Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
PLoS Biol ; 22(7): e3002709, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012844

ABSTRACT

RNA viruses have notoriously high mutation rates due to error-prone replication by their RNA polymerase. However, natural selection concentrates variability in a few key viral proteins. To test whether this stems from different mutation tolerance profiles among viral proteins, we measured the effect of >40,000 non-synonymous mutations across the full proteome of coxsackievirus B3 as well as >97% of all possible codon deletions in the nonstructural proteins. We find significant variation in mutational tolerance within and between individual viral proteins, which correlated with both general and protein-specific structural and functional attributes. Furthermore, mutational fitness effects remained stable across cell lines, suggesting selection pressures are mostly conserved across environments. In addition to providing a rich dataset for understanding virus biology and evolution, our results illustrate that incorporation of mutational tolerance data into druggable pocket discovery can aid in selecting targets with high barriers to drug resistance.


Subject(s)
Enterovirus B, Human , Mutation , Proteome , Enterovirus B, Human/genetics , Proteome/metabolism , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Genetic Fitness , Virus Replication/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
2.
Plant Biotechnol J ; 22(4): 876-891, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37966715

ABSTRACT

Viral nanoparticles (VNPs) are a new class of virus-based formulations that can be used as building blocks to implement a variety of functions of potential interest in biotechnology and nanomedicine. Viral coat proteins (CP) that exhibit self-assembly properties are particularly appropriate for displaying antigens and antibodies, by generating multivalent VNPs with therapeutic and diagnostic potential. Here, we developed genetically encoded multivalent VNPs derived from two filamentous plant viruses, potato virus X (PVX) and tobacco etch virus (TEV), which were efficiently and inexpensively produced in the biofactory Nicotiana benthamiana plant. PVX and TEV-derived VNPs were decorated with two different nanobodies recognizing two different regions of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The addition of different picornavirus 2A ribosomal skipping peptides between the nanobody and the CP allowed for modulating the degree of VNP decoration. Nanobody-decorated VNPs purified from N. benthamiana tissues successfully recognized the RBD antigen in enzyme-linked immunosorbent assays and showed efficient neutralization activity against pseudoviruses carrying the Spike protein. Interestingly, multivalent PVX and TEV-derived VNPs exhibited a neutralizing activity approximately one order of magnitude higher than the corresponding nanobody in a dimeric format. These properties, combined with the ability to produce VNP cocktails in the same N. benthamiana plant based on synergistic infection of the parent PVX and TEV, make these green nanomaterials an attractive alternative to standard antibodies for multiple applications in diagnosis and therapeutics.


Subject(s)
COVID-19 , Nanoparticles , Plant Viruses , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Single-Domain Antibodies/genetics , COVID-19/genetics , Nanoparticles/chemistry , Antibodies, Neutralizing , Antibodies, Viral
4.
PLoS Pathog ; 18(7): e1010631, 2022 07.
Article in English | MEDLINE | ID: mdl-35816514

ABSTRACT

The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Background , Humans , Mutation , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
J Med Virol ; 95(1): e28397, 2023 01.
Article in English | MEDLINE | ID: mdl-36504019

ABSTRACT

The information provided by SARS-CoV-2 spike (S)-targeting immunoassays can be instrumental in clinical-decision making. We compared the performance of the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) and the LIAISON® SARS-CoV-2 TrimericS IgG assay (DiaSorin) using a total of 1176 sera from 797 individuals, of which 286 were from vaccinated-SARS-CoV-2/experienced (Vac-Ex), 581 from vaccinated/naïve (Vac-N), 147 from unvaccinated/experienced (Unvac-Ex), and 162 from unvaccinated/naïve (Unvac-N) individuals. The Roche assay returned a higher number of positive results (907 vs. 790; p = 0.45; overall sensitivity: 89.3% vs. 77.6%). The concordance between results provided by the two immunoassays was higher for sera from Vac-N (Ï°: 0.58; interquartile ranges [IQR]: 0.50-0.65) than for sera from Vac-Ex (Ï°: 0.19; IQR: -0.14 to 0.52) or Unvac-Ex (Ï°: 0.18; IQR: 0.06-0.30). Discordant results occurred more frequently among sera from Unvac-Ex (34.7%) followed by Vac-N (14.6%) and Vac-Ex (2.7%). Antibody levels quantified by both immunoassays were not significantly different when <250 (p = 0.87) or <1000 BAU/ml (p = 0.13); in contrast, for sera ≥1000 BAU/ml, the Roche assay returned significantly higher values than the DiaSorin assay (p < 0.008). Neutralizing antibody titers (NtAb) were measured in 127 sera from Vac-Ex or Vac-N using a S-pseudotyped virus neutralization assay of Wuhan-Hu-1, Omicron BA.1, and Omicron BA.2. The correlation between antibody levels and NtAb titers was higher for sera from Vac-N than those from Vac-Ex, irrespective of the (sub)variant considered. In conclusion, neither qualitative nor quantitative results returned by both immunoassays are interchangeable. The performance of both assays was found to be greatly influenced by the vaccination and SARS-CoV-2 infection status of individuals.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Luminescence , COVID-19/diagnosis , SARS-CoV-2 , Vaccination , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing , Immunoassay
6.
J Med Virol ; 95(7): e28900, 2023 07.
Article in English | MEDLINE | ID: mdl-37403730

ABSTRACT

Antibodies triggering Fc-mediated NK cell activity may contribute to protection against disease caused by SARS-CoV-2 infection in humans. However, how these Fc-mediated humoral responses compare between individuals displaying hybrid immunity (Vac-ex) and those fully vaccinated with no history of SARS-CoV-2 infection (Vac-n) and whether they correlate with neutralizing antibody (NtAb) responses remains largely undetermined. In this retrospective study serum samples from 50 individuals (median age, 44.5 years; range, 11-85; 25 males), 25 Vac-ex and 25 Vac-n were studied. A flow-cytometry-based antibody-mediated NK-cell activation assay was used to quantitate effector NK-cells stimulated to express LAMP1 (lysosomal associated membrane protein 1), MIP1 (Macrophage inflammatory protein 1), and interferon-γ (IFNγ); NK cells isolated from two donors (D1 and D2) were used. NtAb levels targeting the Spike protein of Wuhan-Hu-1 and Omicron BA.1 SARS-CoV-2 variants were quantitated using a SARS-CoV-2 S pseudotyped neutralization assay. Regardless of the SARS-CoV-2 variant S antigen used in the NK-cell activation assay, the frequency of NK cells stimulated to express LAMP-1, MIP1ß, and IFNγ was higher in Vac-ex compared with Vac-n (p values ranging from 0.07 to 0.006) for D1; this was only seen for BA.1 when NK cells from D2 were employed. The frequency of functional NK cells activated by antibody binding to either Wuhan-Hu-1 or Omicron BA.1 S protein was not significantly different for both VAC-ex and VAC-n. In contrast, NtAb titers against BA.1 were around 10-fold lower than that against Wuhan-Hu-1. Vac-ex displayed higher NtAb titers against both (sub)variants than Vac-n. NK-cell responses correlated poorly with NtAb titers (ρ ≤ 0.30). The data demonstrate higher cross-reactivity across variants of concern for antibodies triggering Fc-mediated NK cell than for NtAb. Moreover, Vac-Ex seemed to display more robust functional antibody responses as compared with Vac-n.


Subject(s)
Blood Group Antigens , COVID-19 , Male , Humans , Adult , SARS-CoV-2/genetics , Antibodies, Neutralizing , Antibody Formation , Retrospective Studies , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Killer Cells, Natural , Interferon-gamma , Antibodies, Viral
7.
J Med Virol ; 95(4): e28739, 2023 04.
Article in English | MEDLINE | ID: mdl-37185857

ABSTRACT

Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti-SARS-CoV-2 receptor-binding domain (RBD) total antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS-CoV-2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS-CoV-2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti-SARS-CoV-2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5-Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS-CoV-2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti-S serological tests, thus potentially saving costs in the setting of large seroprevalence studies.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Reproducibility of Results , SARS-CoV-2 , Seroepidemiologic Studies , Machine Learning , Antibodies, Neutralizing , Antibodies, Viral
8.
J Med Virol ; 95(1): e28284, 2023 01.
Article in English | MEDLINE | ID: mdl-36333837

ABSTRACT

Studies investigating the cumulative incidence of and immune status against SARS-CoV-2 infection provide valuable information for shaping public health decision-making. A cross-sectional study on 935 participants, conducted in the Valencian Community (VC), measuring anti-SARS-CoV-2-receptor binding domain-RBD-total antibodies and anti-Nucleocapsid (N)-IgGs via electrochemiluminescence assays. Quantitation of neutralizing antibodies (NtAb) against ancestral and Omicron BA.1 and BA.2 variants and enumeration of SARS-CoV-2-S specific-IFNγ-producing CD4+ and CD8+ T cells was performed in 100 and 137 participants, respectively. The weighted cumulative incidence was 51.9% (95% confidence interval [CI]: 48.7-55.1) and was inversely related to age. Anti-RBD total antibodies were detected in 97% of participants; vaccinated and SARS-CoV-2-experienced (VAC-ex; n = 442) presented higher levels (p < 0.001) than vaccinated/naïve (VAC-n; n = 472) and nonvaccinated/experienced (UNVAC-ex; n = 63) subjects. Antibody levels correlated inversely with time elapsed since last vaccine dose in VAC-n (Rho, -0.52; p < 0.001) but not in VAC-ex (rho -0.02; p = 0.57). Heterologous booster shots resulted in increased anti-RBD antibody levels compared with homologous schedules in VAC-n, but not in VAC-ex. NtAbs against Omicron BA.1 were detected in 94%, 75%, and 50% of VAC-ex, VAC-n and UNVAC-ex groups, respectively. For Omicron BA.2, the figures were 97%, 84%, and 40%, respectively. SARS-CoV-2-S-reactive IFN-γ T cells were detected in 73%, 75%, and 64% of VAC-ex, VAC-n and UNVAC-ex, respectively. Median frequencies for both T-cell subsets were comparable across groups. In summary, by April 2022, around half of the VC population had been infected with SARS-CoV-2 and, due to extensive vaccination, displayed hybrid immunity.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Spain/epidemiology , CD8-Positive T-Lymphocytes , Cross-Sectional Studies , Incidence , Antibodies, Neutralizing , Antibodies, Viral
9.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511355

ABSTRACT

SARS-CoV-2, the causal agent of COVID-19, is a new coronavirus that has rapidly spread worldwide and significantly impacted human health by causing a severe acute respiratory syndrome boosted by a pulmonary hyperinflammatory response. Previous data from our lab showed that the newly excysted juveniles of the helminth parasite Fasciola hepatica (FhNEJ) modulate molecular routes within host cells related to vesicle-mediated transport and components of the innate immune response, which could potentially be relevant during viral infections. Therefore, the aim of the present study was to determine whether FhNEJ-derived molecules influence SARS-CoV-2 infection efficiency in Vero cells. Pre-treatment of Vero cells with a tegument-enriched antigenic extract of FhNEJ (FhNEJ-TEG) significantly reduced infection by both vesicular stomatitis virus particles pseudotyped with the SARS-CoV-2 Spike protein (VSV-S2) and live SARS-CoV-2. Pre-treatment of the virus itself with FhNEJ-TEG prior to infection also resulted in reduced infection efficiency similar to that obtained by remdesivir pre-treatment. Remarkably, treatment of Vero cells with FhNEJ-TEG after VSV-S2 entry also resulted in reduced infection efficiency, suggesting that FhNEJ-TEG may also affect post-entry steps of the VSV replication cycle. Altogether, our results could potentially encourage the production of FhNEJ-derived molecules in a safe, synthetic format for their application as therapeutic agents against SARS-CoV-2 and other related respiratory viruses.


Subject(s)
COVID-19 , Fasciola hepatica , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2 , Vero Cells , Antiviral Agents/pharmacology
10.
Clin Infect Dis ; 75(1): e865-e868, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35314856

ABSTRACT

A third Comirnaty vaccine dose increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain antibody levels (median, 93-fold) and neutralizing antibody titers against Wuhan-Hu-1 (median, 57-fold), Beta (me 22-fold), Delta, (median, 43-fold), and Omicron (median, 8-fold) variants, but had less impact on S-reactive T-cell immunity in nursing home residents.


Subject(s)
COVID-19 , Viral Vaccines , Adaptive Immunity , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Neutralization Tests , Nursing Homes , SARS-CoV-2
11.
J Med Virol ; 94(9): 4216-4223, 2022 09.
Article in English | MEDLINE | ID: mdl-35585782

ABSTRACT

We investigated whether peripheral blood levels of SARS-CoV-2 Spike (S) receptor binding domain antibodies (anti-RBD), neutralizing antibodies (NtAb) targeting Omicron S, and S-reactive-interferon (IFN)-γ-producing CD4+ and CD8+ T cells measured after a homologous booster dose (3D) with the Comirnaty® vaccine was associated with the likelihood of subsequent breakthrough infections due to the Omicron variant. An observational study including 146 nursing home residents (median age, 80 years; range, 66-99; 109 female) evaluated for an immunological response after 3D (at a median of 16 days). Anti-RBD total antibodies were measured by chemiluminescent immunoassay. NtAb were quantified by an Omicron S pseudotyped virus neutralization assay. SARS-CoV-2-S specific-IFNγ-producing CD4+ and CD8+ T cells were enumerated by whole-blood flow cytometry for intracellular cytokine staining. In total, 33/146 participants contracted breakthrough Omicron infection (symptomatic in 30/33) within 4 months after 3D. Anti-RBD antibody levels were comparable in infected and uninfected participants (21 123 vs. 24 723 BAU/ml; p = 0.34). Likewise, NtAb titers (reciprocal IC50 titer, 157 vs. 95; p = 0.32) and frequency of virus-reactive CD4+ (p = 0.82) and CD8+ (p = 0.91) T cells were similar across participants in both groups. anti-RBD antibody levels and NtAb titers estimated at around the time of infection were also comparable (3445 vs. 4345 BAU/ml; p = 0.59 and 188.5 vs. 88.9; p = 0.70, respectively). Having detectable NtAb against Omicron or SARS-CoV-2-S-reactive-IFNγ-producing CD4+ or CD8+ T cells after 3D was not correlated with increased protection from breakthrough infection (OR, 1.50; p = 0.54; OR, 0.0; p = 0.99 and OR 3.70; p = 0.23, respectively). None of the immune parameters evaluated herein, including NtAb titers against the Omicron variant, may reliably predict at the individual level the risk of contracting COVID-19 due to the Omicron variant in nursing home residents.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Female , Humans , Nursing Homes , SARS-CoV-2 , Viral Envelope Proteins
12.
J Med Virol ; 93(4): 2301-2306, 2021 04.
Article in English | MEDLINE | ID: mdl-33236799

ABSTRACT

Assessment of commercial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoassays for their capacity to provide reliable information on sera neutralizing activity is an emerging need. We evaluated the performance of two commercially available lateral flow immunochromatographic assays (LFIC; Wondfo SARS-CoV-2 Antibody test and the INNOVITA 2019-nCoV Ab test) in comparison with a SARS-CoV-2 neutralization pseudotyped assay for coronavirus disease 2019 (COVID-19) diagnosis in hospitalized patients and investigate whether the intensity of the test band in LFIC associates with neutralizing antibody (NtAb) titers. Ninety sera were included from 51 patients with moderate to severe COVID-19. A green fluorescent protein (GFP) reporter-based pseudotyped neutralization assay (vesicular stomatitis virus coated with SARS-CoV-2 spike protein) was used. Test line intensity was scored using a 4-level scale (0 to 3+). The overall sensitivity of LFIC assays was 91.1% for the Wondfo SARS-CoV-2 Antibody test, 72.2% for the INNOVITA 2019-nCoV IgG, 85.6% for the INNOVITA 2019-nCoV IgM, and 92.2% for the NtAb assay. Sensitivity increased for all assays in sera collected beyond day 14 after symptoms onset (93.9%, 79.6%, 93.9%, and 93.9%, respectively). Reactivities equal to or more intense than the positive control line (≥2+) in the Wondfo assay had a negative predictive value of 100% and a positive predictive value of 96.4% for high NtAb50 titers (≥1/160). Our findings support the use of LFIC assays evaluated herein, particularly the Wondfo test, for COVID-19 diagnosis. We also find evidence that these rapid immunoassays can be used to predict high SARS-CoV-2-S NtAb50 titers.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Testing/methods , COVID-19/immunology , Immunoassay/methods , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Green Fluorescent Proteins , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Spike Glycoprotein, Coronavirus/immunology
13.
Eur J Clin Microbiol Infect Dis ; 40(3): 485-494, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33404891

ABSTRACT

Whether antibody levels measured by commercially available enzyme or chemiluminescent immunoassays targeting the SARS-CoV-2 spike (S) protein can act as a proxy for serum neutralizing activity remains to be established for many of these assays. We evaluated the degree of correlation between neutralizing antibodies (NtAb) binding the SARS-CoV-2 spike (S) protein and SARS-CoV-2-S-IgG levels measured by four commercial immunoassays in sera drawn from hospitalized COVID-19 patients. Ninety sera from 51 hospitalized COVID-19 patients were tested by a pseudotyped virus neutralization assay, the LIAISON SARS-CoV-2 S1/S2 IgG, the Euroimmun SARS-CoV-2 IgG ELISA, the MAGLUMI 2019-nCoV IgG, and the COVID-19 ELISA IgG assays. Overall, the results obtained with the COVID-19 ELISA IgG test showed the highest agreement with the NtAb assay (κ, 0.85; 95% CI, 0.63-1). The most sensitive tests were the pseudotyped virus NtAb assay and the COVID-19 ELISA IgG assay (92.2% for both). Overall, the degree correlation between antibody titers resulting in 50% virus neutralization (NtAb50) in the pseudotyped virus assay and SARS-CoV-2 IgG levels was strong for the Euroimmun SARS-CoV-2 IgG ELISA (rho = 0.73) and moderate for the remaining assays (rho = 0.48 to 0.59). The kinetic profile of serum NtAb50 titers could not be reliably predicted by any of the SARS-CoV-2 IgG immunoassays. The suitability of SARS-CoV-2-S-IgG commercial immunoassays for inferring neutralizing activity of sera from hospitalized COVID-19 patients varies widely across tests and is influenced by the time of sera collection after the onset of symptoms.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Viral/blood , COVID-19/blood , Female , Hospitalization , Humans , Immunoglobulin G/blood , Kinetics , Male , Middle Aged , Neutralization Tests , Sensitivity and Specificity
14.
Transpl Infect Dis ; 23(4): e13602, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33728702

ABSTRACT

Cellular and humoral response to acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is on focus of research. We evaluate herein the feasibility of expanding virus-specific T cells (VST) against SARS-CoV-2 ex vivo through a standard protocol proven effective for other viruses. The experiment was performed in three different donors' scenarios: (a) SARS-CoV-2 asymptomatic infection/negative serology, (b) SARS-CoV-2 symptomatic infection/positive serology, and (c) no history of SARS-CoV-2 infection/negative serology. We were able to obtain an expanded VST product from donors 1 and 2 (1.6x and 1.8x increase of baseline VST count, respectively) consisting in CD3 + cells (80.3% and 62.7%, respectively) with CD4 + dominance (60% in both donors). Higher numbers of VST were obtained from the donor 2 as compared to donor 1. T-cell clonality test showed oligoclonal reproducible peaks on a polyclonal background for both donors. In contrast, VST could be neither expanded nor primed in a donor without evidence of prior infection. This proof-of-concept study supports the feasibility of expanding ex vivo SARS-CoV-2-specific VST from blood of convalescent donors. The results raise the question of whether the selection of seropositive donors may be a strategy to obtain cell lines enriched in their SARS-CoV-2-specificity for future adoptive transfer to immunosuppressed patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Adoptive Transfer , CD4-Positive T-Lymphocytes , Humans
15.
PLoS Biol ; 13(9): e1002251, 2015.
Article in English | MEDLINE | ID: mdl-26375597

ABSTRACT

Rates of spontaneous mutation critically determine the genetic diversity and evolution of RNA viruses. Although these rates have been characterized in vitro and in cell culture models, they have seldom been determined in vivo for human viruses. Here, we use the intrapatient frequency of premature stop codons to quantify the HIV-1 genome-wide rate of spontaneous mutation in DNA sequences from peripheral blood mononuclear cells. This reveals an extremely high mutation rate of (4.1 ± 1.7) × 10-3 per base per cell, the highest reported for any biological entity. Sequencing of plasma-derived sequences yielded a mutation frequency 44 times lower, indicating that a large fraction of viral genomes are lethally mutated and fail to reach plasma. We show that the HIV-1 reverse transcriptase contributes only 2% of mutations, whereas 98% result from editing by host cytidine deaminases of the A3 family. Hypermutated viral sequences are less abundant in patients showing rapid disease progression compared to normal progressors, highlighting the antiviral role of A3 proteins. However, the amount of A3-mediated editing varies broadly, and we find that low-edited sequences are more abundant among rapid progressors, suggesting that suboptimal A3 activity might enhance HIV-1 genetic diversity and pathogenesis.


Subject(s)
HIV-1/genetics , Mutation Rate , Adult , Disease Progression , Female , HIV Infections/virology , Humans , Male , Middle Aged , Sequence Analysis, RNA , Young Adult
16.
Proc Natl Acad Sci U S A ; 109(37): E2476-85, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22895790

ABSTRACT

Up-regulation of the folding machinery of the heat-shock protein 90 (Hsp90) chaperone protein is crucial for cancer progression. The two Hsp90 isoforms (α and ß) play different roles in response to chemotherapy. To identify isoform-selective inhibitors of Hsp90(α/ß)/cochaperone p23 interactions, we developed a dual-luciferase (Renilla and Firefly) reporter system for high-throughput screening (HTS) and monitoring the efficacy of Hsp90 inhibitors in cell culture and live mice. HTS of a 30,176 small-molecule chemical library in cell culture identified a compound, N-(5-methylisoxazol-3-yl)-2-[4-(thiophen-2-yl)-6-(trifluoromethyl)pyrimidin-2-ylthio]acetamide (CP9), that binds to Hsp90(α/ß) and displays characteristics of Hsp90 inhibitors, i.e., degradation of Hsp90 client proteins and inhibition of cell proliferation, glucose metabolism, and thymidine kinase activity, in multiple cancer cell lines. The efficacy of CP9 in disrupting Hsp90(α/ß)/p23 interactions and cell proliferation in tumor xenografts was evaluated by non-invasive, repetitive Renilla luciferase and Firefly luciferase imaging, respectively. At 38 h posttreatment (80 mg/kg × 3, i.p.), CP9 led to selective disruption of Hsp90α/p23 as compared with Hsp90ß/p23 interactions. Small-animal PET/CT in the same cohort of mice showed that CP9 treatment (43 h) led to a 40% decrease in (18)F-fluorodeoxyglucose uptake in tumors relative to carrier control-treated mice. However, CP9 did not lead to significant degradation of Hsp90 client proteins in tumors. We performed a structural activity relationship study with 62 analogs of CP9 and identified A17 as the lead compound that outperformed CP9 in inhibiting Hsp90(α/ß)/p23 interactions in cell culture. Our efforts demonstrated the power of coupling of HTS with multimodality molecular imaging and led to identification of Hsp90 inhibitors.


Subject(s)
Acetamides/pharmacology , Benzoquinones/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Intramolecular Oxidoreductases/metabolism , Lactams, Macrocyclic/pharmacology , Neoplasms/metabolism , Thioacetamide/analogs & derivatives , Thiophenes/pharmacology , Animals , Blotting, Western , Cell Line, Tumor , Drug Discovery , HSP90 Heat-Shock Proteins/antagonists & inhibitors , High-Throughput Screening Assays , Humans , Imidazoles , Immunoprecipitation , Lead/pharmacology , Luciferases, Firefly , Luciferases, Renilla , Mice , Mice, Nude , Neoplasms/drug therapy , Positron-Emission Tomography , Prostaglandin-E Synthases , Protein Folding , Protein Isoforms/metabolism , Pyrazines , Small Molecule Libraries , Thioacetamide/pharmacology , Tomography, X-Ray Computed , Tritium
17.
Sci Rep ; 14(1): 14644, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918479

ABSTRACT

Viral glycoproteins mediate entry into host cells, thereby dictating host range and pathogenesis. In addition, they constitute the principal target of neutralizing antibody responses, making them important antigens in vaccine development. Recombinant vesicular stomatitis virus (VSV) encoding foreign glycoproteins can provide a convenient and safe surrogate system to interrogate the function, evolution, and antigenicity of viral glycoproteins from viruses that are difficult to manipulate or those requiring high biosafety level containment. However, the production of recombinant VSV can be technically challenging. In this work, we present an efficient and robust plasmid-based system for the production of recombinant VSV encoding foreign glycoproteins. We validate the system using glycoproteins from different viral families, including arenaviruses, coronaviruses, and hantaviruses, as well as highlight their utility for studying the effects of mutations on viral fitness. Overall, the methods described herein can facilitate the study of both native and recombinant VSV encoding foreign glycoproteins and can serve as the basis for the production of VSV-based vaccines.


Subject(s)
Glycoproteins , Plasmids , Plasmids/genetics , Glycoproteins/genetics , Glycoproteins/immunology , Animals , Humans , Vesiculovirus/genetics , Viral Proteins/genetics , Viral Proteins/immunology , HEK293 Cells
18.
Virus Evol ; 10(1): veae032, 2024.
Article in English | MEDLINE | ID: mdl-38779130

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can infect various human tissues and cell types, principally via interaction with its cognate receptor angiotensin-converting enzyme-2 (ACE2). However, how the virus evolves in different cellular environments is poorly understood. Here, we used experimental evolution to study the adaptation of the SARS-CoV-2 spike to four human cell lines expressing different levels of key entry factors. After twenty passages of a spike-expressing recombinant vesicular stomatitis virus (VSV), cell-type-specific phenotypic changes were observed and sequencing allowed the identification of sixteen adaptive spike mutations. We used VSV pseudotyping to measure the entry efficiency, ACE2 affinity, spike processing, TMPRSS2 usage, and entry pathway usage of all the mutants, alone or in combination. The fusogenicity of the mutant spikes was assessed with a cell-cell fusion assay. Finally, mutant recombinant VSVs were used to measure the fitness advantage associated with selected mutations. We found that the effects of these mutations varied across cell types, both in terms of viral entry and replicative fitness. Interestingly, two spike mutations (L48S and A372T) that emerged in cells expressing low ACE2 levels increased receptor affinity, syncytia induction, and entry efficiency under low-ACE2 conditions. Our results demonstrate specific adaptation of the SARS-CoV-2 spike to different cell types and have implications for understanding SARS-CoV-2 tissue tropism and evolution.

19.
PLoS One ; 19(2): e0297291, 2024.
Article in English | MEDLINE | ID: mdl-38363760

ABSTRACT

BACKGROUND: The oral cavity is the site of entry and replication for many respiratory viruses. Furthermore, it is the source of droplets and aerosols that facilitate viral transmission. It is thought that appropriate oral hygiene that alters viral infectivity might reduce the spread of respiratory viruses and contribute to infection control. MATERIALS AND METHODS: Here, we analyzed the antiviral activity of cetylpyridinium chloride (CPC), chlorhexidine (CHX), and three commercial CPC and CHX-containing mouthwash preparations against the Influenza A virus and the Respiratory syncytial virus. To do so the aforementioned compounds and preparations were incubated with the Influenza A virus or with the Respiratory syncytial virus. Next, we analyzed the viability of the treated viral particles. RESULTS: Our results indicate that CPC and CHX decrease the infectivity of both the Influenza A virus and the Respiratory Syncytial virus in vitro between 90 and 99.9% depending on the concentration. Likewise, CPC and CHX-containing mouthwash preparations were up to 99.99% effective in decreasing the viral viability of both the Influenza A virus and the Respiratory syncytial virus in vitro. CONCLUSION: The use of a mouthwash containing CPC or CHX alone or in combination might represent a cost-effective measure to limit infection and spread of enveloped respiratory viruses infecting the oral cavity, aiding in reducing viral transmission. Our findings may stimulate future clinical studies to evaluate the effects of CPC and CHX in reducing viral respiratory transmissions.


Subject(s)
Anti-Infective Agents, Local , Influenza A virus , Chlorhexidine , Mouthwashes , Cetylpyridinium/pharmacology , Respiratory Syncytial Viruses , Antiviral Agents/pharmacology
20.
Comput Biol Med ; 171: 108163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38417382

ABSTRACT

SARS-CoV-2 must bind its principal receptor, ACE2, on the target cell to initiate infection. This interaction is largely driven by the receptor binding domain (RBD) of the viral Spike (S) protein. Accordingly, antiviral compounds that can block RBD/ACE2 interactions can constitute promising antiviral agents. To identify such molecules, we performed a virtual screening of the Selleck FDA approved drugs and the Selleck database of Natural Products using a multistep computational procedure. An initial set of candidates was identified from an ensemble docking process using representative structures determined from the analysis of four 3 µ s molecular dynamics trajectories of the RBD/ACE2 complex. Two procedures were used to construct an initial set of candidates including a standard and a pharmacophore guided docking procedure. The initial set was subsequently subjected to a multistep sieving process to reduce the number of candidates to be tested experimentally, using increasingly demanding computational procedures, including the calculation of the binding free energy computed using the MMPBSA and MMGBSA methods. After the sieving process, a final list of 10 candidates was proposed, compounds which were subsequently purchased and tested ex-vivo. The results identified estradiol cypionate and telmisartan as inhibitors of SARS-CoV-2 entry into cells. Our findings demonstrate that the methodology presented here enables the discovery of inhibitors targeting viruses for which high-resolution structures are available.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Molecular Docking Simulation , Drug Repositioning/methods , Angiotensin-Converting Enzyme 2 , Molecular Dynamics Simulation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL