Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
Add more filters

Publication year range
1.
Cell ; 182(1): 9-11, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649881

ABSTRACT

In this issue of Cell, articles by Gillette et al., Chen et al., and Xu, et al. collectively provide a deep and comprehensive proteogenomic analysis of lung adenocarcinoma, addressing differences in patient ethnicity and smoking background. They highlight the importance of associating genomics with the functional proteomic outcome.


Subject(s)
Lung Neoplasms , Proteogenomics , Adenocarcinoma of Lung/genetics , Genomics , Humans , Lung Neoplasms/genetics , Proteomics
2.
Cell ; 179(1): 236-250.e18, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31495571

ABSTRACT

Immunotherapy has revolutionized cancer treatment, yet most patients do not respond. Here, we investigated mechanisms of response by profiling the proteome of clinical samples from advanced stage melanoma patients undergoing either tumor infiltrating lymphocyte (TIL)-based or anti- programmed death 1 (PD1) immunotherapy. Using high-resolution mass spectrometry, we quantified over 10,300 proteins in total and ∼4,500 proteins across most samples in each dataset. Statistical analyses revealed higher oxidative phosphorylation and lipid metabolism in responders than in non-responders in both treatments. To elucidate the effects of the metabolic state on the immune response, we examined melanoma cells upon metabolic perturbations or CRISPR-Cas9 knockouts. These experiments indicated lipid metabolism as a regulatory mechanism that increases melanoma immunogenicity by elevating antigen presentation, thereby increasing sensitivity to T cell mediated killing both in vitro and in vivo. Altogether, our proteomic analyses revealed association between the melanoma metabolic state and the response to immunotherapy, which can be the basis for future improvement of therapeutic response.


Subject(s)
Immunotherapy/methods , Melanoma/metabolism , Melanoma/therapy , Mitochondria/metabolism , Proteomics/methods , Skin Neoplasms/metabolism , Skin Neoplasms/therapy , Adoptive Transfer/methods , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Cohort Studies , Female , Humans , Lipid Metabolism/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/immunology , Treatment Outcome , Young Adult
3.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30612738

ABSTRACT

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Subject(s)
Carrier Proteins/genetics , Nuclear Proteins/genetics , Carrier Proteins/metabolism , Chromatin/metabolism , DNA , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Female , Genomic Instability , Germ-Line Mutation , Homologous Recombination , Humans , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Male , Neoplasms/genetics , Neoplasms/metabolism , Nuclear Proteins/metabolism , Primary Cell Culture , Recombinational DNA Repair
4.
Cell ; 158(5): 1199-1209, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171417

ABSTRACT

Synthetic lethality occurs when the inhibition of two genes is lethal while the inhibition of each single gene is not. It can be harnessed to selectively treat cancer by identifying inactive genes in a given cancer and targeting their synthetic lethal (SL) partners. We present a data-driven computational pipeline for the genome-wide identification of SL interactions in cancer by analyzing large volumes of cancer genomic data. First, we show that the approach successfully captures known SL partners of tumor suppressors and oncogenes. We then validate SL predictions obtained for the tumor suppressor VHL. Next, we construct a genome-wide network of SL interactions in cancer and demonstrate its value in predicting gene essentiality and clinical prognosis. Finally, we identify synthetic lethality arising from gene overactivation and use it to predict drug efficacy. These results form a computational basis for exploiting synthetic lethality to uncover cancer-specific susceptibilities.


Subject(s)
Computational Biology/methods , Data Mining/methods , Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Genes, Tumor Suppressor , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Oncogenes , RNA, Small Interfering/metabolism , Workflow
5.
EMBO J ; 43(4): 637-662, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38243117

ABSTRACT

The E. coli transcriptome at the cell's poles (polar transcriptome) is unique compared to the membrane and cytosol. Several factors have been suggested to mediate mRNA localization to the membrane, but the mechanism underlying polar localization of mRNAs remains unknown. Here, we combined a candidate system approach with proteomics to identify factors that mediate mRNAs localization to the cell poles. We identified the pole-to-pole oscillating protein MinD as an essential factor regulating polar mRNA localization, although it is not able to bind RNA directly. We demonstrate that RNase E, previously shown to interact with MinD, is required for proper localization of polar mRNAs. Using in silico modeling followed by experimental validation, the membrane-binding site in RNase E was found to mediate binding to MinD. Intriguingly, not only does MinD affect RNase E interaction with the membrane, but it also affects its mode of action and dynamics. Polar accumulation of RNase E in ΔminCDE cells resulted in destabilization and depletion of mRNAs from poles. Finally, we show that mislocalization of polar mRNAs may prevent polar localization of their protein products. Taken together, our findings show that the interplay between MinD and RNase E determines the composition of the polar transcriptome, thus assigning previously unknown roles for both proteins.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Bacterial Proteins/metabolism , Adenosine Triphosphatases/metabolism
6.
Mol Cell ; 80(5): 876-891.e6, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33217318

ABSTRACT

Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , Cytoplasmic Granules/metabolism , Drosophila Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , Cell Line, Tumor , Cytoplasmic Granules/genetics , Cytoplasmic Granules/pathology , Dipeptides/genetics , Dipeptides/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster , Humans , Mice , Proteomics , Small Ubiquitin-Related Modifier Proteins/genetics
7.
Nature ; 590(7845): 332-337, 2021 02.
Article in English | MEDLINE | ID: mdl-33328638

ABSTRACT

Extensive tumour inflammation, which is reflected by high levels of infiltrating T cells and interferon-γ (IFNγ) signalling, improves the response of patients with melanoma to checkpoint immunotherapy1,2. Many tumours, however, escape by activating cellular pathways that lead to immunosuppression. One such mechanism is the production of tryptophan metabolites along the kynurenine pathway by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is induced by IFNγ3-5. However, clinical trials using inhibition of IDO1 in combination with blockade of the PD1 pathway in patients with melanoma did not improve the efficacy of treatment compared to PD1 pathway blockade alone6,7, pointing to an incomplete understanding of the role of IDO1 and the consequent degradation of tryptophan in mRNA translation and cancer progression. Here we used ribosome profiling in melanoma cells to investigate the effects of prolonged IFNγ treatment on mRNA translation. Notably, we observed accumulations of ribosomes downstream of tryptophan codons, along with their expected stalling at the tryptophan codon. This suggested that ribosomes bypass tryptophan codons in the absence of tryptophan. A detailed examination of these tryptophan-associated accumulations of ribosomes-which we term 'W-bumps'-showed that they were characterized by ribosomal frameshifting events. Consistently, reporter assays combined with proteomic and immunopeptidomic analyses demonstrated the induction of ribosomal frameshifting, and the generation and presentation of aberrant trans-frame peptides at the cell surface after treatment with IFNγ. Priming of naive T cells from healthy donors with aberrant peptides induced peptide-specific T cells. Together, our results suggest that IDO1-mediated depletion of tryptophan, which is induced by IFNγ, has a role in the immune recognition of melanoma cells by contributing to diversification of the peptidome landscape.


Subject(s)
Antigen Presentation , Frameshift Mutation , Melanoma/immunology , Peptides/genetics , Peptides/immunology , Protein Biosynthesis/immunology , T-Lymphocytes/immunology , Cell Line , Codon/genetics , Frameshifting, Ribosomal/drug effects , Frameshifting, Ribosomal/genetics , Frameshifting, Ribosomal/immunology , Histocompatibility Antigens Class I/immunology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/immunology , Interferon-gamma/pharmacology , Melanoma/pathology , Peptides/chemistry , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Proteome , Ribosomes/drug effects , Ribosomes/metabolism , Tryptophan/deficiency , Tryptophan/genetics , Tryptophan/metabolism
8.
Mol Cell ; 75(3): 427-441.e5, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31353208

ABSTRACT

The translation machinery and the genes it decodes co-evolved to achieve production throughput and accuracy. Nonetheless, translation errors are frequent, and they affect physiology and protein evolution. Mapping translation errors in proteomes and understanding their causes is hindered by lack of a proteome-wide experimental methodology. We present the first methodology for systematic detection and quantification of errors in entire proteomes. Following proteome mass spectrometry, we identify, in E. coli and yeast, peptides whose mass indicates specific amino acid substitutions. Most substitutions result from codon-anticodon mispairing. Errors occur at sites that evolve rapidly and that minimally affect energetic stability, indicating selection for high translation fidelity. Ribosome density data show that errors occur at sites where ribosome velocity is higher, demonstrating a trade-off between speed and accuracy. Treating bacteria with an aminoglycoside antibiotic or deprivation of specific amino acids resulted in particular patterns of errors. These results reveal a mechanistic and evolutionary basis for translation fidelity.


Subject(s)
Amino Acid Substitution/genetics , Protein Biosynthesis , Proteome/genetics , Selection, Genetic , Amino Acids/genetics , Anticodon/genetics , Codon/genetics , Escherichia coli/genetics , RNA, Transfer/genetics , Ribosomes/genetics , Saccharomyces cerevisiae/genetics
9.
Proc Natl Acad Sci U S A ; 120(52): e2311460120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127986

ABSTRACT

The TP53 gene is mutated in approximately 30% of all breast cancer cases. Adipocytes and preadipocytes, which constitute a substantial fraction of the stroma of normal mammary tissue and breast tumors, undergo transcriptional, metabolic, and phenotypic reprogramming during breast cancer development and play an important role in tumor progression. We report here that p53 loss in breast cancer cells facilitates the reprogramming of preadipocytes, inducing them to acquire a unique transcriptional and metabolic program that combines impaired adipocytic differentiation with augmented cytokine expression. This, in turn, promotes the establishment of an inflammatory tumor microenvironment, including increased abundance of Ly6C+ and Ly6G+ myeloid cells and elevated expression of the immune checkpoint ligand PD-L1. We also describe a potential gain-of-function effect of common p53 missense mutations on the inflammatory reprogramming of preadipocytes. Altogether, our study implicates p53 deregulation in breast cancer cells as a driver of tumor-supportive adipose tissue reprogramming, expanding the network of non-cell autonomous mechanisms whereby p53 dysfunction may promote cancer. Further elucidation of the interplay between p53 and adipocytes within the tumor microenvironment may suggest effective therapeutic targets for the treatment of breast cancer patients.


Subject(s)
Breast Neoplasms , Tumor Suppressor Protein p53 , Humans , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Breast Neoplasms/pathology , Genes, p53 , Adipose Tissue/metabolism , Adipocytes/metabolism , Tumor Microenvironment/genetics
10.
EMBO J ; 40(2): e104400, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33215756

ABSTRACT

The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.


Subject(s)
DNA Damage/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Phosphatidylinositol 3-Kinases/genetics , Proteomics/methods , Signal Transduction/genetics
11.
Mol Cell Proteomics ; 22(7): 100587, 2023 07.
Article in English | MEDLINE | ID: mdl-37290530

ABSTRACT

Comprehensive molecular characterization of tumors aims to uncover cancer vulnerabilities, drug resistance mechanisms, and biomarkers. Identification of cancer drivers was suggested as the basis for patient-tailored therapy, and transcriptomic analyses were proposed to reveal the phenotypic outcome of cancer mutations. With the maturation of the proteomic field, studies of protein-RNA discrepancies suggested that RNA analyses are insufficient to predict cellular functions. In this article we discuss the importance of direct mRNA-protein comparisons in clinical cancer studies. We make use of the large amount of data generated by the Clinical Proteomic Tumor Analysis Consortium, which includes protein and mRNA expression analyses from the exact same samples. Analysis of protein-RNA correlations showed marked differences among cancer types, and highlighted the protein-RNA similarities and discrepancies among functional pathways and drug targets. Additionally, unsupervised clustering of the data based on protein or RNA showed substantial differences in tumor classification and the cellular processes that differentiate between clusters. These analyses show the difficulty to predict protein levels from mRNAs, and the critical role of protein analyses for phenotypic tumor characterization.


Subject(s)
Neoplasms , Proteomics , Humans , RNA , Neoplasms/genetics , Gene Expression Profiling , RNA, Messenger/genetics , Biomarkers, Tumor/genetics
12.
Nat Methods ; 18(9): 1068-1074, 2021 09.
Article in English | MEDLINE | ID: mdl-34480152

ABSTRACT

In general, mRNAs are assumed to be loaded with ribosomes instantly upon entry into the cytoplasm. To measure ribosome density (RD) on nascent mRNA, we developed nascent Ribo-Seq by combining Ribo-Seq with progressive 4-thiouridine labeling. In mouse macrophages, we determined experimentally the lag between the appearance of nascent mRNA and its association with ribosomes, which was calculated to be 20-22 min for bulk mRNA. In mouse embryonic stem cells, nRibo-Seq revealed an even stronger lag of 35-38 min in ribosome loading. After stimulation of macrophages with lipopolysaccharide, the lag between cytoplasmic and translated mRNA leads to uncoupling between input and ribosome-protected fragments, which gives rise to distorted RD measurements under conditions where mRNA amounts are far from steady-state expression. As a result, we demonstrate that transcriptional changes affect RD in a passive way.


Subject(s)
Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism , Sequence Analysis, RNA/methods , Animals , Cytoplasm/genetics , Kinetics , Lipopolysaccharides/pharmacology , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/physiology , RAW 264.7 Cells , RNA, Messenger/genetics , Ribosomal Proteins/biosynthesis , Ribosomal Proteins/genetics , Ribosomes/drug effects , Time Factors
13.
Int J Cancer ; 153(3): 654-668, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37141410

ABSTRACT

Glioblastoma (GB) is the most aggressive neoplasm of the brain. Poor prognosis is mainly attributed to tumor heterogeneity, invasiveness and drug resistance. Only a small fraction of GB patients survives longer than 24 months from the time of diagnosis (ie, long-term survivors [LTS]). In our study, we aimed to identify molecular markers associated with favorable GB prognosis as a basis to develop therapeutic applications to improve patients' outcome. We have recently assembled a proteogenomic dataset of 87 GB clinical samples of varying survival rates. Following RNA-seq and mass spectrometry (MS)-based proteomics analysis, we identified several differentially expressed genes and proteins, including some known cancer-related pathways and some less established that showed higher expression in short-term (<6 months) survivors (STS) compared to LTS. One such target found was deoxyhypusine hydroxylase (DOHH), which is known to be involved in the biosynthesis of hypusine, an unusual amino acid essential for the function of the eukaryotic translation initiation factor 5A (eIF5A), which promotes tumor growth. We consequently validated DOHH overexpression in STS samples by quantitative polymerase chain reaction (qPCR) and immunohistochemistry. We further showed robust inhibition of proliferation, migration and invasion of GB cells following silencing of DOHH with short hairpin RNA (shRNA) or inhibition of its activity with small molecules, ciclopirox and deferiprone. Moreover, DOHH silencing led to significant inhibition of tumor progression and prolonged survival in GB mouse models. Searching for a potential mechanism by which DOHH promotes tumor aggressiveness, we found that it supports the transition of GB cells to a more invasive phenotype via epithelial-mesenchymal transition (EMT)-related pathways.


Subject(s)
Glioblastoma , Animals , Mice , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Ciclopirox , Survivors
14.
Int J Cancer ; 152(4): 781-793, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36214786

ABSTRACT

No current screening methods for high-grade ovarian cancer (HGOC) guarantee effective early detection for high-risk women such as germline BRCA mutation carriers. Therefore, the standard-of-care remains risk-reducing salpingo-oophorectomy (RRSO) around age 40. Proximal liquid biopsy is a promising source of biomarkers, but sensitivity has not yet qualified for clinical implementation. We aimed to develop a proteomic assay based on proximal liquid biopsy, as a decision support tool for monitoring high-risk population. Ninety Israeli BRCA1 or BRCA2 mutation carriers were included in the training set (17 HGOC patients and 73 asymptomatic women), (BEDOCA trial; ClinicalTrials.gov Identifier: NCT03150121). The proteome of the microvesicle fraction of the samples was profiled by mass spectrometry and a classifier was developed using logistic regression. An independent cohort of 98 BRCA mutation carriers was used for validation. Safety information was collected for all women who opted for uterine lavage in a clinic setting. We present a 7-protein diagnostic signature, with AUC >0.97 and a negative predictive value (NPV) of 100% for detecting HGOC. The AUC of the biomarker in the independent validation set was >0.94 and the NPV >99%. The sampling procedure was clinically acceptable, with favorable pain scores and safety. We conclude that the acquisition of Müllerian tract proximal liquid biopsies in women at high-risk for HGOC and the application of the BRCA-specific diagnostic assay demonstrates high sensitivity, specificity, technical feasibility and safety. Similar classifier for an average-risk population is warranted.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Humans , Female , Adult , Genes, BRCA2 , Mutation , Proteomics , Salpingo-oophorectomy , BRCA1 Protein/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovariectomy , Germ-Line Mutation , Breast Neoplasms/genetics , Genetic Predisposition to Disease
15.
Genes Dev ; 29(22): 2325-30, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26588988

ABSTRACT

p53 is a pivotal tumor suppressor and a major barrier against cancer. We now report that silencing of the Hippo pathway tumor suppressors LATS1 and LATS2 in nontransformed mammary epithelial cells reduces p53 phosphorylation and increases its association with the p52 NF-κB subunit. Moreover, it partly shifts p53's conformation and transcriptional output toward a state resembling cancer-associated p53 mutants and endows p53 with the ability to promote cell migration. Notably, LATS1 and LATS2 are frequently down-regulated in breast cancer; we propose that such down-regulation might benefit cancer by converting p53 from a tumor suppressor into a tumor facilitator.


Subject(s)
Down-Regulation , Gene Expression Regulation, Neoplastic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Cell Line , Cell Movement/genetics , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Hippo Signaling Pathway , Humans , Mutation , NF-kappa B p52 Subunit/genetics , NF-kappa B p52 Subunit/metabolism , Phosphorylation , Protein Conformation , Tumor Suppressor Protein p53/genetics
16.
Genes Dev ; 29(8): 791-802, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25854920

ABSTRACT

Mammalian cells mostly rely on extracellular molecules to transfer signals to other cells. However, in stress conditions, more robust mechanisms might be necessary to facilitate cell-cell communications. Cellular senescence, a stress response associated with permanent exit from the cell cycle and the development of an immunogenic phenotype, limits both tumorigenesis and tissue damage. Paradoxically, the long-term presence of senescent cells can promote tissue damage and aging within their microenvironment. Soluble factors secreted from senescent cells mediate some of these cell-nonautonomous effects. However, it is unknown whether senescent cells impact neighboring cells by other mechanisms. Here we show that senescent cells directly transfer proteins to neighboring cells and that this process facilitates immune surveillance of senescent cells by natural killer (NK) cells. We found that transfer of proteins to NK and T cells is increased in the murine preneoplastic pancreas, a site where senescent cells are present in vivo. Proteomic analysis and functional studies of the transferred proteins revealed that the transfer is strictly dependent on cell-cell contact and CDC42-regulated actin polymerization and is mediated at least partially by cytoplasmic bridges. These findings reveal a novel mode of intercellular communication by which senescent cells regulate their immune surveillance and might impact tumorigenesis and tissue aging.


Subject(s)
Cellular Senescence/physiology , Pancreas/cytology , Actins/metabolism , Animals , Cell Communication/physiology , Fibroblasts/cytology , Fibroblasts/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Lymphocyte Activation , Mice , Pancreas/physiology , Polymerization , Protein Transport , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , rho GTP-Binding Proteins/metabolism
17.
Proc Natl Acad Sci U S A ; 116(34): 16987-16996, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31387980

ABSTRACT

Repetitive sequences are hotspots of evolution at multiple levels. However, due to difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is poorly understood. We developed a rigorous motif-based methodology to quantify variations in the repeat content, beyond microsatellites, in proteomes and genomes directly from proteomic and genomic raw data. This method was applied to a wide range of tumors and normal tissues. We identify high similarity between repeat instability patterns in tumors and their patient-matched adjacent normal tissues. Nonetheless, tumor-specific signatures both in protein expression and in the genome strongly correlate with cancer progression and robustly predict the tumorigenic state. In a patient, the hierarchy of genomic repeat instability signatures accurately reconstructs tumor evolution, with primary tumors differentiated from metastases. We observe an inverse relationship between repeat instability and point mutation load within and across patients independent of other somatic aberrations. Thus, repeat instability is a distinct, transient, and compensatory adaptive mechanism in tumor evolution and a potential signal for early detection.


Subject(s)
Databases, Genetic , Gene Expression Regulation, Neoplastic , Genomic Instability , Models, Biological , Neoplasm Proteins , Neoplasms , Humans , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Proteomics
18.
Nat Methods ; 20(3): 324-326, 2023 03.
Article in English | MEDLINE | ID: mdl-36899159
20.
Mol Syst Biol ; 16(9): e9443, 2020 09.
Article in English | MEDLINE | ID: mdl-32960509

ABSTRACT

Tumor relapse as a consequence of chemotherapy resistance is a major clinical challenge in advanced stage breast tumors. To identify processes associated with poor clinical outcome, we took a mass spectrometry-based proteomic approach and analyzed a breast cancer cohort of 113 formalin-fixed paraffin-embedded samples. Proteomic profiling of matched tumors before and after chemotherapy, and tumor-adjacent normal tissue, all from the same patients, allowed us to define eight patterns of protein level changes, two of which correlate to better chemotherapy response. Supervised analysis identified two proteins of proline biosynthesis pathway, PYCR1 and ALDH18A1, that were significantly associated with resistance to treatment based on pattern dominance. Weighted gene correlation network analysis of post-treatment samples revealed that these proteins are associated with tumor relapse and affect patient survival. Functional analysis showed that knockdown of PYCR1 reduced invasion and migration capabilities of breast cancer cell lines. PYCR1 knockout significantly reduced tumor burden and increased drug sensitivity of orthotopically injected ER-positive tumor in vivo, thus emphasizing the role of PYCR1 in resistance to chemotherapy.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Neoadjuvant Therapy , Proteomics , Breast Neoplasms/pathology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Proliferation , Citric Acid Cycle , Female , Gene Regulatory Networks , Humans , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Prognosis , Protein Interaction Maps , Pyrroline Carboxylate Reductases/metabolism , Recurrence , Survival Analysis , delta-1-Pyrroline-5-Carboxylate Reductase
SELECTION OF CITATIONS
SEARCH DETAIL