ABSTRACT
Donation after circulatory death (DCD) hearts are predominantly maintained by normothermic blood perfusion (NBP). Nevertheless, it was shown that hypothermic crystalloid perfusion (HCP) is superior to blood perfusion to recondition left ventricular (LV) contractility. However, transcriptomic changes in the myocardium and coronary artery in DCD hearts after HCP and NBP have not been investigated yet. In a pig model, DCD hearts were harvested and maintained for 4 h by NBP (DCD-BP group, N = 8) or HCP with oxygenated histidine-tryptophane-ketoglutarate (HTK) solution (DCD-HTK, N = 8) followed by reperfusion with fresh blood for 2 h. In the DCD group (N = 8), hearts underwent reperfusion immediately after procurement. In the control group (N = 7), no circulatory death was induced. We performed transcriptomics from LV myocardial and left anterior descending (LAD) samples using microarrays (25,470 genes). We applied the Boruta algorithm for variable selection to identify relevant genes. In the DCD-BP group, compared to DCD, six genes were regulated in the myocardium and 1915 genes were regulated in the LAD. In the DCD-HTK group, 259 genes were downregulated in the myocardium and 27 in the LAD; and 52 genes were upregulated in the myocardium and 765 in the LAD, compared to the DCD group. We identified seven genes of relevance for group identification: ITPRIP, G3BP1, ARRDC3, XPO6, NOP2, SPTSSA, and IL-6. NBP resulted in the upregulation of genes involved in mitochondrial calcium accumulation and ROS production, the reduction in microvascular endothelial sprouting, and inflammation. HCP resulted in the downregulation of genes involved in NF-κB-, STAT3-, and SASP-activation and inflammation.
Subject(s)
Heart Transplantation , Swine , Animals , Humans , Heart Transplantation/methods , Coronary Vessels , Transcriptome , DNA Helicases , Tissue Donors , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Myocardium , Perfusion/methods , Gene Expression Profiling , Inflammation , Organ Preservation/methods , DeathABSTRACT
The impact of the machine perfusion of donation after circulatory death (DCD) hearts with the novel Custodiol-N solution on diastolic and coronary microvascular dysfunction is unknown. Porcine DCD-hearts were maintained four hours by perfusion with normothermic blood (DCD-B), hypothermic Custodiol (DCD-C), or Custodiol-N (DCD-CN), followed by one hour of reperfusion with fresh blood, including microvascular and contractile evaluation. In another group (DCD group), one hour of reperfusion, including microvascular and contractile evaluation, was performed without a previous maintenance period (all groups N = 5). We measured diastolic function with a balloon catheter and microvascular perfusion by Laser-Doppler-Technology, resulting in Laser-Doppler-Perfusion (LDP). We performed immunohistochemical staining and gene expression analysis. The developed pressure was improved in DCD-C and DCD-CN. The diastolic pressure decrement (DCD-C: -1093 ± 97 mmHg/s; DCD-CN: -1703 ± 329 mmHg/s; DCD-B: -690 ± 97 mmHg/s; p < 0.05) and relative LDP (DCD-CN: 1.42 ± 0.12; DCD-C: 1.11 ± 0.13; DCD-B: 1.22 ± 0.27) were improved only in DCD-CN. In DCD-CN, the expression of eNOS increased, and ICAM and VCAM decreased. Only in DCD-B compared to DCD, the pathways involved in complement and coagulation cascades, focal adhesion, fluid shear stress, and the IL-6 and IL-17 pathways were upregulated. In conclusion, machine perfusion with Custodiol-N improves diastolic and microvascular function and preserves the microvascular endothelium of porcine DCD-hearts.
Subject(s)
Heart Transplantation , Swine , Animals , Heart Transplantation/methods , Heart , Reperfusion , Perfusion/methods , Tissue Donors , Organ Preservation/methods , DeathABSTRACT
BACKGROUND: Intensive care unit (ICU) physicians have extended the minimum alveolar concentration (MAC) to deliver and monitor long-term volatile sedation in critically ill patients. There is limited evidence of MAC's reliability in controlling sedation depth in this setting. We hypothesized that sedation depth, measured by the electroencephalography (EEG)-derived Narcotrend-Index (burst-suppression N_Index 0-awake N_Index 100), might drift downward over time despite constant MAC values. METHODS: This prospective single-centre randomized clinical study was conducted at a University Hospital Surgical Intensive Care Unit and included consecutive, postoperative ICU patients fulfilling the inclusion criteria. Patients were randomly assigned to receive uninterrupted inhalational sedation with isoflurane, sevoflurane, or desflurane. The end-expiratory concentration of the anaesthetics and the EEG-derived index were measured continuously in time-stamped pairs. Sedation depth was also monitored using Richmond-Agitation-Sedation-Scale (RASS). The paired t-test and linear models (bootstrapped or multilevel) have been employed to analyze MAC, N_Index and RASS across the three groups. RESULTS: Thirty patients were recruited (female/male: 10/20, age 64 ± 11, Simplified Acute Physiology Score II 30 ± 10). In the first 24 h, 21.208 pairs of data points (N_Index and MAC) were recorded. The median MAC of 0.58 ± 0.06 remained stable over the sedation time in all three groups. The t-test indicated in the isoflurane and sevoflurane groups a significant drop in RASS and EEG-derived N_Index in the first versus last two sedation hours. We applied a multilevel linear model on the entire longitudinal data, nested per patient, which produced the formula N_Index = 43 - 0.7·h (R2 = 0.76), showing a strong negative correlation between sedation's duration and the N_Index. Bootstrapped linear models applied for each sedation group produced: N_Index of 43-0.9, 45-0.8, and 43-0.4·h for isoflurane, sevoflurane, and desflurane, respectively. The regression coefficient for desflurane was almost half of those for isoflurane and sevoflurane, indicating a less pronounced time-effect in this group. CONCLUSIONS: Maintaining constant MAC does not guarantee stable sedation depth. Thus, the patients necessitate frequent clinical assessments or, when unfeasible, continuous EEG monitoring. The differences across different volatile anaesthetics regarding their time-dependent negative drift requires further exploration. TRIAL REGISTRATION: NCT03860129.
Subject(s)
Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/classification , Aged , Critical Illness/epidemiology , Critical Illness/therapy , Desflurane/administration & dosage , Desflurane/therapeutic use , Drug Monitoring/methods , Drug Monitoring/statistics & numerical data , Electroencephalography/methods , Electroencephalography/statistics & numerical data , Female , Humans , Hypnotics and Sedatives/therapeutic use , Isoflurane/administration & dosage , Isoflurane/therapeutic use , Male , Middle Aged , Prospective Studies , Reproducibility of Results , Sevoflurane/administration & dosage , Sevoflurane/therapeutic useABSTRACT
Vascular ischemia/reperfusion injury (IRI) contributes to graft failure and adverse clinical outcomes following coronary artery bypass grafting. Sodium-glucose-cotransporter (SGLT)-2-inhibitors have been shown to protect against myocardial IRI, irrespective of diabetes. We hypothesized that adding canagliflozin (CANA) (an SGLT-2-inhibitor) to saline protects vascular grafts from IRI. Aortic rings from non-diabetic rats were isolated and immediately mounted in organ bath chambers (control, n = 9-10 rats) or underwent cold ischemic preservation in saline, supplemented either with a DMSO vehicle (IR, n = 8-10 rats) or 50µM CANA (IR + CANA, n = 9-11 rats). Vascular function was measured, the expression of 88 genes using PCR-array was analyzed, and feature selection using machine learning was applied. Impaired maximal vasorelaxation to acetylcholine in the IR-group compared to controls was significantly ameliorated by CANA (IR 31.7 ± 3.2% vs. IR + CANA 51.9 ± 2.5%, p < 0.05). IR altered the expression of 17 genes. Ccl2, Ccl3, Ccl4, CxCr4, Fos, Icam1, Il10, Il1a and Il1b have been found to have the highest interaction. Compared to controls, IR significantly upregulated the mRNA expressions of Il1a and Il6, which were reduced by 1.5- and 1.75-fold with CANA, respectively. CANA significantly prevented the upregulation of Cd40, downregulated NoxO1 gene expression, decreased ICAM-1 and nitrotyrosine, and increased PECAM-1 immunoreactivity. CANA alleviates endothelial dysfunction following IRI.
Subject(s)
Canagliflozin/pharmacology , Endothelium, Vascular/drug effects , Neovascularization, Pathologic/drug therapy , Reperfusion Injury/complications , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Diseases/prevention & control , Vasodilation/drug effects , Animals , Endothelium, Vascular/pathology , In Vitro Techniques , Male , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Rats , Rats, Wistar , Vascular Diseases/etiology , Vascular Diseases/metabolism , Vascular Diseases/pathologyABSTRACT
The major source of heart transplantation comes from brain-dead (BD) donors. However, brain death and myocardial ischemia/reperfusion injury during transplantation may lead to cardiac dysfunction and hemodynamic instability. A previous work demonstrated that pre-treatment of BD donors with dopamine improved the graft survival of heart allograft in recipient after transplantation. However, low-dose dopamine treatment might result in tachycardia and hypertension. Our previous experimental study showed that pre-treatment of BD donor rats with the dopamine derivate N-octanoyl dopamine (NOD), devoid of any hemodynamic effects, improved graft function after transplantation. Herein, we hypothesized that NOD confers superior myocardial protection than dopamine, in terms of graft function. Male Lewis donor rats were either subjected to sham-operation or brain death via a subdurally placed balloon followed by 5.5â¯h monitoring. Then, the hearts were explanted and heterotopically transplanted into Lewis recipient rats. Shortly before the onset of reperfusion, continuous intravenous infusion of either NOD (14.7⯵g/kg/min, BDâ¯+â¯NOD group, nâ¯=â¯9), dopamine (10⯵g/kg/min, BDâ¯+â¯Dopamine group, nâ¯=â¯8) or physiological saline vehicle (sham, nâ¯=â¯9 and BD group, nâ¯=â¯9) were administered to the recipient rats. In vivo left-ventricular (LV) graft function was evaluated after 1.5â¯h reperfusion. Additionally, immunohistochemical detection of 4-hydroxy-2-nonenal (HNE, an indicator of oxidative stress) and nitrotyrosine (a nitro-oxidative stress marker), was performed. After heart transplantation, systolic and diastolic functions were significantly decreased in the BD group compared to sham. Treatment with NOD but not dopamine, resulted in better LV graft systolic functional recovery (LV systolic pressure BDâ¯+â¯NOD 90⯱â¯8 vs BDâ¯+â¯Dopamine 66⯱â¯5 vs BD 65⯱â¯4â¯mmHg; maximum rate of rise of LV pressure dP/dtmax BDâ¯+â¯NOD 2686⯱â¯225 vs BDâ¯+â¯Dopamine 2243⯱â¯70 vs BD 1999⯱â¯147â¯mmHg/s, at an intraventricular volume of 140⯵l, pâ¯<â¯0.05) and myocardial work compared to BD group. The re-beating time (time to restoration of heartbeat) was significantly shorter in BDâ¯+â¯NOD group than that of BD hearts (32⯱â¯4â¯s vs. 48⯱â¯6â¯s, pâ¯<â¯0.05), Dopamine treatment had no impact on all of these parameters. Furthermore, NOD as well as dopamine decreased HNE and nitrotyrosine immunoreactivity to the same level. NOD is superior to dopamine in terms of protecting LV graft contractile function when administered to the heart transplant recipients from BD donors.
Subject(s)
Dopamine/analogs & derivatives , Heart Transplantation , Protective Agents/therapeutic use , Animals , Brain Death , Dopamine/therapeutic use , Graft Survival/drug effects , Male , Rats, Inbred Lew , Tissue Donors , Ventricular Function, Left/drug effectsABSTRACT
BACKGROUND: Emergence delirium is a complication of pediatric anesthesia during the early recovery period. Children undergoing ear, nose, and throat surgery are at high risk. The Pediatric Assessment of Emergence Delirium (PAED) scale is used for diagnosis and founded to specify the degree of emergence delirium. However, there is no consensus regarding a threshold value for emergence delirium diagnosis. Homeostasis-guided pediatric general anesthesia aims to maintain physiological parameters within normal ranges. In this prospective, observational study we evaluated the incidence of emergence delirium in children undergoing elective ear, nose, and throat surgery under standardized homeostasis-guided general anesthesia. Secondarily, we identified risk factors associated with an increased PAED score. METHODS: In children aged 0-6 years, we collected data from standard monitoring, depth of anesthesia, and preoperative glucose and ketone body levels. These variables were studied as risk or protective factors for increased PAED >0 scores using multivariate logistic regression. RESULTS: Of the 105 children analyzed, only five children (4.7%) had emergence delirium according to a threshold PAED score ≥10, while 37 children (35%) had PAED scores >0. Statistical analysis of the PAED outcome identified two significant positive associations with pain (P<0.001) and preoperative blood glucose levels (P=0.006) and one negative association with preoperative ketone body levels (P<0.001). CONCLUSIONS: Our cohort observed a lower incidence of emergence delirium than in the literature. Higher pain intensity and lower blood glucose levels were risk factors for PAED > 0, whereas preoperative ketone body levels were protective.
Subject(s)
Emergence Delirium , Homeostasis , Humans , Emergence Delirium/epidemiology , Emergence Delirium/etiology , Female , Child, Preschool , Male , Incidence , Infant , Prospective Studies , Child , Anesthesia, General/adverse effects , Otorhinolaryngologic Surgical Procedures/adverse effects , Infant, Newborn , Risk Factors , Pediatric AnesthesiaABSTRACT
The determination of age-related transcriptional changes may contribute to the understanding of health and life expectancy. The broad application of results from age cohorts may have limitations. Altering sample sizes per time point or sex, using a single mouse strain or tissue, a limited number of replicates, or omitting the middle of life can bias the surveys. To achieve higher general validity and to identify less distinctive players, bulk RNA sequencing of a mouse cohort, including seven organs of two strains from both sexes of 5 ages, was performed. Machine learning by bootstrapped variable importance and selection methodology (Boruta) was used to identify common aging features where the circadian rhythms (CiR) transcripts appear as promising age markers in an unsupervised analysis. Pathways of 11 numerically analyzed local network clusters were affected and classified into four major gene expression profiles, whereby CiR and proteostasis candidates were particularly conspicuous with partially opposing changes. In a data-based interaction association network, the CiR-proteostasis axis occupies an exposed central position, highlighting its relevance. The computation of 11,830 individual transcript associations provides potential superordinate contributors, such as hormones, to age-related changes, as in CiR. In hormone-sensitive LNCaP cells, short-term supraphysiologic levels of the sex hormones dihydrotestosterone or estradiol increase the expression of the CiR transcript Bhlhe40 and the associated senescence regulator Cdkn2b (p15). According to these findings, the bilateral dysregulation of CiR appears as a fundamental protagonist of aging, whose transcripts could serve as a biological marker and its restoration as a therapeutic opportunity.
ABSTRACT
Coronary artery bypass surgery can result in endothelial dysfunction due to ischemia/reperfusion (IR) injury. Previous studies have demonstrated that DuraGraft helps maintain endothelial integrity of saphenous vein grafts during ischemic conditions. In this study, we investigated the potential of DuraGraft to mitigate endothelial dysfunction in arterial grafts after IR injury using an aortic transplantation model. Lewis rats (n = 7-9/group) were divided in three groups. Aortic arches from the control group were prepared and rings were immediately placed in organ baths, while the aortic arches of IR and IR + DuraGraft rats were preserved in saline or DuraGraft, respectively, for 1 h before being transplanted heterotopically. After 1 h after reperfusion, the grafts were explanted, rings were prepared, and mounted in organ baths. Our results demonstrated that the maximum endothelium-dependent vasorelaxation to acetylcholine was significantly impaired in the IR group compared to the control group, but DuraGraft improved it (control: 89 ± 2%; IR: 24 ± 1%; IR + DuraGraft: 48 ± 1%, p < 0.05). Immunohistochemical analysis revealed decreased intercellular adhesion molecule-1, 4-hydroxy-2-nonenal, caspase-3 and caspase-8 expression, while endothelial cell adhesion molecule-1 immunoreactivity was increased in the IR + DuraGraft grafts compared to the IR-group. DuraGraft mitigates endothelial dysfunction following IR injury in a rat bypass model. Its protective effect may be attributed, at least in part, to its ability to reduce the inflammatory response, oxidative stress, and apoptosis.
Subject(s)
Endothelium, Vascular , Rats, Inbred Lew , Reperfusion Injury , Animals , Rats , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Reperfusion Injury/metabolism , Male , Coronary Artery Bypass/methods , Coronary Artery Bypass/adverse effects , Oxidative Stress/drug effects , Intercellular Adhesion Molecule-1/metabolism , Disease Models, Animal , Aldehydes/metabolism , Aldehydes/pharmacology , Caspase 3/metabolism , Vasodilation/drug effects , Apoptosis/drug effects , Acetylcholine/pharmacologyABSTRACT
Introduction: The shortage of available donor hearts and the risk of ischemia/reperfusion injury restrict heart transplantation (HTX). Alpha-1-antitrypsin (AAT), a well-characterized inhibitor of neutrophil serine protease, is used in augmentation therapy to treat emphysema due to severe AAT deficiency. Evidence demonstrates its additional anti-inflammatory and tissue-protective effects. We hypothesized that adding human AAT in a preservation solution reduces graft dysfunction in a rat model of HTX following extended cold ischemic storage. Methods: The hearts from isogenic Lewis donor rats were explanted, stored for either 1h or 5h in cold Custodiol supplemented with either vehicle (1h ischemia, n=7 or 5h ischemia, n=7 groups) or 1 mg/ml AAT (1h ischemia+AAT, n=7 or 5h ischemia+AAT, n=9 groups) before heterotopic HTX. Left-ventricular (LV) graft function was evaluated in vivo 1.5h after HTX. Immunohistochemical detection of myeloperoxydase (MPO) was performed in myocardial tissue and expression of 88 gene quantified with PCR was analyzed both statistical and with machine-learning methods. Results: After HTX, LV systolic function (dP/dtmax 1h ischemia+AAT 4197 ± 256 vs 1h ischemia 3123 ± 110; 5h ischemia+AAT 2858 ± 154 vs 5h ischemia 1843 ± 104mmHg/s, p<0.05) and diastolic function (dP/dtmin 5h ischemia+AAT 1516 ± 68 vs 5h ischemia 1095 ± 67mmHg/s, p<0.05) at an intraventricular volume of 90µl were improved in the AAT groups compared with the corresponding vehicle groups. In addition, the rate pressure product (1h ischemia+AAT 53 ± 4 vs 1h ischemia 26 ± 1; 5h ischemia+AAT 37 ± 3 vs 5h ischemia 21 ± 1mmHg*beats/min at an intraventricular volume of 90µl; p<0.05) was increased in the AAT groups compared with the corresponding vehicle groups. Moreover, the 5h ischemia+AAT hearts exhibited a significant reduction in MPO-positive cell infiltration in comparison to the 5h ischemia group. Our computational analysis shows that ischemia+AAT network displays higher homogeneity, more positive and fewer negative gene correlations than the ischemia+placebo network. Discussion: We provided experimental evidence that AAT protects cardiac grafts from prolonged cold ischemia during HTX in rats.
Subject(s)
Heart Transplantation , Organ Preservation Solutions , Animals , Humans , Rats , Heart , Ischemia , Rats, Inbred Lew , Tissue DonorsABSTRACT
The use of volatile anesthetics as sedatives in the intensive care unit is relevant to the patient's outcome. We compared anesthetic gas consumption of the conventional semi-closed Aisys CSTM with the MIRUSTM system, which is the first anesthetic gas reflector system that can administer desflurane in addition to isoflurane and sevoflurane. We connected an artificial lung model to either a MIRUSTM system and a Puritan BennettTM 840 ventilator or an Aisys CSTM anesthesia machine. We found that consumption of 0.5% isoflurane, which corresponds to the target concentration 0.5 MAC, was averaged to 2 mL/h in the MIRUSTM system, which is identical to the Aisys CSTM at a fresh gas flow (FGF) of 1.0 L/min. MIRUSTM consumption of 1% sevoflurane was averaged to 10 mL/h, which corresponds to 8.4 mL/h at FGF 2.5 L/min. The MIRUSTM system consumed 3% or 4% desflurane at an average of 13.0 mL/h or 21.3 mL/h, which is between the consumption at 1.0 L/min and 2.5 L/min FGF. Thus, the MIRUSTM system can effectively deliver volatile anesthetics in clinically relevant concentrations in a similar rate as a conventional circular breathing system at FGFs between 1.0 L/min and 2.5 L/min.
Subject(s)
Anesthetics, Inhalation , Isoflurane , Methyl Ethers , Desflurane , Humans , Lung , Sevoflurane , Ventilators, MechanicalABSTRACT
Microvascular dysfunction (MVD) in cardiac allografts is associated with an impaired endothelial function in the coronary microvasculature. Ischemia/reperfusion injury (IRI) deteriorates endothelial function. Hearts donated after circulatory death (DCD) are exposed to warm ischemia before initiating ex vivo blood perfusion (BP). The impact of cytokine adsorption during BP to prevent MVD in DCD hearts is unknown. In a porcine DCD model, we assessed the microvascular function of hearts after BP with (DCD-BPCytoS, n = 5) or without (DCD-BP, n = 5) cytokine adsorption (CytoSorb®). Microvascular autoregulation was assessed by increasing the coronary perfusion pressure, while myocardial microcirculation was measured by Laser-Doppler-Perfusion (LDP). We analyzed the immunoreactivity of arteriolar oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal (HNE), endothelial injury indicating cell adhesion molecules CD54, CD106 and CD31, and eNOS. We profiled the concentration of 13 cytokines in the perfusate. The expression of 84 genes was determined and analyzed using machine learning and decision trees. Non-DCD hearts served as a control for the gene expression analysis. Compared to DCD-BP, relative LDP was improved in the DCD-BPCytoS group (1.51 ± 0.17 vs. 1.08 ± 0.17). Several pro- and anti-inflammatory cytokines were reduced in the DCD-BPCytoS group. The expression of eNOS significantly increased, and the expression of nitrotyrosine, HNE, CD54, CD106, and CD31, markers of endothelial injury, majorly decreased in the DCD-BPCytoS group. Three genes allowed exact differentiation between groups; regulation of HIF1A enabled differentiation between perfusion (DCD-BP, DCD-BPCytoS) and non-perfusion groups. CAV1 allowed differentiation between BP and BPCytoS. The use of a cytokine adsorption device during BP counteracts preload-dependent MVD and preserves the microvascular endothelium by preventing oxidative stress and IRI of coronary arterioles of DCD hearts.
ABSTRACT
BACKGROUND: Warm ischemia followed by blood reperfusion is associated with reduced myocardial contractility. Circulatory death (CD) hearts are maintained by machine perfusion (MP) with blood. However, the impact of MP with histidine-tryptophane-ketoglutarate (HTK) or novel HTK-N solution on reconditioning of CD-heart contractility is unknown. METHODS: In a porcine model, native hearts were directly harvested (control), or CD was induced before harvesting, followed by left ventricular (LV) contractile assessment. In MP-groups, CD-hearts were maintained for 4 h by MP with blood (CD-B), cold oxygenated HTK (CD-HTK) or HTK-N (CD-HTK-N) before contractile evaluation (all groups n = 8). We performed immunohistochemistry of LV myocardial samples. We profiled myocardial expression of 84 oxidative stress-related genes and correlated the findings with myocardial contractility via a machine learning algorithm. RESULTS: HTK-N improved end-systolic pressure (ESP=172±10 vs 132±5 mmHg, p = 0.02) and maximal slope of pressure increment (dp/dtmax=2161±214 vs 1240±167 mmHg/s, p = 0.005) compared to CD, whereas CD-B failed to improve contractility. Dp/dtmax (2161±214 vs 1177±156, p = 0.08) and maximal rate of pressure decrement (dp/dtmin=-1501±228 vs -637±79, p = 0.005) were also superior in CD-HTK-N compared to CD-B. In CD-HTK-N, myocardial 4-hydroxynonenal (marker for oxidative stress; p<0.001), nitrotyrosine (marker for nitrosative stress; p = 0.004), poly(adenosine diphosphate-ribose)polymerase (marker for necrosis; p = 0.028) immunoreactivity and cell swelling (p = 0.008) were decreased compared to CD-B. Strong correlation of gene expression with ESP was identified for oxidative stress defense genes in CD-HTK-N. CONCLUSION: During harvesting procedure, MP with HTK-N reconditions CD-heart systolic and diastolic function by reducing oxidative and nitrosative stress and preventing cardiomyocytes from cell swelling and necrosis.
Subject(s)
Extracorporeal Circulation/methods , Heart Transplantation/methods , Myocardial Contraction/drug effects , Organ Preservation Solutions/pharmacology , Organ Preservation/methods , Tissue Donors , Warm Ischemia/methods , Animals , Blood Pressure/drug effects , Disease Models, Animal , SwineABSTRACT
BACKGROUND: The MIRUS™ (TIM, Koblenz, Germany) is an electronical gas delivery system, which offers an automated MAC (minimal alveolar concentration)-driven application of isoflurane, sevoflurane, or desflurane, and can be used for sedation in the intensive care unit. We investigated its consumption of volatile anesthetics at 0.5 MAC (primary endpoint) and the corresponding costs. Secondary endpoints were the technical feasibility to reach and control the MAC automatically, the depth of sedation at 0.5 MAC, and awakening times. Mechanically ventilated and sedated patients after major surgery were enrolled. Upon arrival in the intensive care unit, patients obtained intravenous propofol sedation for at least 1 h to collect ventilation and blood gas parameters, before they were switched to inhalational sedation using MIRUS™ with isoflurane, sevoflurane, or desflurane. After a minimum of 2 h, inhalational sedation was stopped, and awakening times were recorded. A multivariate electroencephalogram and the Richmond Agitation Sedation Scale (RASS) were used to assess the depth of sedation. Vital signs, ventilation parameters, gas consumption, MAC, and expiratory gas concentrations were continuously recorded. RESULTS: Thirty patients obtained inhalational sedation for 18:08 [14:46-21:34] [median 1st-3rd quartiles] hours. The MAC was 0.58 [0.50-0.64], resulting in a Narcotrend Index of 37.1 [30.9-42.4] and a RASS of - 3.0 [- 4.0 to (- 3.0)]. The median gas consumption was significantly lowest for isoflurane ([ml h-1]: isoflurane: 3.97 [3.61-5.70]; sevoflurane: 8.91 [6.32-13.76]; and desflurane: 25.88 [20.38-30.82]; p < 0.001). This corresponds to average costs of 0.39 h-1 for isoflurane, 2.14 h-1 for sevoflurane, and 7.54 h-1 for desflurane. Awakening times (eye opening [min]: isoflurane: 9:48 [4:15-20:18]; sevoflurane: 3:45 [0:30-6:30]; desflurane: 2:00 [1:00-6:30]; p = 0.043) and time to extubation ([min]: isoflurane: 10:10 [8:00-20:30]; sevoflurane: 7:30 [4:37-14:22]; desflurane: 3:00 [3:00-6:00]; p = 0.007) were significantly shortest for desflurane. CONCLUSIONS: A target-controlled, MAC-driven automated application of volatile anesthetics is technically feasible and enables an adequate depth of sedation. Gas consumption was highest for desflurane, which is also the most expensive volatile anesthetic. Although awakening times were shortest, the actual time saving of a few minutes might be negligible for most patients in the intensive care unit. Thus, using desflurane seems not rational from an economic perspective. Trial registration Clinical Trials Registry (ref.: NCT03860129). Registered 24 September 2018-Retrospectively registered.