Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 569(7757): 503-508, 2019 05.
Article in English | MEDLINE | ID: mdl-31068700

ABSTRACT

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.


Subject(s)
Cell Line, Tumor , Neoplasms/genetics , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , DNA Methylation , Drug Resistance, Neoplasm , Ethnicity/genetics , Gene Editing , Histones/metabolism , Humans , MicroRNAs/genetics , Molecular Targeted Therapy , Neoplasms/metabolism , Protein Array Analysis , RNA Splicing
2.
Biopreserv Biobank ; 13(5): 311-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26484571

ABSTRACT

The Genotype-Tissue Expression (GTEx) project, sponsored by the NIH Common Fund, was established to study the correlation between human genetic variation and tissue-specific gene expression in non-diseased individuals. A significant challenge was the collection of high-quality biospecimens for extensive genomic analyses. Here we describe how a successful infrastructure for biospecimen procurement was developed and implemented by multiple research partners to support the prospective collection, annotation, and distribution of blood, tissues, and cell lines for the GTEx project. Other research projects can follow this model and form beneficial partnerships with rapid autopsy and organ procurement organizations to collect high quality biospecimens and associated clinical data for genomic studies. Biospecimens, clinical and genomic data, and Standard Operating Procedures guiding biospecimen collection for the GTEx project are available to the research community.


Subject(s)
Biomedical Research , Tissue Banks , Tissue and Organ Procurement , Biomedical Research/methods , Biomedical Research/organization & administration , Biomedical Research/standards , Humans , Tissue and Organ Procurement/methods , Tissue and Organ Procurement/organization & administration , Tissue and Organ Procurement/standards
SELECTION OF CITATIONS
SEARCH DETAIL