Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Gastroenterology ; 161(4): 1288-1302.e13, 2021 10.
Article in English | MEDLINE | ID: mdl-34224739

ABSTRACT

BACKGROUND & AIMS: DNA mismatch repair deficiency drives microsatellite instability (MSI). Cells with MSI accumulate numerous frameshift mutations. Frameshift mutations affecting cancer-related genes may promote tumorigenesis and, therefore, are shared among independently arising MSI tumors. Consequently, such recurrent frameshift mutations can give rise to shared immunogenic frameshift peptides (FSPs) that represent ideal candidates for a vaccine against MSI cancer. Pathogenic germline variants of mismatch repair genes cause Lynch syndrome (LS), a hereditary cancer syndrome affecting approximately 20-25 million individuals worldwide. Individuals with LS are at high risk of developing MSI cancer. Previously, we demonstrated safety and immunogenicity of an FSP-based vaccine in a phase I/IIa clinical trial in patients with a history of MSI colorectal cancer. However, the cancer-preventive effect of FSP vaccination in the scenario of LS has not yet been demonstrated. METHODS: A genome-wide database of 488,235 mouse coding mononucleotide repeats was established, from which a set of candidates was selected based on repeat length, gene expression, and mutation frequency. In silico prediction, in vivo immunogenicity testing, and epitope mapping was used to identify candidates for FSP vaccination. RESULTS: We identified 4 shared FSP neoantigens (Nacad [FSP-1], Maz [FSP-1], Senp6 [FSP-1], Xirp1 [FSP-1]) that induced CD4/CD8 T cell responses in naïve C57BL/6 mice. Using VCMsh2 mice, which have a conditional knockout of Msh2 in the intestinal tract and develop intestinal cancer, we showed vaccination with a combination of only 4 FSPs significantly increased FSP-specific adaptive immunity, reduced intestinal tumor burden, and prolonged overall survival. Combination of FSP vaccination with daily naproxen treatment potentiated immune response, delayed tumor growth, and prolonged survival even more effectively than FSP vaccination alone. CONCLUSIONS: Our preclinical findings support a clinical strategy of recurrent FSP neoantigen vaccination for LS cancer immunoprevention.


Subject(s)
Antigens, Neoplasm/pharmacology , Cancer Vaccines/pharmacology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Frameshift Mutation , Immunogenetic Phenomena , Peptide Fragments/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/immunology , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Databases, Genetic , Disease Models, Animal , Epitopes , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Mice, Inbred C57BL , Mice, Knockout , MutS Homolog 2 Protein/genetics , Naproxen/pharmacology , Peptide Fragments/genetics , Peptide Fragments/immunology , Tumor Burden/drug effects , Tumor Microenvironment , Vaccination , Vaccine Efficacy
2.
Gut ; 70(3): 555-566, 2021 03.
Article in English | MEDLINE | ID: mdl-32641470

ABSTRACT

OBJECTIVE: Patients with Lynch syndrome (LS) are at markedly increased risk for colorectal cancer. It is being increasingly recognised that the immune system plays an essential role in LS tumour development, thus making an ideal target for cancer prevention. Our objective was to evaluate the safety, assess the activity and discover novel molecular pathways involved in the activity of naproxen as primary and secondary chemoprevention in patients with LS. DESIGN: We conducted a Phase Ib, placebo-controlled, randomised clinical trial of two dose levels of naproxen sodium (440 and 220 mg) administered daily for 6 months to 80 participants with LS, and a co-clinical trial using a genetically engineered mouse model of LS and patient-derived organoids (PDOs). RESULTS: Overall, the total number of adverse events was not different across treatment arms with excellent tolerance of the intervention. The level of prostaglandin E2 in the colorectal mucosa was significantly decreased after treatment with naproxen when compared with placebo. Naproxen activated different resident immune cell types without any increase in lymphoid cellularity, and changed the expression patterns of the intestinal crypt towards epithelial differentiation and stem cell regulation. Naproxen demonstrated robust chemopreventive activity in a mouse co-clinical trial and gene expression profiles induced by naproxen in humans showed perfect discrimination of mice specimens with LS and PDOs treated with naproxen and control. CONCLUSIONS: Naproxen is a promising strategy for immune interception in LS. We have discovered naproxen-induced gene expression profiles for their potential use as predictive biomarkers of drug activity. TRIAL REGISTRATION NUMBER: gov Identifier: NCT02052908.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chemoprevention , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/immunology , Naproxen/pharmacology , Adult , Aged , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Dinoprostone/metabolism , Disease Models, Animal , Female , Humans , Intestinal Mucosa/metabolism , Male , Mice , Middle Aged , Naproxen/administration & dosage
3.
J Natl Cancer Inst ; 116(6): 957-965, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38466935

ABSTRACT

BACKGROUND: Lynch syndrome is a hereditary cancer predisposition syndrome caused by germline mutations in DNA mismatch repair genes, which lead to high microsatellite instability and frameshift mutations at coding mononucleotide repeats in the genome. Recurrent frameshift mutations in these regions are thought to play a central role in the increased risk of various cancers, but no biomarkers are currently available for the surveillance of high microsatellite instability-associated cancers. METHODS: A frameshift mutation-based biomarker panel was developed and validated by targeted next-generation sequencing of supernatant DNA from cultured high microsatellite instability colorectal cancer cells. This panel supported selection of 122 frameshift mutation targets as potential biomarkers. This biomarker panel was then tested using matched tumor, adjacent normal tissue, and buffy coat samples (53 samples) and blood-derived cell-free DNA (cfDNA) (38 samples) obtained from 45 high microsatellite instability and mismatch repair-deficient patients. We also sequenced cfDNA from 84 healthy participants to assess background noise. RESULTS: Recurrent frameshift mutations at coding mononucleotide repeats were detectable not only in tumors but also in cfDNA from high microsatellite instability and mismatch repair-deficient patients, including a Lynch syndrome carrier, with a varying range of target detection (up to 85.2%), whereas they were virtually undetectable in healthy participants. Receiver operating characteristic curve analysis showed high sensitivity and specificity (area under the curve = 0.94) of the investigated panel. CONCLUSIONS: We demonstrated that frameshift mutations can be detected in cfDNA from high microsatellite instability and mismatch repair-deficient patients and asymptomatic carriers. The 122-target frameshift mutation panel described here has promise as a tool for improved surveillance of high microsatellite instability and mismatch repair-deficient patients, with the potential to reduce the frequency of invasive screening methods for this high-cancer-risk cohort.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms, Hereditary Nonpolyposis , Frameshift Mutation , Microsatellite Instability , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Male , Female , Middle Aged , Adult , Aged , DNA Mismatch Repair/genetics , High-Throughput Nucleotide Sequencing , ROC Curve , Case-Control Studies , Sensitivity and Specificity
4.
J Proteomics ; 195: 125-137, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30634002

ABSTRACT

Fusobacterium nucleatum is a Gram-negative bacterium commonly found in the oral cavity and is often involved in periodontal diseases. Recent studies have shown increased F. nucleatum prevalence in colorectal cancer (CRC) tissues, and causal data has linked this bacterium to CRC tumorigenesis. Immune-based approaches to contain, reduce or eradicate its gut colonization may prevent CRC. Outer membrane vesicles (OMVs) are naturally produced by Gram-negative bacteria, typically contain multiple putative virulence factors and may elicit protective immune responses if used as vaccines. Here, OMVs were isolated from F. nucleatum cultures and purified using gradient centrifugation. Proteins contained within the OMVs were identified by nano LC/MS/MS analysis. Of 98 proteins consistently identified from duplicate analyses, 60 were predicted to localize to the outer membrane or periplasm via signal peptide driven translocation. Of these, six autotransporter proteins, which constitute the majority of protein mass of OMVs, were associated with Type V secretion system. In addition, other putative virulence factor proteins with functional domains, including FadA, MORN2 and YadA-like domain, were identified with multiple exposed epitope sites as determined by in silico analysis. Altogether, the non-replicative OMVs of F. nucleatum contain multiple antigenic virulence factors that may play important roles in the design and development of vaccines against F. nucleatum. SIGNIFICANCE: Fusobacterium nulceatum has been proved playing significant role in colorectal carcinogenesis. Outer membrane vesicles are nanoparticles that naturally secreted by Gram-negative bacterial containing various antigenic components, which provides new insight in vaccine development. Understanding the constituents of F. nucleatum OMVs will provide fundamental information and potential strategies for OMV-based F. nucleatum vaccines design. Based on our knowledge this is the first proteomic study of OMVs from F. nucleatum.


Subject(s)
Bacterial Proteins/metabolism , Extracellular Vesicles/metabolism , Fusobacterium nucleatum , Intestinal Mucosa/microbiology , Virulence Factors/metabolism , Bacterial Vaccines/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/prevention & control , Fusobacterium Infections/metabolism , Fusobacterium Infections/pathology , Fusobacterium Infections/prevention & control , Fusobacterium nucleatum/metabolism , Fusobacterium nucleatum/pathogenicity , Humans
5.
Oncotarget ; 10(40): 4004-4017, 2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31258845

ABSTRACT

Ethylmalonic Encephalopathy Protein 1 (ETHE1) is a sulfur dioxygenase that regulates cellular H2S levels. We previously demonstrated a significant increase of ETHE1 expression in "single-hit" colon epithelial cells from crypts of patients with Familial Adenomatous Polyposis (FAP). Here, we report elevated levels of ETHE1 expression and increased mitochondrial density occurring in-situ in phenotypically normal FAP colorectal mucosa. We also found that constitutive expression of ETHE1 increased aerobic glycolysis ("Warburg effect"), oxidative phosphorylation, and mitochondrial biogenesis in colorectal cancer (CRC) cell lines, thereby depleting H2S which relieved the inhibition of phosphodiesterase (PDE), and increased adenosine monophosphate (AMP) levels. This led to activation of the energy sensing AMP-activated protein kinase (AMPKp), Sirtuin1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), a master regulator of mitochondrial biogenesis. By contrast, shRNA silencing of ETHE1 reduced PDE activity, AMPKp/SIRT1/PGC1α levels and mitochondrial biogenesis. Constitutive expression of ETHE1 accelerated both CRC cell xenograft and orthotopic patient derived xenograft CRC cell growth in vivo. Overall, our data nominate elevated ETHE1 expression levels as a novel biomarker and potential therapeutic target for the prevention of CRC tumorigenesis.

6.
Oncotarget ; 8(42): 71574-71586, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29069730

ABSTRACT

Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression.

SELECTION OF CITATIONS
SEARCH DETAIL