for a physiologically relevant signaling pathway that underlies sulfate-induced stomatal closure in Arabidopsis (Arabidopsis thaliana). We uncovered that, in the guard cells, sulfate activates NADPH oxidases to produce reactive oxygen species (ROS) and that this ROS induction is essential for sulfate-induced stomata closure. In line with the function of ROS as the second-messenger of abscisic acid (ABA) signaling, sulfate does not induce ROS in the ABA-synthesis mutant, aba3-1, and sulfate-induced ROS were ineffective at closing stomata in the ABA-insensitive mutant abi2-1 and a SLOW ANION CHANNEL1 loss-of-function mutant. We provided direct evidence for sulfate-induced accumulation of ABA in the cytosol of guard cells by application of the ABAleon2.1 ABA sensor, the ABA signaling reporter ProRAB18:GFP, and quantification of endogenous ABA marker genes. In concordance with previous studies, showing that ABA DEFICIENT3 uses Cys as the substrate for activation of the ABSCISIC ALDEHYDE OXIDASE3 (AAO3) enzyme catalyzing the last step of ABA production, we demonstrated that assimilation of sulfate into Cys is necessary for sulfate-induced stomatal closure and that sulfate-feeding or Cys-feeding induces transcription of NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, limiting the synthesis of the AAO3 substrate. Consequently, Cys synthesis-depleted mutants are sensitive to soil-drying due to enhanced water loss. Our data demonstrate that sulfate is incorporated into Cys and tunes ABA biosynthesis in leaves, promoting stomatal closure, and that this mechanism contributes to the physiological water limitation response.


Subject(s)
Abscisic Acid/metabolism , Cysteine/metabolism , Plant Stomata/metabolism , Plant Stomata/physiology , Sulfates/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Xylem/metabolism , Xylem/physiology
5.
Plant Cell ; 30(11): 2813-2837, 2018 11.
Article in English | MEDLINE | ID: mdl-30361234

ABSTRACT

Guard cells control the aperture of stomatal pores to balance photosynthetic carbon dioxide uptake with evaporative water loss. Stomatal closure is triggered by several stimuli that initiate complex signaling networks to govern the activity of ion channels. Activation of SLOW ANION CHANNEL1 (SLAC1) is central to the process of stomatal closure and requires the leucine-rich repeat receptor-like kinase (LRR-RLK) GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), among other signaling components. Here, based on functional analysis of nine Arabidopsis thaliana ghr1 mutant alleles identified in two independent forward-genetic ozone-sensitivity screens, we found that GHR1 is required for stomatal responses to apoplastic reactive oxygen species, abscisic acid, high CO2 concentrations, and diurnal light/dark transitions. Furthermore, we show that the amino acid residues of GHR1 involved in ATP binding are not required for stomatal closure in Arabidopsis or the activation of SLAC1 anion currents in Xenopus laevis oocytes and present supporting in silico and in vitro evidence suggesting that GHR1 is an inactive pseudokinase. Biochemical analyses suggested that GHR1-mediated activation of SLAC1 occurs via interacting proteins and that CALCIUM-DEPENDENT PROTEIN KINASE3 interacts with GHR1. We propose that GHR1 acts in stomatal closure as a scaffolding component.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plant Stomata/metabolism , Plant Stomata/physiology , Protein Kinases/metabolism , Arabidopsis Proteins/genetics , Carbon Dioxide/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Protein Binding , Signal Transduction/genetics , Signal Transduction/physiology
6.
Pflugers Arch ; 472(9): 1111-1128, 2020 09.
Article in English | MEDLINE | ID: mdl-32845347

ABSTRACT

The carbohydrate D-glucose is the main source of energy in living organisms. In contrast to animals, as well as most fungi, bacteria, and archaea, plants are capable to synthesize a surplus of sugars characterizing them as autothrophic organisms. Thus, plants are de facto the source of all food on earth, either directly or indirectly via feed to livestock. Glucose is stored as polymeric glucan, in animals as glycogen and in plants as starch. Despite serving a general source for metabolic energy and energy storage, glucose is the main building block for cellulose synthesis and represents the metabolic starting point of carboxylate- and amino acid synthesis. Finally yet importantly, glucose functions as signalling molecule conveying the plant metabolic status for adjustment of growth, development, and survival. Therefore, cell-to-cell and long-distance transport of photoassimilates/sugars throughout the plant body require the fine-tuned activity of sugar transporters facilitating the transport across membranes. The functional plant counterparts of the animal sodium/glucose transporters (SGLTs) are represented by the proton-coupled sugar transport proteins (STPs) of the plant monosaccharide transporter(-like) family (MST). In the framework of this special issue on "Glucose Transporters in Health and Disease," this review gives an overview of the function and structure of plant STPs in comparison to the respective knowledge obtained with the animal Na+-coupled glucose transporters (SGLTs).


Subject(s)
Glucose/metabolism , Monosaccharide Transport Proteins/metabolism , Plant Proteins/metabolism , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plants/metabolism
7.
Chem Senses ; 45(8): 655-666, 2020 11 07.
Article in English | MEDLINE | ID: mdl-32968780

ABSTRACT

Honeybees rely on nectar as their main source of carbohydrates. Sucrose, glucose, and fructose are the main components of plant nectars. Intriguingly, honeybees express only 3 putative sugar receptors (AmGr1, AmGr2, and AmGr3), which is in stark contrast to many other insects and vertebrates. The sugar receptors are only partially characterized. AmGr1 detects different sugars including sucrose and glucose. AmGr2 is assumed to act as a co-receptor only, while AmGr3 is assumedly a fructose receptor. We show that honeybee gustatory receptor AmGr3 is highly specialized for fructose perception when expressed in Xenopus oocytes. When we introduced nonsense mutations to the respective AmGr3 gene using CRISPR/Cas9 in eggs of female workers, the resulting mutants displayed almost a complete loss of responsiveness to fructose. In contrast, responses to sucrose were normal. Nonsense mutations introduced by CRISPR/Cas9 in honeybees can thus induce a measurable behavioral change and serve to characterize the function of taste receptors in vivo. CRISPR/Cas9 is an excellent novel tool for characterizing honeybee taste receptors in vivo. Biophysical receptor characterization in Xenopus oocytes and nonsense mutation of AmGr3 in honeybees unequivocally demonstrate that this receptor is highly specific for fructose.


Subject(s)
Bees/genetics , Bees/physiology , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Mutagenesis , Mutation , Taste/genetics , Taste/physiology , Animals , Receptors, G-Protein-Coupled/genetics
8.
Mol Pharmacol ; 95(1): 82-96, 2019 01.
Article in English | MEDLINE | ID: mdl-30355744

ABSTRACT

A domain of protein RS1 (RSC1A1) called RS1-Reg down-regulates the plasma membrane abundance of Na+-d-glucose cotransporter SGLT1 by blocking the exocytotic pathway at the trans-Golgi. This effect is blunted by intracellular glucose but prevails when serine in a QSP (Gln-Ser-Pro) motif is replaced by glutamate [RS1-Reg(S20E)]. RS1-Reg binds to ornithine decarboxylase (ODC) and inhibits ODC in a glucose-dependent manner. Because the ODC inhibitor difluoromethylornithine (DFMO) acts like RS1-Reg(S20E), and DFMO and RS1-Reg(S20E) are not cumulative, we raised the hypothesis that RS1-Reg(S20E) down-regulates the exocytotic pathway of SGLT1 at the trans-Golgi by inhibiting ODC. We investigated whether QEP down-regulates human SGLT1 (hSGLT1) like hRS1-Reg(S20E) and whether human Na+-d-glucose cotransporter hSGLT2 and the human glucose sensor hSGLT3 are also addressed. We expressed hSGLT1, hSGLT1 linked to yellow fluorescent protein (hSGLT1-YFP), hSGLT2-YFP and hSGLT3-YFP in oocytes of Xenopus laevis, injected hRS1-Reg(S20E), QEP, DFMO, and/or α-methyl-d-glucopyranoside (AMG), and measured AMG uptake, glucose-induced currents, and plasma membrane-associated fluorescence after 1 hour. We also performed in vitro AMG uptake measurements into small intestinal mucosa of mice and human. The data indicate that QEP down-regulates the exocytotic pathway of SGLT1 similar to hRS1-Reg(S20E). Our results suggests that both peptides also down-regulate hSGLT2 and hSGLT3 via the same pathway. Thirty minutes after application of 5 mM QEP in the presence of 5 mM d-glucose, hSGLT1-mediated AMG uptake into small intestinal mucosa was decreased by 40% to 50%. Thus oral application of QEP in a formulation that optimizes uptake into enterocytes but prevents entry into the blood is proposed as novel antidiabetic therapy.


Subject(s)
Down-Regulation/physiology , Exocytosis/physiology , Glucose/metabolism , Monosaccharide Transport Proteins/metabolism , Peptides/metabolism , Sodium-Glucose Transport Proteins/metabolism , Adult , Animals , Biological Transport/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Down-Regulation/drug effects , Eflornithine/pharmacology , Exocytosis/drug effects , Female , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Oocytes/metabolism , Ornithine Decarboxylase/metabolism , Xenopus laevis
9.
Proc Natl Acad Sci U S A ; 113(45): 12862-12867, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791082

ABSTRACT

Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.

10.
Plant Physiol ; 174(2): 798-814, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28446637

ABSTRACT

Water limitation of plants causes stomatal closure to prevent water loss by transpiration. For this purpose, progressing soil water deficit is communicated from roots to shoots. Abscisic acid (ABA) is the key signal in stress-induced stomatal closure, but ABA as an early xylem-delivered signal is still a matter of debate. In this study, poplar plants (Populus × canescens) were exposed to water stress to investigate xylem sap sulfate and ABA, stomatal conductance, and sulfate transporter (SULTR) expression. In addition, stomatal behavior and expression of ABA receptors, drought-responsive genes, transcription factors, and NCED3 were studied after feeding sulfate and ABA to detached poplar leaves and epidermal peels of Arabidopsis (Arabidopsis thaliana). The results show that increased xylem sap sulfate is achieved upon drought by reduced xylem unloading by PtaSULTR3;3a and PtaSULTR1;1, and by enhanced loading from parenchyma cells into the xylem via PtaALMT3b. Sulfate application caused stomatal closure in excised leaves and peeled epidermis. In the loss of sulfate-channel function mutant, Atalmt12, sulfate-triggered stomatal closure was impaired. The QUAC1/ALMT12 anion channel heterologous expressed in oocytes was gated open by extracellular sulfate. Sulfate up-regulated the expression of NCED3, a key step of ABA synthesis, in guard cells. In conclusion, xylem-derived sulfate seems to be a chemical signal of drought that induces stomatal closure via QUAC1/ALMT12 and/or guard cell ABA synthesis.


Subject(s)
Abscisic Acid/biosynthesis , Arabidopsis Proteins/metabolism , Organic Anion Transporters/metabolism , Plant Stomata/physiology , Sulfates/metabolism , Xylem/metabolism , Abscisic Acid/metabolism , Animals , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Droughts , Female , Gene Expression Regulation, Plant , Mutation , Oocytes/metabolism , Organic Anion Transporters/genetics , Plant Cells/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/physiology , Signal Transduction , Xenopus laevis , Xylem/chemistry
11.
Nature ; 488(7412): 531-4, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22864417

ABSTRACT

In plants, transport processes are important for the reallocation of defence compounds to protect tissues of high value, as demonstrated in the plant model Arabidopsis, in which the major defence compounds, glucosinolates, are translocated to seeds on maturation. The molecular basis for long-distance transport of glucosinolates and other defence compounds, however, remains unknown. Here we identify and characterize two members of the nitrate/peptide transporter family, GTR1 and GTR2, as high-affinity, proton-dependent glucosinolate-specific transporters. The gtr1 gtr2 double mutant did not accumulate glucosinolates in seeds and had more than tenfold over-accumulation in source tissues such as leaves and silique walls, indicating that both plasma membrane-localized transporters are essential for long-distance transport of glucosinolates. We propose that GTR1 and GTR2 control the loading of glucosinolates from the apoplasm into the phloem. Identification of the glucosinolate transporters has agricultural potential as a means to control allocation of defence compounds in a tissue-specific manner.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Glucosinolates/metabolism , Monosaccharide Transport Proteins/metabolism , Seeds/metabolism , Animals , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport/drug effects , Cell Extracts/chemistry , Evolution, Molecular , Gene Deletion , Gene Library , Genes, Plant/genetics , Glucosinolates/pharmacology , Monosaccharide Transport Proteins/deficiency , Monosaccharide Transport Proteins/genetics , Oocytes/drug effects , Oocytes/metabolism , Organ Specificity , Phloem/metabolism , Protons , Xenopus laevis
12.
New Phytol ; 216(1): 46-61, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28722226

ABSTRACT

Contents 46 I. 46 II. 47 III. 50 IV. 53 V. 56 VI. 57 58 58 References 58 SUMMARY: Stomatal guard cells control leaf CO2 intake and concomitant water loss to the atmosphere. When photosynthetic CO2 assimilation is limited and the ratio of CO2 intake to transpiration becomes suboptimal, guard cells, sensing the rise in CO2 concentration in the substomatal cavity, deflate and the stomata close. Screens for mutants that do not close in response to experimentally imposed high CO2 atmospheres identified the guard cell-expressed Slowly activating anion channel, SLAC1, as the key player in the regulation of stomatal closure. SLAC1 evolved, though, before the emergence of guard cells. In Arabidopsis, SLAC1 is the founder member of a family of anion channels, which comprises four homologues. SLAC1 and SLAH3 mediate chloride and nitrate transport in guard cells, while SLAH1, SLAH2 and SLAH3 are engaged in root nitrate and chloride acquisition, and anion translocation to the shoot. The signal transduction pathways involved in CO2 , water stress and nutrient-sensing activate SLAC/SLAH via distinct protein kinase/phosphatase pairs. In this review, we discuss the role that SLAC/SLAH channels play in guard cell closure, on the one hand, and in the root-shoot continuum on the other, along with the molecular basis of the channels' anion selectivity and gating.


Subject(s)
Anions/metabolism , Ion Channels/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Plant Stomata/physiology , Amino Acid Sequence , Ion Channel Gating , Ion Channels/chemistry , Plant Stomata/cytology
13.
New Phytol ; 216(1): 150-162, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28670699

ABSTRACT

Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl- medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium.


Subject(s)
Anions/metabolism , Desert Climate , Nitrates/pharmacology , Phoeniceae/physiology , Plant Proteins/metabolism , Plant Stomata/physiology , Abscisic Acid/metabolism , Chlorides/metabolism , Droughts , Light , Osmosis , Phoeniceae/drug effects , Phoeniceae/radiation effects , Phoeniceae/ultrastructure , Plant Stomata/cytology , Plant Stomata/drug effects , Plant Stomata/ultrastructure , RNA, Plant/metabolism , Subcellular Fractions/metabolism , Waxes/metabolism
14.
Plant Cell ; 26(9): 3809-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25217511

ABSTRACT

In legume-rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected cells and thus hypothesized that microsymbionts may cause modifications in vacuole formation or function. To examine this, we quantified the volumes and surface areas of plant cells, vacuoles, and symbiosomes in root nodules of Medicago truncatula and analyzed the expression and localization of VPS11 and VPS39, members of the HOPS vacuole-tethering complex. During the maturation of symbiosomes to become N2-fixing organelles, a developmental switch occurs and changes in vacuole features are induced. For example, we found that expression of VPS11 and VPS39 in infected cells is suppressed and host cell vacuoles contract, permitting the expansion of symbiosomes. Trafficking of tonoplast-targeted proteins in infected symbiotic cells is also altered, as shown by retargeting of the aquaporin TIP1g from the tonoplast membrane to the symbiosome membrane. This retargeting appears to be essential for the maturation of symbiosomes. We propose that these alterations in the function of the vacuole are key events in the adaptation of the plant cell to host intracellular symbiotic bacteria.


Subject(s)
Medicago truncatula/cytology , Medicago truncatula/microbiology , Multiprotein Complexes/metabolism , Plant Proteins/metabolism , Symbiosis , Vacuoles/metabolism , Acids/metabolism , Biomarkers/metabolism , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Hydrogen-Ion Concentration , Medicago truncatula/genetics , Nitrogen Fixation , Plant Proteins/genetics , Plants, Genetically Modified , Protein Transport , RNA Interference , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Staining and Labeling
15.
Plant Cell ; 26(6): 2554-2567, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24938289

ABSTRACT

In contrast to animal cells, plants use nitrate as a major source of nitrogen. Following the uptake of nitrate, this major macronutrient is fed into the vasculature for long-distance transport. The Arabidopsis thaliana shoot expresses the anion channel SLOW ANION CHANNEL1 (SLAC1) and its homolog SLAC1 HOMOLOGOUS3 (SLAH3), which prefer nitrate as substrate but cannot exclude chloride ions. By contrast, we identified SLAH2 as a nitrate-specific channel that is impermeable for chloride. To understand the molecular basis for nitrate selection in the SLAH2 channel, SLAC1 and SLAH2 were modeled to the structure of HiTehA, a distantly related bacterial member. Structure-guided site-directed mutations converted SLAC1 into a SLAH2-like nitrate-specific anion channel and vice versa. Our findings indicate that two pore-occluding phenylalanines constrict the pore. The selectivity filter of SLAC/SLAH anion channels is determined by the polarity of pore-lining residues located on alpha helix 3. Changing the polar character of a single amino acid side chain (Ser-228) to a nonpolar residue turned the nitrate-selective SLAH2 into a chloride/nitrate-permeable anion channel. Thus, the molecular basis of the anion specificity of SLAC/SLAH anion channels seems to be determined by the presence and constellation of polar side chains that act in concert with the two pore-occluding phenylalanines.

16.
J Integr Plant Biol ; 59(6): 422-435, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28296205

ABSTRACT

The biotrophic fungus Ustilago maydis causes corn smut disease, inducing tumor formation in its host Zea mays. Upon infection, the fungal hyphae invaginate the plasma membrane of infected maize cells, establishing an interface where pathogen and host are separated only by their plasma membranes. At this interface the fungal and maize sucrose transporters, UmSrt1 and ZmSUT1, compete for extracellular sucrose in the corn smut/maize pathosystem. Here we biophysically characterized ZmSUT1 and UmSrt1 in Xenopus oocytes with respect to their voltage-, pH- and substrate-dependence and determined affinities toward protons and sucrose. In contrast to ZmSUT1, UmSrt1 has a high affinity for sucrose and is relatively pH- and voltage-independent. Using these quantitative parameters, we developed a mathematical model to simulate the competition for extracellular sucrose at the contact zone between the fungus and the host plant. This approach revealed that UmSrt1 exploits the apoplastic sucrose resource, which forces the plant transporter into a sucrose export mode providing the fungus with sugar from the phloem. Importantly, the high sucrose concentration in the phloem appeared disadvantageous for the ZmSUT1, preventing sucrose recovery from the apoplastic space in the fungus/plant interface.


Subject(s)
Carbohydrate Metabolism , Host-Pathogen Interactions , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Ustilago/metabolism , Zea mays/microbiology , Animals , Hydrogen-Ion Concentration , Membrane Potentials , Models, Biological , Sucrose/metabolism , Xenopus , Zea mays/metabolism
17.
Mol Pharmacol ; 90(5): 508-521, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27555600

ABSTRACT

Na+-d-glucose cotransporter 1 (SGLT1) is rate-limiting for glucose absorption in the small intestine. Shortly after intake of glucose-rich food, SGLT1 abundance in the luminal membrane of the small intestine is increased. This upregulation occurs via glucose-induced acceleration of the release of SGLT1-containing vesicles from the trans-Golgi network (TGN), which is regulated by a domain of protein RS1 (RSC1A1) named RS1-Reg. Dependent on phosphorylation, RS1-Reg blocks release of vesicles containing SGLT1 or concentrative nucleoside transporter 1. The hypothesis has been raised that RS1-Reg binds to different receptor proteins at the TGN, which trigger release of vesicles with different transporters. To identify the presumed receptor proteins, two-hybrid screening was performed. Interaction with ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme of polyamine synthesis, was observed and verified by immunoprecipitation. Binding of RS1-Reg mutants to ODC1 was characterized using surface plasmon resonance. Inhibition of ODC1 activity by RS1-Reg mutants and the ODC1 inhibitor difluoromethylornithine (DFMO) was measured in the absence and presence of glucose. In addition, short-term effects of DFMO, RS1-Reg mutants, the ODC1 product putrescine, and/or glucose on SGLT1 expressed in oocytes of Xenopus laevis were investigated. High-affinity binding of RS1-Reg to ODC1 was demonstrated, and evidence for a glucose binding site in ODC1 was provided. Binding of RS1-Reg to ODC1 inhibits the enzymatic activity at low intracellular glucose, which is blunted at high intracellular glucose. The data suggest that generation of putrescine by ODC1 at the TGN stimulates release of SGLT1-containing vesicles. This indicates a biomedically important role of ODC1 in regulation of glucose homeostasis.


Subject(s)
Down-Regulation/drug effects , Exocytosis/drug effects , Glucose/pharmacology , Monosaccharide Transport Proteins/metabolism , Ornithine Decarboxylase/metabolism , Sodium-Glucose Transporter 1/metabolism , Animals , Biological Transport/drug effects , Caco-2 Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Eflornithine/pharmacology , Electrophoresis, Polyacrylamide Gel , HEK293 Cells , Humans , Immunoprecipitation , Intracellular Space/metabolism , Kinetics , Methylglucosides/pharmacology , Models, Biological , Monosaccharide Transport Proteins/chemistry , Oocytes/drug effects , Oocytes/metabolism , Phlorhizin/pharmacology , Protein Binding/drug effects , Protein Domains , Recombinant Proteins/metabolism , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Surface Plasmon Resonance , Xenopus laevis
18.
Pflugers Arch ; 473(10): 1687, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34415397
19.
New Phytol ; 210(3): 922-33, 2016 May.
Article in English | MEDLINE | ID: mdl-26831448

ABSTRACT

Extrafloral nectaries secrete a sweet sugar cocktail that lures predator insects for protection from foraging herbivores. Apart from sugars and amino acids, the nectar contains the anions chloride and nitrate. Recent studies with Populus have identified a type of nectary covered by apical bipolar epidermal cells, reminiscent of the secretory brush border epithelium in animals. Border epithelia operate transepithelial anion transport, which is required for membrane potential and/or osmotic adjustment of the secretory cells. In search of anion transporters expressed in extrafloral nectaries, we identified PttSLAH3 (Populus tremula × Populus tremuloides SLAC1 Homologue3), an anion channel of the SLAC/SLAH family. When expressed in Xenopus oocytes, PttSLAH3 displayed the features of a voltage-dependent anion channel, permeable to both nitrate and chloride. In contrast to the Arabidopsis SLAC/SLAH family members, the poplar isoform PttSLAH3 is independent of phosphorylation activation by protein kinases. To understand the basis for the autonomous activity of the poplar SLAH3, we generated and expressed chimera between kinase-independent PttSLAH3 and kinase-dependent Arabidopsis AtSLAH3. We identified the N-terminal tail and, to a lesser extent, the C-terminal tail as responsible for PttSLAH3 kinase-(in)dependent action. This feature of PttSLAH3 may provide the secretory cell with a channel probably controlling long-term nectar secretion.


Subject(s)
Anions/metabolism , Epithelium/metabolism , Ion Channels/metabolism , Plant Proteins/metabolism , Populus/metabolism , Protein Kinases/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Epithelium/drug effects , Flowers/drug effects , Flowers/metabolism , Ion Channel Gating/drug effects , Nitrates/pharmacology , Plant Nectar , Plant Proteins/chemistry , Populus/drug effects , Recombinant Fusion Proteins/metabolism , Structure-Activity Relationship
20.
Plant Cell ; 25(8): 3010-21, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23964025

ABSTRACT

Proton-driven Suc transporters allow phloem cells of higher plants to accumulate Suc to more than 1 M, which is up to ~1000-fold higher than in the surrounding extracellular space. The carrier protein can accomplish this task only because proton and Suc transport are tightly coupled. This study provides insights into this coupling by resolving the first step in the transport cycle of the Suc transporter SUT1 from maize (Zea mays). Voltage clamp fluorometry measurements combining electrophysiological techniques with fluorescence-based methods enable the visualization of conformational changes of SUT1 expressed in Xenopus laevis oocytes. Using the Suc derivate sucralose, binding of which hinders conformational changes of SUT1, the association of protons to the carrier could be dissected from transport-associated movements of the protein. These combined approaches enabled us to resolve the binding of protons to the carrier and its interrelationship with the alternating movement of the protein. The data indicate that the rate-limiting step of the reaction cycle is determined by the accessibility of the proton binding site. This, in turn, is determined by the conformational change of the SUT1 protein, alternately exposing the binding pockets to the inward and to the outward face of the membrane.


Subject(s)
Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Zea mays/metabolism , Animals , Biological Transport/drug effects , Fluorescence , Fluorometry , Hydrogen-Ion Concentration , Ion Channel Gating/drug effects , Models, Biological , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Protein Conformation , Structure-Activity Relationship , Sucrose/analogs & derivatives , Sucrose/pharmacology , Xenopus laevis , Zea mays/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL