Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Can J Anaesth ; 71(1): 107-117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37932650

ABSTRACT

PURPOSE: Cerebral autoregulation (CA) is a mechanism that acts to maintain consistent cerebral perfusion across a range of blood pressures, and impaired CA is associated with delirium. Individualized CA-derived blood pressure targets are poorly characterized in critically ill patients and the association with intensive care unit (ICU) delirium is unknown. Our objectives were to characterize optimal mean arterial pressure (MAPopt) ranges in critically ill adults without brain injury and determine whether deviations from these targets contribute to ICU delirium. METHODS: We performed a retrospective cohort analysis of patients with shock of any etiology and/or respiratory failure requiring invasive mechanical ventilation, without a neurologic admitting diagnosis. Patients were screened daily for delirium. Cerebral oximetry and mean arterial pressure data were captured for the first 24 hr from enrolment. RESULTS: Forty-two patients with invasive blood pressure monitoring data were analyzed. Optimal mean arterial pressure targets ranged from 55 to 100 mm Hg. Optimal mean arterial pressure values were not significantly different based on history of hypertension or delirium status, and delirium was not associated with deviations from MAPopt. Nevertheless, the majority (69%) of blood pressure targets exceeded the current 65 mm Hg Surviving Sepsis guidelines. CONCLUSION: We observed that MAPopt targets across patients were highly variable, but did not observe an association with the incidence of delirium. Studies designed to evaluate the impact on neurologic outcomes are needed to understand the association with individualized mean arterial pressure targets in the ICU. STUDY REGISTRATION: ClinicalTrials.gov (NCT02344043); first submitted 22 January 2015.


RéSUMé: OBJECTIF: L'autorégulation cérébrale (AC) est un mécanisme qui agit pour maintenir une perfusion cérébrale constante pour une gamme de tensions artérielles, et une altération de l'AC est associée au delirium. Les cibles de tension artérielle individualisées dérivées de l'AC sont mal caractérisées chez les patient·es gravement malades et l'association avec le delirium à l'unité de soins intensifs (USI) est inconnue. Nos objectifs étaient de caractériser la tension artérielle moyenne optimale (TAMopt) chez les adultes gravement malades sans lésion cérébrale et de déterminer si les écarts par rapport à ces cibles contribuaient au delirium à l'USI. MéTHODE: Nous avons réalisé une analyse de cohorte rétrospective de patient·es présentant un choc de toute étiologie et/ou une insuffisance respiratoire nécessitant une ventilation mécanique invasive, et n'ayant pas reçu de diagnostic d'atteinte neurologique à l'admission. Les patients ont été dépistés quotidiennement pour le delirium. Les données d'oxymétrie cérébrale et de tension artérielle moyenne ont été saisies pendant les 24 premières heures suivant le recrutement. RéSULTATS: Quarante-deux patient·es pour qui des données de monitorage invasif de la tension artérielle étaient disponibles ont été analysé·es. Les cibles optimales de tension artérielle moyenne variaient de 55 à 100 mm Hg. Les valeurs optimales de tension artérielle moyenne n'étaient pas significativement différentes en fonction des antécédents d'hypertension ou de delirium, et le delirium n'était pas associé à des écarts par rapport à la TAMopt. Néanmoins, la majorité (69 %) des cibles de tension artérielle dépassaient celle de 65 mm Hg préconisée par les lignes directrices Surviving Sepsis. CONCLUSION: Nous avons observé que les cibles de TAMopt étaient très variables chez les patient·es, mais nous n'avons pas observé d'association avec l'incidence de delirium. Des études conçues pour évaluer l'impact sur les issues neurologiques sont nécessaires pour comprendre l'association avec les cibles de tension artérielle moyenne individualisées à l'USI. ENREGISTREMENT DE L'éTUDE: ClinicalTrials.gov (NCT02344043); soumis pour la première fois le 22 janvier 2015.


Subject(s)
Brain Injuries , Delirium , Adult , Humans , Arterial Pressure/physiology , Retrospective Studies , Cerebrovascular Circulation/physiology , Critical Illness , Oximetry , Prospective Studies , Cohort Studies , Brain Injuries/complications , Homeostasis/physiology , Delirium/epidemiology , Delirium/etiology
2.
Blood ; 134(11): 880-891, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31350267

ABSTRACT

Factor VIII (FVIII) pharmacokinetic (PK) properties show high interpatient variability in hemophilia A patients. Although previous studies have determined that age, body mass index, von Willebrand factor antigen (VWF:Ag) levels, and ABO blood group status can influence FVIII PK, they do not account for all observed variability. In this study, we aim to describe the genetic determinants that modify the FVIII PK profile in a population of 43 pediatric hemophilia A patients. We observed that VWF:Ag and VWF propeptide (VWFpp)/VWF:Ag, but not VWFpp, were associated with FVIII half-life. VWFpp/VWF:Ag negatively correlated with FVIII half-life in patients with non-O blood type, but no correlation was observed for type O patients, suggesting that von Willebrand factor (VWF) half-life, as modified by the ABO blood group, is a strong regulator of FVIII PK. The FVIII-binding activity of VWF positively correlated with FVIII half-life, and the rare or low-frequency nonsynonymous VWF variants p.(Arg826Lys) and p.(Arg852Glu) were identified in patients with reduced VWF:FVIIIB but not VWF:Ag. Common variants at the VWF, CLEC4M, and STAB2 loci, which have been previously associated with plasma levels of VWF and FVIII, were associated with the FVIII PK profile. Together, these studies characterize the mechanistic basis by which VWF clearance and ABO glycosylation modify FVIII PK in a pediatric population. Moreover, this study is the first to identify non-VWF and non-ABO variants that modify FVIII PK in pediatric hemophilia A patients.


Subject(s)
Blood Coagulation/genetics , Factor VIII/pharmacokinetics , Hemophilia A/genetics , Hemophilia A/metabolism , von Willebrand Factor/genetics , von Willebrand Factor/metabolism , Adolescent , Blood Coagulation Tests , Child , Factor VIII/therapeutic use , Female , Genetic Variation , Genotype , Half-Life , Hemophilia A/blood , Hemophilia A/drug therapy , Humans , Male , Metabolic Clearance Rate/genetics , Protein Binding , Proteolysis
3.
Fertil Res Pract ; 7(1): 11, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33931123

ABSTRACT

BACKGROUND: In the current context of a global pandemic it is imperative for fertility clinics to consider the necessity of individual tests and eliminate those that have limited utility and may impose unnecessary risk of exposure. The purpose of this study was to implement and evaluate a multi-modal quality improvement (QI) strategy to promote resource stewardship by reducing routine day 3 (d3) bloodwork and transvaginal ultrasound (TVUS) for patients undergoing intrauterine insemination (IUI) and timed intercourse (IC) treatment cycles. METHODS: After literature review, clinic stakeholders at an academic fertility centre met to discuss d3 testing utility and factors contributing to d3 bloodwork/TVUS in IC/IUI treatment cycles. Consensus was reached that it was unnecessary in patients taking oral/no medications. The primary intervention changed the default setting on the electronic order set to exclude d3 testing for IC/IUI cycles with oral/no medications. Exceptions required active test selection. Protocols were updated and education sessions were held. The main outcome measure was the proportion of cycles receiving d3 bloodwork/TVUS during the 8-week post-intervention period compared with the 8-week pre-intervention period. Balancing measures included provider satisfaction, pregnancy rates, and incidence of cycle cancellation. RESULTS: A significant reduction in the proportion of cycles receiving d3 TVUS (57.2% vs 20.8%, p < 0.001) and ≥ 1 blood test (58.6% vs 22.8%, p < 0.001) was observed post-intervention. There was no significant difference in cycle cancellation or pregnancy rates pre- and post-intervention (p = 0.86). Treatment with medications, cyst history, prescribing physician, and treatment centre were associated with receiving d3 bloodwork/TVUS. 74% of providers were satisfied with the intervention. CONCLUSION: A significant reduction in IC/IUI treatment cycles that received d3 bloodwork/TVUS was achieved without measured negative treatment impacts. During a pandemic, eliminating routine d3 bloodwork/TVUS represents a safe way to reduce monitoring appointments and exposure.

4.
J Thromb Haemost ; 17(4): 681-694, 2019 04.
Article in English | MEDLINE | ID: mdl-30740857

ABSTRACT

Essentials CLEC4M is an endocytic receptor for factor FVIII. CLEC4M interacts with FVIII in a VWF-dependent and independent manner. CLEC4M binds to mannose-containing glycans on FVIII. CLEC4M internalization of FVIII involves clathrin coated pits. SUMMARY: Background von Willebrand factor (VWF) and factor VIII (FVIII) circulate in the plasma as a non-covalent complex, and the majority of FVIII is likely to be cleared by VWF-dependent pathways. Clearance of VWF-free FVIII is rapid and underlies the pathological basis of some quantitative FVIII deficiencies. The receptor pathways that regulate the clearance of VWF-bound and VWF-free FVIII are incompletely uncharacterized. The human liver-expressed endothelial lectin CLEC4M has been previously characterized as a clearance receptor for VWF, although its influence on FVIII is unknown. Objective The interaction between FVIII and CLEC4M was characterized in the presence or absence of VWF. Methods FVIII interactions with CLEC4M were evaluated by in vitro cell-based and solid phase binding assays. Interactions between FVIII and CLEC4M or liver sinusoidal endothelial cells were evaluated in vivo by immunohistochemistry. Results CLEC4M-expressing HEK 293 cells bound and internalized recombinant and plasma-derived FVIII through VWF-dependent and independent mechanisms. CLEC4M binding to recombinant FVIII was dependent on mannose-exposed N-linked glycans. CLEC4M mediated FVIII internalization via a clathrin-coated pit-dependent mechanism, resulting in transport of FVIII from early and late endosomes for catabolism by lysosomes. In vivo hepatic expression of CLEC4M after hydrodynamic liver transfer was associated with a decrease in plasma levels of endogenous murine FVIII:C in normal mice, whereas infused recombinant human FVIII was associated with sinusoidal endothelial cells in the presence or absence of VWF. Conclusions These findings suggest that CLEC4M is a novel clearance receptor that interacts with mannose-exposed glycans on FVIII in the presence or absence of VWF.


Subject(s)
Cell Adhesion Molecules/metabolism , Endocytosis , Endothelial Cells/metabolism , Factor VIII/metabolism , Lectins, C-Type/metabolism , Liver/blood supply , Receptors, Cell Surface/metabolism , von Willebrand Factor/metabolism , Animals , Binding Sites , Cell Adhesion Molecules/genetics , Clathrin/metabolism , Endosomes/metabolism , Factor VIII/genetics , HEK293 Cells , Humans , Lectins, C-Type/genetics , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Protein Transport , Proteolysis , Receptors, Cell Surface/genetics , von Willebrand Factor/genetics
5.
J Clin Invest ; 128(9): 4057-4073, 2018 08 31.
Article in English | MEDLINE | ID: mdl-30124466

ABSTRACT

Quantitative abnormalities of the von Willebrand factor-factor VIII (VWF-FVIII) complex associate with inherited bleeding or thrombotic disorders. Receptor-mediated interactions between plasma VWF-FVIII and phagocytic or immune cells can influence their hemostatic and immunogenic activities. Genetic association studies have demonstrated that variants in the STAB2 gene, which encodes the scavenger receptor stabilin-2, associate with plasma levels of VWF-FVIII. However, the mechanistic basis and pathophysiological consequences of this association are unknown. We have demonstrated that stabilin-2-expressing cells bind and internalize human VWF and FVIII in a VWF-dependent manner, and stabilin-2-deficient mice displayed prolonged human VWF-FVIII half-life compared with controls. The stabilin-2 variant p.E2377K significantly decreased stabilin-2 expression and impaired VWF endocytosis in a heterologous expression system, and common STAB2 variants associated with plasma VWF levels in type 1 von Willebrand disease patients. STAB2-deficient mice displayed a decreased immunogenic response to human VWF-FVIII complex, while coinfusion of human VWF-FVIII with the stabilin-2 ligand hyaluronic acid attenuated the immune response to exogenous FVIII. Collectively, these data suggest that stabilin-2 functions as both a clearance and an immunoregulatory receptor for VWF-FVIII, making stabilin-2 a novel molecular target for modification of the half-life of VWF-FVIII and the immune response to VWF-FVIII concentrates.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Factor VIII/metabolism , von Willebrand Factor/metabolism , Adolescent , Adult , Aged , Animals , Cell Adhesion Molecules, Neuronal/deficiency , Child , Child, Preschool , Drug Combinations , Endocytosis , Endothelial Cells/immunology , Endothelial Cells/metabolism , Factor VIII/chemistry , Factor VIII/immunology , Factor VIII/pharmacokinetics , Female , Genetic Variation , Half-Life , Humans , Infant , Liver/cytology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Protein Binding , Protein Stability , Young Adult , von Willebrand Factor/chemistry , von Willebrand Factor/immunology , von Willebrand Factor/pharmacokinetics
6.
Cancer Metab ; 4: 8, 2016.
Article in English | MEDLINE | ID: mdl-27152194

ABSTRACT

BACKGROUND: Gleason scores (GS) 3+3 and 3+4 prostate cancers (PCa) differ greatly in their clinical courses, with Gleason pattern (GP) 4 representing a major independent risk factor for cancer progression. However, Gleason grade is not reliably ascertained by diagnostic biopsy, largely due to sampling inadequacies, subjectivity in the Gleason grading procedure, and a lack of more objective biomarker assays to stratify prostate cancer aggressiveness. In most aggressive cancer types, the tumor microenvironment exhibits a reciprocal pro-tumorigenic metabolic phenotype consistent with the reverse Warburg effect (RWE). The RWE can be viewed as a physiologic response to the epithelial phenotype that is independent of both the epithelial genotype and of direct tumor sampling. We hypothesize that differential expression of RWE-associated genes can be used to classify Gleason pattern, distinguishing GP3 from GP4 PCa foci. METHODS: Gene expression profiling was conducted on RNA extracted from laser-capture microdissected stromal tissue surrounding 20 GP3 and 21 GP4 cancer foci from PCa patients with GS 3+3 and GS ≥4+3, respectively. Genes were probed using a 102-gene NanoString probe set targeted towards biological processes associated with the RWE. Differentially expressed genes were identified from normalized data by univariate analysis. A top-scoring pair (TSP) analysis was completed on raw gene expression values. Genes were analyzed for enriched Gene Ontology (GO) biological processes and protein-protein interactions using STRING and GeneMANIA. RESULTS: Univariate analysis identified nine genes (FOXO1 (AUC: 0.884), GPD2, SPARC, HK2, COL1A2, ALDOA, MCT4, NRF2, and ATG5) that were differentially expressed between GP3 and GP4 stroma (p<0.05). However, following correction for false discovery, only FOXO1 retained statistical significance at q<0.05. The TSP analysis identified a significant gene pair, namely ATG5/GLUT1. Greater expression of ATG5 relative to GLUT1 correctly classified 77.4 % of GP3/GP4 samples. Enrichment for GO-biological processes revealed that catabolic glucose processes and oxidative stress response pathways were strongly associated with GP3 foci but not GP4. FOXO1 was identified as being a primary nodal protein. CONCLUSIONS: We report that RWE-associated genes can be used to distinguish between GP3 and GP4 prostate cancers. Moreover, we find that the RWE response is downregulated in the stroma surrounding GP4, possibly via modulation of FOXO1.

SELECTION OF CITATIONS
SEARCH DETAIL