Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 159(5): 1126-1139, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25416950

ABSTRACT

The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Disease Models, Animal , Neuroblastoma/drug therapy , Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Phenylenediamines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyrimidines/therapeutic use , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinases/metabolism , Humans , N-Myc Proto-Oncogene Protein , Transcription, Genetic/drug effects , Cyclin-Dependent Kinase-Activating Kinase
2.
Nature ; 572(7771): 676-680, 2019 08.
Article in English | MEDLINE | ID: mdl-31391581

ABSTRACT

The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements1,2. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation3,4 or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL)6, is overexpressed in several cancers7-9, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma10 cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS-to promote regulatory chromatin interactions that support specific cancer phenotypes.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Animals , CCCTC-Binding Factor/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Humans , Mice , Molecular Targeted Therapy , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/enzymology , Neuroblastoma/genetics , Phenotype , Protein Binding
3.
Nature ; 561(7724): 556-560, 2018 09.
Article in English | MEDLINE | ID: mdl-30232453

ABSTRACT

N6-methyladenosine (m6A) modification of mRNA is emerging as an important regulator of gene expression that affects different developmental and biological processes, and altered m6A homeostasis is linked to cancer1-5. m6A modification is catalysed by METTL3 and enriched in the 3' untranslated region of a large subset of mRNAs at sites close to the stop codon5. METTL3 can promote translation but the mechanism and relevance of this process remain unknown1. Here we show that METTL3 enhances translation only when tethered to reporter mRNA at sites close to the stop codon, supporting a mechanism of mRNA looping for ribosome recycling and translational control. Electron microscopy reveals the topology of individual polyribosomes with single METTL3 foci in close proximity to 5' cap-binding proteins. We identify a direct physical and functional interaction between METTL3 and the eukaryotic translation initiation factor 3 subunit h (eIF3h). METTL3 promotes translation of a large subset of oncogenic mRNAs-including bromodomain-containing protein 4-that is also m6A-modified in human primary lung tumours. The METTL3-eIF3h interaction is required for enhanced translation, formation of densely packed polyribosomes and oncogenic transformation. METTL3 depletion inhibits tumorigenicity and sensitizes lung cancer cells to BRD4 inhibition. These findings uncover a mechanism of translation control that is based on mRNA looping and identify METTL3-eIF3h as a potential therapeutic target for patients with cancer.


Subject(s)
Carcinogenesis , Eukaryotic Initiation Factor-3/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Methyltransferases/metabolism , Protein Biosynthesis , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Animals , Cell Line, Tumor , Cyclization , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Nude , Nucleic Acid Conformation , Polyribosomes/chemistry , Polyribosomes/metabolism , Protein Binding , RNA, Messenger/genetics
4.
PLoS Genet ; 9(6): e1003533, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23754957

ABSTRACT

Heterozygous germline mutations and deletions in PHOX2B, a key regulator of autonomic neuron development, predispose to neuroblastoma, a tumor of the peripheral sympathetic nervous system. To gain insight into the oncogenic mechanisms engaged by these changes, we used zebrafish models to study the functional consequences of aberrant PHOX2B expression in the cells of the developing sympathetic nervous system. Allelic deficiency, modeled by phox2b morpholino knockdown, led to a decrease in the terminal differentiation markers th and dbh in sympathetic ganglion cells. The same effect was seen on overexpression of two distinct neuroblastoma-associated frameshift mutations, 676delG and K155X - but not the R100L missense mutation - in the presence of endogenous Phox2b, pointing to their dominant-negative effects. We demonstrate that Phox2b is capable of regulating itself as well as ascl1, and that phox2b deficiency uncouples this autoregulatory mechanism, leading to inhibition of sympathetic neuron differentiation. This effect on terminal differentiation is associated with an increased number of phox2b(+), ascl1(+), elavl3(-) cells that respond poorly to retinoic acid. These findings suggest that a reduced dosage of PHOX2B during development, through either a heterozygous deletion or dominant-negative mutation, imposes a block in the differentiation of sympathetic neuronal precursors, resulting in a cell population that is likely to be susceptible to secondary transforming events.


Subject(s)
Cell Differentiation/genetics , Homeodomain Proteins/genetics , Neuroblastoma/genetics , Neurogenesis , Transcription Factors/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , ELAV Proteins/genetics , ELAV Proteins/metabolism , ELAV-Like Protein 3 , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Heterozygote , Homeodomain Proteins/metabolism , Humans , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neurons/cytology , Neurons/metabolism , Sympathetic Nervous System/cytology , Sympathetic Nervous System/pathology , Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Cancer Immunol Immunother ; 64(10): 1251-60, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26105625

ABSTRACT

Antigen-specific immunotherapy was studied in a multi-institutional phase 1/2 study by combining decitabine (DAC) followed by an autologous dendritic cell (DC)/MAGE-A1, MAGE-A3 and NY-ESO-1 peptide vaccine in children with relapsed/refractory solid tumors. Patients aged 2.5-15 years with relapsed neuroblastoma, Ewing's sarcoma, osteosarcoma and rhabdomyosarcoma were eligible to receive DAC followed by DC pulsed with overlapping peptides derived from full-length MAGE-A1, MAGE-A3 and NY-ESO-1. The primary endpoints were to assess the feasibility and tolerability of this regimen. Each of four cycles consisted of week 1: DAC 10 mg/m(2)/day for 5 days and weeks 2 and 3: DC vaccine once weekly. Fifteen patients were enrolled in the study, of which 10 were evaluable. Generation of DC was highly feasible for all enrolled patients. The treatment regimen was generally well tolerated, with the major toxicity being DAC-related myelosuppression in 5/10 patients. Six of nine patients developed a response to MAGE-A1, MAGE-A3 or NY-ESO-1 peptides post-vaccine. Due to limitations in number of cells available for analysis, controls infected with a virus encoding relevant genes have not been performed. Objective responses were documented in 1/10 patients who had a complete response. Of the two patients who had no evidence of disease at the time of treatment, one remains disease-free 2 years post-therapy, while the other experienced a relapse 10 months post-therapy. The chemoimmunotherapy approach using DAC/DC-CT vaccine is feasible, well tolerated and results in antitumor activity in some patients. Future trials to maximize the likelihood of T cell responses post-vaccine are warranted.


Subject(s)
Azacitidine/analogs & derivatives , Cancer Vaccines/administration & dosage , Cell Proliferation , Dendritic Cells/immunology , T-Lymphocytes/drug effects , Adolescent , Antigens, Neoplasm/immunology , Azacitidine/administration & dosage , Azacitidine/adverse effects , Cell Proliferation/drug effects , Cells, Cultured , Child , Child, Preschool , Combined Modality Therapy , Decitabine , Dendritic Cells/transplantation , Feasibility Studies , Female , Humans , Male , Melanoma-Specific Antigens/immunology , Membrane Proteins/immunology , Neoplasm Proteins/immunology , Neuroblastoma/immunology , Peptide Fragments/immunology , Recurrence , Sarcoma , T-Lymphocytes/immunology , Treatment Outcome
6.
Nature ; 455(7215): 975-8, 2008 Oct 16.
Article in English | MEDLINE | ID: mdl-18923525

ABSTRACT

Neuroblastoma, an embryonal tumour of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer. High-risk neuroblastomas are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germ line. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK complementary DNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed interleukin-3-dependent murine haematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to the small-molecule inhibitor of ALK, TAE684 (ref. 4). Furthermore, two human neuroblastoma cell lines harbouring the F1174L mutation were also sensitive to the inhibitor. Cytotoxicity was associated with increased amounts of apoptosis as measured by TdT-mediated dUTP nick end labelling (TUNEL). Short hairpin RNA (shRNA)-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumours and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.


Subject(s)
Mutation/genetics , Neuroblastoma/genetics , Neuroblastoma/therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Alleles , Anaplastic Lymphoma Kinase , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Survival , Enzyme Activation/genetics , Genome, Human/genetics , Humans , In Situ Hybridization, Fluorescence , In Situ Nick-End Labeling , Mice , Neuroblastoma/enzymology , Neuroblastoma/pathology , Polymorphism, Single Nucleotide/genetics , Protein Structure, Tertiary/genetics , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases , Sequence Analysis, DNA
7.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895399

ABSTRACT

Tumor cell heterogeneity in neuroblastoma, a pediatric cancer arising from neural crest-derived progenitor cells, poses a significant clinical challenge. In particular, unlike adrenergic (ADRN) neuroblastoma cells, mesenchymal (MES) cells are resistant to chemotherapy and retinoid therapy and thereby significantly contribute to relapses and treatment failures. Previous research suggested that overexpression or activation of miR-124, a neurogenic microRNA with tumor suppressor activity, can induce the differentiation of retinoic acid-resistant neuroblastoma cells. Leveraging our established screen for miRNA modulatory small molecules, we validated PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, as a robust inducer of miR-124. A combination of PP121 and miR-132-inducing bufalin synergistically arrests proliferation, induces differentiation, and prolongs the survival of differentiated MES SK-N-AS cells for 8 weeks. RNA- seq and deconvolution analyses revealed a collapse of the ADRN core regulatory circuitry (CRC) and the emergence of novel CRCs associated with chromaffin cells and Schwann cell precursors. Using a similar protocol, we differentiated and maintained other MES neuroblastoma, as well as glioblastoma cells, over 16 weeks. In conclusion, our novel protocol suggests a promising treatment for therapy-resistant cancers of the nervous system. Moreover, these long-lived, differentiated cells provide valuable models for studying mechanisms underlying differentiation, maturation, and senescence.

8.
Cell Rep ; 43(5): 114134, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38662542

ABSTRACT

Tumor MYCN amplification is seen in high-risk neuroblastoma, yet direct targeting of this oncogenic transcription factor has been challenging. Here, we take advantage of the dependence of MYCN-amplified neuroblastoma cells on increased protein synthesis to inhibit the activity of eukaryotic translation initiation factor 4A1 (eIF4A1) using an amidino-rocaglate, CMLD012824. Consistent with the role of this RNA helicase in resolving structural barriers in 5' untranslated regions (UTRs), CMLD012824 increased eIF4A1 affinity for polypurine-rich 5' UTRs, including that of the MYCN and associated transcripts with critical roles in cell proliferation. CMLD012824-mediated clamping of eIF4A1 spanned the full lengths of mRNAs, while translational inhibition was mediated through 5' UTR binding in a cap-dependent and -independent manner. Finally, CMLD012824 led to growth inhibition in MYCN-amplified neuroblastoma models without generalized toxicity. Our studies highlight the key role of eIF4A1 in MYCN-amplified neuroblastoma and demonstrate the therapeutic potential of disrupting its function.


Subject(s)
5' Untranslated Regions , Eukaryotic Initiation Factor-4A , N-Myc Proto-Oncogene Protein , Neuroblastoma , Animals , Humans , Mice , 5' Untranslated Regions/genetics , Cell Line, Tumor , Cell Proliferation , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , RNA, Messenger/metabolism , RNA, Messenger/genetics , Female , Mice, Inbred C57BL
9.
Cell Rep ; 43(5): 114165, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691450

ABSTRACT

The N6-methyladenosine (m6A) RNA modification is an important regulator of gene expression. m6A is deposited by a methyltransferase complex that includes methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14). High levels of METTL3/METTL14 drive the growth of many types of adult cancer, and METTL3/METTL14 inhibitors are emerging as new anticancer agents. However, little is known about the m6A epitranscriptome or the role of the METTL3/METTL14 complex in neuroblastoma, a common pediatric cancer. Here, we show that METTL3 knockdown or pharmacologic inhibition with the small molecule STM2457 leads to reduced neuroblastoma cell proliferation and increased differentiation. These changes in neuroblastoma phenotype are associated with decreased m6A deposition on transcripts involved in nervous system development and neuronal differentiation, with increased stability of target mRNAs. In preclinical studies, STM2457 treatment suppresses the growth of neuroblastoma tumors in vivo. Together, these results support the potential of METTL3/METTL14 complex inhibition as a therapeutic strategy against neuroblastoma.


Subject(s)
Cell Differentiation , Cell Proliferation , Methyltransferases , Neuroblastoma , Methyltransferases/metabolism , Methyltransferases/antagonists & inhibitors , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Humans , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Animals , Mice , Gene Expression Regulation, Neoplastic/drug effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology
10.
Sci Adv ; 10(11): eadh9547, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489372

ABSTRACT

Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.


Subject(s)
Chemokines , MARVEL Domain-Containing Proteins , N-Myc Proto-Oncogene Protein , Neuroblastoma , Humans , Cell Line, Tumor , Chemokines/metabolism , Gene Expression Regulation, Neoplastic , MARVEL Domain-Containing Proteins/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroblastoma/therapy , Tumor Microenvironment
11.
Semin Cancer Biol ; 21(4): 267-75, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21945349

ABSTRACT

Since the original descriptions of gain-of function mutations in anaplastic lymphoma kinase (ALK), interest in the role of this receptor tyrosine kinase in neuroblastoma development and as a potential therapeutic target has escalated. As a group, the activating point mutations in full-length ALK, found in approximately 8% of all neuroblastoma tumors, are distributed evenly across different clinical stages. However, the most frequent somatic mutation, F1174L, is associated with amplification of the MYCN oncogene. This combination of features appears to confer a worse prognosis than MYCN amplification alone, suggesting a cooperative effect on neuroblastoma formation by these two proteins. Indeed, F1174L has shown more potent transforming activity in vivo than the second most common activating mutation, R1275Q, and is responsible for innate and acquired resistance to crizotinib, a clinically relevant ALK inhibitor that will soon be commercially available. These advances cast ALK as a bona fide oncoprotein in neuroblastoma and emphasize the need to understand ALK-mediated signaling in this tumor. This review addresses many of the current issues surrounding the role of ALK in normal development and neuroblastoma pathogenesis, and discusses the prospects for clinically effective targeted treatments based on ALK inhibition.


Subject(s)
Neuroblastoma/enzymology , Neuroblastoma/genetics , Receptor Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase , Animals , Genes, myc/genetics , Humans , Point Mutation
12.
Pediatr Blood Cancer ; 59(3): 506-10, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22162143

ABSTRACT

BACKGROUND: In high-risk neuroblastoma patients, response to induction chemotherapy is emerging as an important determinant of overall survival. We sought to determine whether histological changes in the primary tumor following induction therapy could be used as a marker of response. PROCEDURE: Second-look primary tumor specimens from 43 patients were reviewed according to specific morphological features. RESULTS: In the majority, induction therapy resulted in a shift from an intermediate/high to low mitosis-karyorrhexis index (MKI) (P = 0.0009) and from undifferentiated/poorly differentiated to differentiating tumors (P < 0.0001). Following induction therapy, persistence of intermediate/high tumor MKI and ≥90% persistent neuroblastic cells were predictive of a poor outcome (P = 0.001 and 0.03, respectively). Less than 10% tumor necrosis was associated with a trend towards lower survival. CONCLUSIONS: High proliferative activity in the primary tumor following induction therapy portends a poor outcome in patients with high-risk neuroblastoma. If confirmed in a larger cohort, tumor histology at second-look surgery could be used to define a subset of very high risk patients who would benefit from alternative therapies prior to myeloablative dose-intensive transplant.


Subject(s)
Neuroblastoma/drug therapy , Neuroblastoma/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Humans , Induction Chemotherapy , Infant , Infant, Newborn , Male , Mitotic Index , Neoadjuvant Therapy , Neuroblastoma/surgery , Prognosis , Risk , Second-Look Surgery , Treatment Outcome
13.
J Immunother Cancer ; 10(12)2022 12.
Article in English | MEDLINE | ID: mdl-36521927

ABSTRACT

BACKGROUND: Immunotherapy in high-risk neuroblastoma (HR-NBL) does not live up to its full potential due to inadequate (adaptive) immune engagement caused by the extensive immunomodulatory capacity of HR-NBL. We aimed to tackle one of the most notable immunomodulatory processes in neuroblastoma (NBL), absence of major histocompatibility complex class I (MHC-I) surface expression, a process greatly limiting cytotoxic T cell engagement. We and others have previously shown that MHC-I expression can be induced by cytokine-driven immune modulation. Here, we aimed to identify tolerable pharmacological repurposing strategies to upregulate MHC-I expression and therewith enhance T cell immunogenicity in NBL. METHODS: Drug repurposing libraries were screened to identify compounds enhancing MHC-I surface expression in NBL cells using high-throughput flow cytometry analyses optimized for adherent cells. The effect of positive hits was confirmed in a panel of NBL cell lines and patient-derived organoids. Compound-treated NBL cell lines and organoids were cocultured with preferentially expressed antigen of melanoma (PRAME)-reactive tumor-specific T cells and healthy-donor natural killer (NK) cells to determine the in vitro effect on T cell and NK cell cytotoxicity. Additional immunomodulatory effects of histone deacetylase inhibitors (HDACi) were identified by transcriptome and translatome analysis of treated organoids. RESULTS: Drug library screening revealed MHC-I upregulation by inhibitor of apoptosis inhibitor (IAPi)- and HDACi drug classes. The effect of IAPi was limited due to repression of nuclear factor kappa B (NFκB) pathway activity in NBL, while the MHC-I-modulating effect of HDACi was widely translatable to a panel of NBL cell lines and patient-derived organoids. Pretreatment of NBL cells with the HDACi entinostat enhanced the cytotoxic capacity of tumor-specific T cells against NBL in vitro, which coincided with increased expression of additional players regulating T cell cytotoxicity (eg, TAP1/2 and immunoproteasome subunits). Moreover, MICA and MICB, important in NK cell cytotoxicity, were also increased by entinostat exposure. Intriguingly, this increase in immunogenicity was accompanied by a shift toward a more mesenchymal NBL cell lineage. CONCLUSIONS: This study indicates the potential of combining (immuno)therapy with HDACi to enhance both T cell-driven and NKcell-driven immune responses in patients with HR-NBL.


Subject(s)
Killer Cells, Natural , Neuroblastoma , Humans , Cell Lineage , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Histocompatibility Antigens Class I , T-Lymphocytes, Cytotoxic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Epigenesis, Genetic
14.
Nat Cancer ; 3(10): 1228-1246, 2022 10.
Article in English | MEDLINE | ID: mdl-36138189

ABSTRACT

Apart from the anti-GD2 antibody, immunotherapy for neuroblastoma has had limited success due to immune evasion mechanisms, coupled with an incomplete understanding of predictors of response. Here, from bulk and single-cell transcriptomic analyses, we identify a subset of neuroblastomas enriched for transcripts associated with immune activation and inhibition and show that these are predominantly characterized by gene expression signatures of the mesenchymal lineage state. By contrast, tumors expressing adrenergic lineage signatures are less immunogenic. The inherent presence or induction of the mesenchymal state through transcriptional reprogramming or therapy resistance is accompanied by innate and adaptive immune gene activation through epigenetic remodeling. Mesenchymal lineage cells promote T cell infiltration by secreting inflammatory cytokines, are efficiently targeted by cytotoxic T and natural killer cells and respond to immune checkpoint blockade. Together, we demonstrate that distinct immunogenic phenotypes define the divergent lineage states of neuroblastoma and highlight the immunogenic potential of the mesenchymal lineage.


Subject(s)
Adrenergic Agents , Neuroblastoma , Humans , Cell Lineage/genetics , Immune Checkpoint Inhibitors , Neuroblastoma/genetics , Cytokines/genetics , Phenotype
15.
Front Oncol ; 11: 773186, 2021.
Article in English | MEDLINE | ID: mdl-35198433

ABSTRACT

PURPOSE: Cyclin-dependent kinases (CDKs) that have critical roles in RNA polymerase II (Pol II)-mediated gene transcription are emerging as therapeutic targets in cancer. We have previously shown that THZ1, a covalent inhibitor of CDKs 7/12/13, leads to cytotoxicity in MYCN-amplified neuroblastoma through the downregulation of super-enhancer-associated transcriptional upregulation. Here we determined the effects of YKL-5-124, a novel covalent inhibitor with greater selectivity for CDK7 in neuroblastoma cells. EXPERIMENTAL DESIGN: We tested YKL-5-124 in MYCN-amplified and nonamplified neuroblastoma cells individually and in combination with other inhibitors in cell line and animal models. Cell viability, target validation, effects on cell cycle and transcription were analyzed. RESULTS: CDK7 inhibition with YKL-5-124 did not lead to significant cell death, but resulted in aberrant cell cycle progression especially in MYCN-amplified cells. Unlike THZ1, YKL-5-124 had minimal effects on Pol II C-terminal domain phosphorylation, but significantly inhibited that of the CDK1 and CDK2 cell cycle kinases. Combining YKL-5-124 with the BRD4 inhibitor JQ1 resulted in synergistic cytotoxicity. A distinct MYCN-gene expression signature associated with resistance to BRD4 inhibition was suppressed with the combination. The synergy between YKL-5-124 and JQ1 translated into significant tumor regression in cell line and patient-derived xenograft mouse models of neuroblastoma. CONCLUSIONS: The combination of CDK7 and BRD4 inhibition provides a therapeutic option for neuroblastoma and suggests that the addition of YKL-5-124 could improve the therapeutic efficacy of JQ1 and delay resistance to BRD4 inhibition.

16.
Genome Biol ; 22(1): 78, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33685491

ABSTRACT

Spatial transcriptomic and proteomic technologies have provided new opportunities to investigate cells in their native microenvironment. Here we present Giotto, a comprehensive and open-source toolbox for spatial data analysis and visualization. The analysis module provides end-to-end analysis by implementing a wide range of algorithms for characterizing tissue composition, spatial expression patterns, and cellular interactions. Furthermore, single-cell RNAseq data can be integrated for spatial cell-type enrichment analysis. The visualization module allows users to interactively visualize analysis outputs and imaging features. To demonstrate its general applicability, we apply Giotto to a wide range of datasets encompassing diverse technologies and platforms.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , In Situ Hybridization , Software , Data Analysis , Image Processing, Computer-Assisted , Immunohistochemistry/methods , In Situ Hybridization/methods , Organ Specificity/genetics , Spatial Analysis , Transcriptome
17.
Cell Rep ; 36(2): 109363, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260934

ABSTRACT

Although activating mutations of the anaplastic lymphoma kinase (ALK) membrane receptor occur in ∼10% of neuroblastoma (NB) tumors, the role of the wild-type (WT) receptor, which is aberrantly expressed in most non-mutated cases, is unclear. Both WT and mutant proteins undergo extracellular domain (ECD) cleavage. Here, we map the cleavage site to Asn654-Leu655 and demonstrate that cleavage inhibition of WT ALK significantly impedes NB cell migration with subsequent prolongation of survival in mouse models. Cleavage inhibition results in the downregulation of an epithelial-to-mesenchymal transition (EMT) gene signature, with decreased nuclear localization and occupancy of ß-catenin at EMT gene promoters. We further show that cleavage is mediated by matrix metalloproteinase 9, whose genetic and pharmacologic inactivation inhibits cleavage and decreases NB cell migration. Together, our results indicate a pivotal role for WT ALK ECD cleavage in NB pathogenesis, which may be harnessed for therapeutic benefit.


Subject(s)
Anaplastic Lymphoma Kinase/chemistry , Anaplastic Lymphoma Kinase/metabolism , Cell Movement , Neuroblastoma/pathology , Amino Acid Sequence , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Animals , Base Sequence , Cell Line, Tumor , Cell Membrane/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glycine/chemistry , HEK293 Cells , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mutation/genetics , NIH 3T3 Cells , Neoplasm Invasiveness , Neuroblastoma/genetics , Protein Binding , Protein Domains
18.
Mol Cancer ; 9: 277, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20950435

ABSTRACT

BACKGROUND: The chromodomain, helicase DNA-binding protein 5 (CHD5) is a potential tumor suppressor gene located on chromosome 1p36, a region recurrently deleted in high risk neuroblastoma (NB). Previous data have shown that CHD5 mRNA is present in normal neural tissues and in low risk NB, nevertheless, the distribution of CHD5 protein has not been explored. The aim of this study was to investigate CHD5 protein expression as an immunohistochemical marker of outcome in NB. With this purpose, CHD5 protein expression was analyzed in normal neural tissues and neuroblastic tumors (NTs). CHD5 gene and protein expression was reexamined after induction chemotherapy in a subset of high risk tumors to identify potential changes reflecting tumor response. RESULTS: We provide evidence that CHD5 is a neuron-specific protein, absent in glial cells, with diverse expression amongst neuron types. Within NTs, CHD5 immunoreactivity was found restricted to differentiating neuroblasts and ganglion-like cells, and absent in undifferentiated neuroblasts and stromal Schwann cells. Correlation between protein and mRNA levels was found, suggesting transcriptional regulation of CHD5. An immunohistochemical analysis of 90 primary NTs highlighted a strong association of CHD5 expression with favorable prognostic variables (age at diagnosis <12 months, low clinical stage, and favorable histology; P < 0.001 for all), overall survival (OS) (P < 0.001) and event-free survival (EFS) (P < 0.001). Multivariate analysis showed that CHD5 prognostic value is independent of other clinical and biologically relevant parameters, and could therefore represent a marker of outcome in NB that can be tested by conventional immunohistochemistry. The prognostic value of CHD5 was confirmed in an independent, blinded set of 32 NB tumors (P < 0.001).Reactivation of CHD5 expression after induction chemotherapy was observed mainly in those high risk tumors with induced tumor cell differentiation features. Remarkably, these NB tumors showed good clinical response and prolonged patient survival. CONCLUSIONS: The neuron-specific protein CHD5 may represent a marker of outcome in NB that can be tested by conventional immunohistochemistry. Re-establishment of CHD5 expression induced by chemotherapy could be a surrogate marker of treatment response.


Subject(s)
DNA Helicases/metabolism , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins/metabolism , Neuroblastoma/metabolism , Blotting, Western , Cell Line, Tumor , Cerebellum/metabolism , Cerebral Cortex/metabolism , DNA Helicases/genetics , Ganglia, Sympathetic/metabolism , Humans , In Vitro Techniques , Nerve Tissue Proteins/genetics , Neuroblastoma/genetics , Reverse Transcriptase Polymerase Chain Reaction
19.
Pediatr Blood Cancer ; 55(4): 629-38, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20589651

ABSTRACT

BACKGROUND: Demethylating agents may alter the expression of genes involved in chemotherapy resistance. We conducted a phase I trial to determine the toxicity and molecular effects of the demethylating agent, decitabine, followed by doxorubicin and cyclophosphamide in children with refractory solid tumors. PROCEDURE: Stratum A included children with any solid tumor; Stratum B included neuroblastoma patients only. Patients received a 1-hr decitabine infusion for 7 days, followed by doxorubicin (45 mg/m(2)) and cyclophosphamide (1 g/m(2)) on day 7. Pharmacokinetic studies were performed after the first dose of decitabine. Biological studies included methylation and gene expression analyses of caspase-8, MAGE-1 and fetal hemoglobin (HbF), and expression profiling of pre- and post-treatment peripheral blood and bone marrow cells. RESULTS: The maximum-tolerated dose of decitabine was 5 mg/m(2)/day for 7 days. Dose-limiting toxicities at 10 mg/m(2)/day were neutropenia and thrombocytopenia. Decitabine exhibited rapid clearance from plasma. Three of 9 patients in Stratum A and 4/12 patients in Stratum B had stable disease for > or = 4 months. Sustained MAGE-1 demethylation and increased HbF expression were observed in the majority of patients post-treatment (12/20 and 14/16, respectively). Caspase-8 promoter demethylation and gene expression were seen in 2/7 bone marrow samples. Differentially expressed genes were identified by microarray analysis. CONCLUSION: Low-dose decitabine when combined with doxorubicin/cyclophosphamide has tolerable toxicity in children. However, doses of decitabine capable of producing clinically relevant biologic effects were not well tolerated with this combination. Alternative strategies of combining demethylating agents with non-cytotoxic, biologically targeted agents such as histone deacetylase inhibitors should be explored.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Neuroblastoma/drug therapy , Adolescent , Adult , Antigens, Neoplasm/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Azacitidine/administration & dosage , Azacitidine/adverse effects , Azacitidine/analogs & derivatives , Azacitidine/pharmacokinetics , Caspase 8/genetics , Child , Child, Preschool , Cyclophosphamide/administration & dosage , Cyclophosphamide/adverse effects , Cyclophosphamide/pharmacokinetics , DNA Methylation , Decitabine , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Doxorubicin/pharmacokinetics , Female , Fetal Hemoglobin/genetics , Gene Expression Profiling , Humans , Infant , Male , Melanoma-Specific Antigens , Neoplasm Proteins/genetics
20.
Cell Stem Cell ; 26(4): 579-592.e6, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32142683

ABSTRACT

Neuroblastoma (NB), derived from the neural crest (NC), is the most common pediatric extracranial solid tumor. Here, we establish a platform that allows the study of human NBs in mouse-human NC chimeras. Chimeric mice were produced by injecting human NC cells carrying NB relevant oncogenes in utero into gastrulating mouse embryos. The mice developed tumors composed of a heterogenous cell population that resembled that seen in primary NBs of patients but were significantly different from homogeneous tumors formed in xenotransplantation models. The human tumors emerged in immunocompetent hosts and were extensively infiltrated by mouse cytotoxic T cells, reflecting a vigorous host anti-tumor immune response. However, the tumors blunted the immune response by inducing infiltration of regulatory T cells and expression of immune-suppressive molecules similar to escape mechanisms seen in human cancer patients. Thus, this experimental platform allows the study of human tumor initiation, progression, manifestation, and tumor-immune-system interactions in an animal model system.


Subject(s)
Neural Crest , Neuroblastoma , Animals , Child , Chimera , Disease Models, Animal , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL