Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cell ; 187(18): 5029-5047.e21, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39094569

ABSTRACT

The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.


Subject(s)
DNA Replication , Epigenesis, Genetic , Histones , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Histones/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mutation , Epigenetic Memory
2.
Nucleic Acids Res ; 48(19): 10648-10661, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32941609

ABSTRACT

Cells rely on stress response pathways to uphold cellular homeostasis and limit the negative effects of harmful environmental stimuli. The stress- and mitogen-activated protein (MAP) kinases, p38 and JNK, are at the nexus of numerous stress responses, among these the ribotoxic stress response (RSR). Ribosomal impairment is detrimental to cell function as it disrupts protein synthesis, increase inflammatory signaling and, if unresolved, lead to cell death. In this review, we offer a general overview of the three main translation surveillance pathways; the RSR, Ribosome-associated Quality Control (RQC) and the Integrated Stress Response (ISR). We highlight recent advances made in defining activation mechanisms for these pathways and discuss their commonalities and differences. Finally, we reflect on the physiological role of the RSR and consider the therapeutic potential of targeting the sensing kinase ZAKα for treatment of ribotoxin exposure.


Subject(s)
MAP Kinase Signaling System , Ribosomes/metabolism , Stress, Physiological , Animals , Humans , Protein Biosynthesis
3.
Science ; 382(6675): eadf3208, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38060659

ABSTRACT

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Subject(s)
Aging , MAP Kinase Kinase Kinase 3 , Obesity , Reactive Oxygen Species , Ribosomes , Stress, Physiological , Animals , Mice , Aging/metabolism , MAP Kinase Kinase Kinase 3/genetics , MAP Kinase Kinase Kinase 3/metabolism , Obesity/metabolism , Protein Biosynthesis , Reactive Oxygen Species/metabolism , Ribosomes/metabolism , Zebrafish , Mice, Knockout
4.
Cell Metab ; 34(12): 2036-2046.e8, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36384144

ABSTRACT

Impairment of translation can lead to collisions of ribosomes, which constitute an activation platform for several ribosomal stress-surveillance pathways. Among these is the ribotoxic stress response (RSR), where ribosomal sensing by the MAP3K ZAKα leads to activation of p38 and JNK kinases. Despite these insights, the physiological ramifications of ribosomal impairment and downstream RSR signaling remain elusive. Here, we show that stalling of ribosomes is sufficient to activate ZAKα. In response to amino acid deprivation and full nutrient starvation, RSR impacts on the ensuing metabolic responses in cells, nematodes, and mice. The RSR-regulated responses in these model systems include regulation of AMPK and mTOR signaling, survival under starvation conditions, stress hormone production, and regulation of blood sugar control. In addition, ZAK-/- male mice present a lean phenotype. Our work highlights impaired ribosomes as metabolic signals and demonstrates a role for RSR signaling in metabolic regulation.


Subject(s)
MAP Kinase Kinase Kinases , Protein Biosynthesis , Ribosomes , Stress, Physiological , Animals , Male , Mice , MAP Kinase Kinase Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL