Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Mol Cell ; 77(6): 1176-1192.e16, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31999954

ABSTRACT

Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.


Subject(s)
Autistic Disorder/physiopathology , Cognitive Dysfunction/pathology , Eukaryotic Initiation Factor-4G/physiology , Exons/genetics , Fragile X Mental Retardation Protein/metabolism , Neuroblastoma/pathology , Neurons/pathology , Animals , Behavior, Animal , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Fragile X Mental Retardation Protein/genetics , Male , Mice , Mice, Inbred C57BL , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neurogenesis , Neurons/metabolism , Protein Biosynthesis , RNA Splicing , Tumor Cells, Cultured
2.
Proc Natl Acad Sci U S A ; 111(18): 6786-91, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24757053

ABSTRACT

Mossy fiber termini in the hippocampus accumulate Zn(2+), which is released with glutamate from synaptic vesicles upon neural excitation. Understanding the spatiotemporal regulation of mobile Zn(2+) at the synaptic level is challenging owing to the difficulty of visualizing Zn(2+) at individual synapses. Here we describe the use of zinc-responsive fluorescent probes together with two-photon microscopy to image Zn(2+) dynamics mediated by NMDA receptor-dependent long-term potentiation induction at single mossy fiber termini of dentate gyrus neurons in adult mouse hippocampal slices. The membrane-impermeant fluorescent Zn(2+) probe, 6-CO2H-ZAP4, was loaded into presynaptic vesicles in hippocampal mossy fiber termini upon KCl-induced depolarization, which triggers subsequent endocytosis and vesicular restoration. Local tetanic stimulation decreased the Zn(2+) signal observed at individual presynaptic sites, indicating release of the Zn(2+) from vesicles in synaptic potentiation. This synapse-level two-photon Zn(2+) imaging method enables monitoring of presynaptic Zn(2+) dynamics for improving the understanding of physiological roles of mobile Zn(2+) in regular and aberrant neurologic function.


Subject(s)
Functional Neuroimaging/methods , Microscopy, Fluorescence, Multiphoton/methods , Mossy Fibers, Hippocampal/metabolism , Zinc/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cation Transport Proteins , Fluoresceins/chemical synthesis , Fluoresceins/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Hydrogen-Ion Concentration , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins , Mice , Mice, Knockout , Molecular Structure , Photochemical Processes
3.
Biochem Soc Trans ; 44(1): 46-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26862187

ABSTRACT

The fluorescent dye DAPI is useful for its association with and consequent amplification of an ∼460 nm emission maximum upon binding to dsDNA. Labelling with higher DAPI concentrations is a technique used to reveal Pi polymers [polyphosphate (polyP)], with a red-shift to ∼520-550 nm fluorescence emission. DAPI-polyP emissions of ∼580 nm are also generated upon 415 nm excitation. Red-shifted DAPI emission has been associated with polyP and RNA and has more recently been reported with polyadenylic acid (polyA), specific inositol phosphates (IPs) and heparin. We find that amorphous calcium phosphate (ACP) also demonstrates red-shifted DAPI emission at high DAPI concentrations. This DAPI spectral shift has been attributed to DAPI-DAPI electrostatic interactions enabled by molecules with high negative charge density that increase the local DAPI concentration and favour DAPI molecular proximity, as observed by increasing the dye/phosphate ratio. Excitation of dry DAPI (∼360 nm) confirmed a red-shifted DAPI emission. Whereas enzymatic approaches to modify substrates can help define the nature of DAPI fluorescence signals, multiple approaches beyond red-shifted DAPI excitation/emission are advised before conclusions are drawn about DAPI substrate identification.


Subject(s)
Indoles/metabolism , Polyphosphates/metabolism , Spectrometry, Fluorescence/methods , DNA/metabolism , Heparin/metabolism , RNA/metabolism
4.
PLoS Biol ; 11(1): e1001465, 2013.
Article in English | MEDLINE | ID: mdl-23319891

ABSTRACT

Metazoans display remarkable conservation of gene families, including growth factors, yet somehow these genes are used in different ways to generate tremendous morphological diversity. While variations in the magnitude and spatio-temporal aspects of signaling by a growth factor can generate different body patterns, how these signaling variations are organized and coordinated during development is unclear. Basic body plans are organized by the end of gastrulation and are refined as limbs, organs, and nervous systems co-develop. Despite their proximity to developing tissues, neurons are primarily thought to act after development, on behavior. Here, we show that in Caenorhabditis elegans, the axonal projections of neurons regulate tissue progenitor responses to Wnts so that certain organs develop with the correct morphology at the right axial positions. We find that foreshortening of the posteriorly directed axons of the two canal-associated neurons (CANs) disrupts mid-body vulval morphology, and produces ectopic vulval tissue in the posterior epidermis, in a Wnt-dependent manner. We also provide evidence that suggests that the posterior CAN axons modulate the location and strength of Wnt signaling along the anterior-posterior axis by employing a Ror family Wnt receptor to bind posteriorly derived Wnts, and hence, refine their distributions. Surprisingly, despite high levels of Ror expression in many other cells, these cells cannot substitute for the CAN axons in patterning the epidermis, nor can cells expressing a secreted Wnt inhibitor, SFRP-1. Thus, unmyelinated axon tracts are critical for patterning the C. elegans body. Our findings suggest that the evolution of neurons not only improved metazoans by increasing behavioral complexity, but also by expanding the diversity of developmental patterns generated by growth factors such as Wnts.


Subject(s)
Body Patterning/genetics , Caenorhabditis elegans/embryology , Nervous System/embryology , Wnt Proteins/genetics , Wnt Signaling Pathway , Animals , Axons/physiology , Body Patterning/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Movement/genetics , Female , Gastrulation , Gene Expression Regulation, Developmental , Glycoproteins/biosynthesis , Glycoproteins/genetics , Glycoproteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Neurons/physiology , Nuclear Receptor Subfamily 1, Group F, Member 3 , RNA Interference , RNA, Small Interfering , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Vulva/metabolism
5.
Development ; 138(7): 1329-37, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21385763

ABSTRACT

Schwann cells elaborate myelin sheaths around axons by spirally wrapping and compacting their plasma membranes. Although actin remodeling plays a crucial role in this process, the effectors that modulate the Schwann cell cytoskeleton are poorly defined. Here, we show that the actin cytoskeletal regulator, neural Wiskott-Aldrich syndrome protein (N-WASp), is upregulated in myelinating Schwann cells coincident with myelin elaboration. When N-WASp is conditionally deleted in Schwann cells at the onset of myelination, the cells continue to ensheath axons but fail to extend processes circumferentially to elaborate myelin. Myelin-related gene expression is also severely reduced in the N-WASp-deficient cells and in vitro process and lamellipodia formation are disrupted. Although affected mice demonstrate obvious motor deficits these do not appear to progress, the mutant animals achieving normal body weights and living to advanced age. Our observations demonstrate that N-WASp plays an essential role in Schwann cell maturation and myelin formation.


Subject(s)
Cytoskeleton/metabolism , Myelin Sheath/metabolism , Peripheral Nerves/metabolism , Schwann Cells/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Animals , Axons/metabolism , Blotting, Western , Cells, Cultured , Cytoskeleton/genetics , Fluorescent Antibody Technique , Gait/genetics , Gene Expression , Mice , Mice, Knockout , Myelin Sheath/genetics , Reverse Transcriptase Polymerase Chain Reaction , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230241, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853556

ABSTRACT

The roles of Ca2+-induced calcium release in synaptic plasticity and metaplasticity are poorly understood. The present study has addressed the role of intracellular Ca2+ stores in long-term potentiation (LTP) and a form of heterosynaptic metaplasticity known as synaptic tagging and capture (STC) at CA1 synapses in mouse hippocampal slices. The effects of two compounds, ryanodine and cyclopiazonic acid (CPA), were examined on LTP induced by three distinct induction protocols: weak (w), compressed (c) and spaced (s) theta-burst stimulation (TBS). These compounds did not significantly affect LTP induced by the wTBS (one episode of TBS; 25 stimuli) or cTBS (three such episodes with a 10 s inter-episode interval (IEI); 75 stimuli) but substantially inhibited LTP induced by a sTBS (10 min IEI; 75 stimuli). Ryanodine and CPA also prevented a small heterosynaptic potentiation that was observed with the sTBS protocol. Interestingly, these compounds also prevented STC when present during either the sTBS or the subsequent wTBS, applied to an independent input. All of these effects of ryanodine and CPA were similar to that of a calcium-permeable AMPA receptor blocker. In conclusion, Ca2+ stores provide one way in which signals are propagated between synaptic inputs and, by virtue of their role in STC, may be involved in associative long-term memories. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Calcium , Long-Term Potentiation , Ryanodine , Synapses , Animals , Long-Term Potentiation/physiology , Mice , Synapses/physiology , Ryanodine/pharmacology , Calcium/metabolism , Indoles/pharmacology , Hippocampus/physiology , Mice, Inbred C57BL , Neuronal Plasticity/physiology , CA1 Region, Hippocampal/physiology , Male
7.
Brain Neurosci Adv ; 8: 23982128231223579, 2024.
Article in English | MEDLINE | ID: mdl-38298523

ABSTRACT

The modulation of synaptic efficacy by group I metabotropic glutamate receptors is dysregulated in several neurodevelopmental and neurodegenerative disorders impacting cognitive function. The progression and severity of these and other disorders are affected by biological sex, and differences in metabotropic glutamate receptor signalling have been implicated in this effect. In this study, we have examined whether there are any sex-dependent differences in a form of long-term depression of synaptic responses that is triggered by application of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG). We studied DHPG-induced long-term depression at the Schaffer collateral-commissural pathway in area CA1 of hippocampal slices prepared from three separate age groups of Sprague Dawley rats. In both juvenile (2-week-old) and young adult (3-month-old) rats, there were no differences between sexes in the magnitude of long-term depression. However, in older adult (>1-year-old) rats, DHPG-induced long-term depression was greater in males. In contrast, there were no differences between sexes with respect to basal synaptic transmission or paired-pulse facilitation in any age group. The specific enhancement of metabotropic glutamate receptor-dependent long-term depression in older adult males, but not females, reinforces the importance of considering sex as a factor in the study and treatment of brain disorders.

8.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230484, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853552

ABSTRACT

Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Mice, Knockout , Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate , Animals , Fragile X Syndrome/physiopathology , Fragile X Syndrome/genetics , Mice , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Long-Term Potentiation , Male , Mice, Inbred C57BL , Housing, Animal , Fear
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230239, 2024 07 29.
Article in English | MEDLINE | ID: mdl-38853568

ABSTRACT

N-methyl-d-aspartate receptor (NMDAR)-dependent short- and long-term types of potentiation (STP and LTP, respectively) are frequently studied in the CA1 area of dorsal hippocampal slices (DHS). Far less is known about the NMDAR dependence of STP and LTP in ventral hippocampal slices (VHS), where both types of potentiation are smaller in magnitude than in the DHS. Here, we first briefly review our knowledge about the NMDAR dependence of STP and LTP and some other forms of synaptic plasticity. We then show in new experiments that the decay of NMDAR-STP in VHS, similar to dorsal hippocampal NMDAR-STP, is not time- but activity-dependent. We also demonstrate that the induction of submaximal levels of NMDAR-STP and NMDAR-LTP in VHS differs from the induction of saturated levels of plasticity in terms of their sensitivity to subunit-preferring NMDAR antagonists. These data suggest that activation of distinct NMDAR subtypes in a population of neurons results in an incremental increase in the induction of different phases of potentiation with changing sensitivity to pharmacological agents. Differences in pharmacological sensitivity, which arise due to differences in the levels of agonist-evoked biological response, might explain the disparity of the results concerning NMDAR subunit involvement in the induction of NMDAR-dependent plasticity.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
CA1 Region, Hippocampal , Long-Term Potentiation , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Long-Term Potentiation/physiology , CA1 Region, Hippocampal/physiology , Neuronal Plasticity/physiology , Rats , Hippocampus/physiology
10.
bioRxiv ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39229143

ABSTRACT

Objective: GRIN1 -related neurodevelopmental disorder ( GRIN1 -NDD) is characterized by clinically significant variation in the GRIN1 gene, which encodes the obligatory GluN1 subunit of N-methyl-D-aspartate receptors (NMDARs). The identified p.Tyr647Ser (Y647S) variant - carried by a 33-year-old female with seizures and intellectual disability - is located in the M3 helix in the GluN1 transmembrane domain. This study builds upon initial in vitro investigations of the functional impacts of the GRIN1 Y647S variant and examines its in vivo consequences in a mouse model. Methods: To investigate in vitro functional impacts of NMDARs containing GluN1-Y647S variant subunits, GluN1-Y647S was co-expressed with wildtype GluN2A or GluN2B subunits in Xenopus laevis oocytes and HEK cells. Grin1 Y647S/+ mice were created by CRISPR-Cas9 endonuclease-mediated transgenesis and the molecular, electrophysiological, and behavioural consequences of the variant were examined. Results: In vitro , NMDARs containing GluN1-Y647S show altered sensitivity to endogenous agonists and negative allosteric modulators, and reduced cell surface trafficking. Grin1 Y647S/+ mice displayed a reduction in whole brain GluN1 levels and deficiency in NMDAR-mediated synaptic transmission in the hippocampus. Behaviourally, Grin1 Y647S/+ mice exhibited spontaneous seizures, altered vocalizations, muscle strength, sociability, and problem-solving. Interpretation: The Y647S variant confers a complex in vivo phenotype, which reflects largely diminished properties of NMDAR function. As a result, Grin1 Y647S/+ mice display atypical behaviour in domains relevant to the clinical characteristics of GRIN1 -NDD and the individual carrying the variant. Ultimately, the characterization of Grin1 Y647S/+ mice accomplished in the present work expands our understanding of the mechanisms underlying GRIN1 -NDD and provides a foundation for the development of novel therapeutics.

11.
iScience ; 26(12): 108412, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38053635

ABSTRACT

Synaptic weakening and loss are well-correlated with the pathology of Alzheimer's disease (AD). Oligomeric amyloid beta (oAß) is considered a major synaptotoxic trigger for AD. Recent studies have implicated hyperactivation of the complement cascade as the driving force for loss of synapses caused by oAß. However, the initial synaptic cues that trigger pathological complement activity remain elusive. Here, we examined a form of synaptic long-term depression (LTD) mediated by metabotropic glutamate receptors (mGluRs) that is disrupted in rodent models of AD. Exogenous application of oAß (1-42) to mouse hippocampal slices enhanced the magnitude of mGlu subtype 5 receptor (mGlu5R)-dependent LTD. We found that the enhanced synaptic weakening occurred via both N-methyl-D-aspartate receptors (NMDARs) and complement C5aR1 signaling. Our findings reveal a mechanistic interaction between mGlu5R, NMDARs, and the complement system in aberrant synaptic weakening induced by oAß, which could represent an early trigger of synaptic loss and degeneration in AD.

12.
J Neurosci ; 31(32): 11547-52, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21832185

ABSTRACT

Nestin is expressed in many different progenitors during development including those of the CNS, heart, skeletal muscle, and kidney. The adult expression is mainly restricted to the subependymal zone and dentate gyrus of the brain, the neuromuscular junction, and renal podocytes. In addition, this intermediate filament protein has served as a marker of neural stem/progenitor cells for close to 20 years. Therefore it is surprising that its function in development and adult physiology is still poorly understood. Here we report that nestin deficiency is compatible with normal development of the CNS. The mutant mice, however, show impaired motor coordination. Furthermore, we found that the number of acetylcholine receptor clusters, the nerve length, and the endplate bandwidth are significantly increased in neuromuscular junction area of nestin-deficient mice. This is similar to the phenotype described for deficiency of cyclin-dependent kinase 5 (Cdk5), a candidate downstream affecter of nestin. Moreover, we demonstrate that nestin deficiency can rescue maintenance of acetylcholine receptor clusters in the absence of agrin, similar to Cdk5/agrin double knock-outs, suggesting that the observed nestin deficiency phenotype is the consequence of aberrant Cdk5 activity.


Subject(s)
Central Nervous System/embryology , Central Nervous System/metabolism , Cyclin-Dependent Kinase 5/deficiency , Intermediate Filament Proteins/deficiency , Nerve Tissue Proteins/deficiency , Neuromuscular Junction/metabolism , Receptor Aggregation/physiology , Receptors, Cholinergic/metabolism , Agrin/deficiency , Agrin/genetics , Agrin/metabolism , Animals , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/physiology , Female , Gene Targeting/methods , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/physiology , Male , Mice , Mice, Knockout , Motor Activity/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Nestin , Neuromuscular Junction/physiology , Receptor Aggregation/genetics , Receptors, Cholinergic/genetics , Receptors, Cholinergic/physiology
13.
Front Mol Neurosci ; 15: 852171, 2022.
Article in English | MEDLINE | ID: mdl-35782378

ABSTRACT

Glycogen synthase kinase-3 (GSK3) mediates phosphorylation of several hundred proteins, and its aberrant activity is associated with an array of prevalent disorders. The two paralogs, GSK3α and GSK3ß, are expressed ubiquitously and fulfill common as well as unique tasks throughout the body. In the CNS, it is established that GSK3 is involved in synaptic plasticity. However, the relative roles of GSK3 paralogs in synaptic plasticity remains controversial. Here, we used hippocampal slices obtained from adult mice to determine the role of each paralog in CA3-CA1 long-term potentiation (LTP) of synaptic transmission, a form of plasticity critically required in learning and memory. Conditional Camk2a Cre-driven neuronal deletion of the Gsk3a gene, but not Gsk3b, resulted in enhanced LTP. There were no changes in basal synaptic function in either of the paralog-specific knockouts, including several measures of presynaptic function. Therefore, GSK3α has a specific role in serving to limit LTP in adult CA1, a postsynaptic function that is not compensated by GSK3ß.

14.
Front Synaptic Neurosci ; 14: 857675, 2022.
Article in English | MEDLINE | ID: mdl-35615440

ABSTRACT

In area CA1 of the hippocampus, long-term depression (LTD) can be induced by activating group I metabotropic glutamate receptors (mGluRs), with the selective agonist DHPG. There is evidence that mGluR-LTD can be expressed by either a decrease in the probability of neurotransmitter release [P(r)] or by a change in postsynaptic AMPA receptor number. However, what determines the locus of expression is unknown. We investigated the expression mechanisms of mGluR-LTD using either a low (30 µM) or a high (100 µM) concentration of (RS)-DHPG. We found that 30 µM DHPG generated presynaptic LTD that required the co-activation of NMDA receptors, whereas 100 µM DHPG resulted in postsynaptic LTD that was independent of the activation of NMDA receptors. We found that both forms of LTD occur at the same synapses and that these may constitute the population with the lowest basal P(r). Our results reveal an unexpected complexity to mGluR-mediated synaptic plasticity in the hippocampus.

15.
J Biol Chem ; 285(22): 16723-38, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20304928

ABSTRACT

Fluorescence resonance energy transfer (FRET), measured by fluorescence intensity-based microscopy and fluorescence lifetime imaging, has been used to estimate the size of oligomers formed by the M(2) muscarinic cholinergic receptor. The approach is based on the relationship between the apparent FRET efficiency within an oligomer of specified size (n) and the pairwise FRET efficiency between a single donor and a single acceptor (E). The M(2) receptor was fused at the N terminus to enhanced green or yellow fluorescent protein and expressed in Chinese hamster ovary cells. Emission spectra were analyzed by spectral deconvolution, and apparent efficiencies were estimated by donor-dequenching and acceptor-sensitized emission at different ratios of enhanced yellow fluorescent protein-M(2) receptor to enhanced green fluorescent protein-M(2) receptor. The data were interpreted in terms of a model that considers all combinations of donor and acceptor within a specified oligomer to obtain fitted values of E as follows: n = 2, 0.495 +/- 0.019; n = 4, 0.202 +/- 0.010; n = 6, 0.128 +/- 0.006; n = 8, 0.093 +/- 0.005. The pairwise FRET efficiency determined independently by fluorescence lifetime imaging was 0.20-0.24, identifying the M(2) receptor as a tetramer. The strategy described here yields an explicit estimate of oligomeric size on the basis of fluorescence properties alone. Its broader application could resolve the general question of whether G protein-coupled receptors exist as dimers or larger oligomers. The size of an oligomer has functional implications, and such information can be expected to contribute to an understanding of the signaling process.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Receptor, Muscarinic M2/chemistry , Animals , Bacterial Proteins/chemistry , CHO Cells , Cricetinae , Cricetulus , Green Fluorescent Proteins/chemistry , Humans , Kinetics , Luminescent Proteins/chemistry , Microscopy, Confocal/methods , Models, Biological , Models, Theoretical , Protein Structure, Tertiary , Receptor, Muscarinic M2/metabolism , Receptors, G-Protein-Coupled/chemistry
16.
Mol Brain ; 14(1): 26, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526063

ABSTRACT

The synaptic tag and capture (STC) hypothesis provides an important theoretical basis for understanding the synaptic basis of associative learning. We recently provided pharmacological evidence that calcium-permeable AMPA receptors (CP-AMPARs) are a crucial component of this form of heterosynaptic metaplasticity. Here we have investigated two predictions that arise on the basis of CP-AMPARs serving as a trigger of STC. Firstly, we compared the effects of the order in which we delivered a strong theta burst stimulation (TBS) protocol (75 pulses) and a weak TBS protocol (15 pulses) to two independent inputs. We only observed significant heterosynaptic metaplasticity when the strong TBS preceded the weak TBS. Second, we found that pausing stimulation following either the sTBS or the wTBS for ~20 min largely eliminates the heterosynaptic metaplasticity. These observations are consistent with a process that is triggered by the synaptic insertion of CP-AMPARs and provide a framework for establishing the underlying molecular mechanisms.


Subject(s)
CA1 Region, Hippocampal/metabolism , Calcium/metabolism , Cell Membrane Permeability , Receptors, AMPA/metabolism , Synapses/metabolism , Animals , Electric Stimulation , Male , Mice, Inbred C57BL , Neuronal Plasticity , Theta Rhythm/physiology
17.
Neuropharmacology ; 201: 108833, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34637787

ABSTRACT

The GluN2 subunits of N-methyl-d-aspartate receptors (NMDARs) are key drivers of synaptic plasticity in the brain, where the particular GluN2 composition endows the NMDAR complex with distinct pharmacological and physiological properties. Compared to GluN2A and GluN2B subunits, far less is known about the role of the GluN2D subunit in synaptic plasticity. In this study, we have used a GluN2C/2D selective competitive antagonist, UBP145, in combination with a GluN2D global knockout (GluN2D KO) mouse line to study the contribution of GluN2D-containing NMDARs to short-term potentiation (STP) and long-term potentiation (LTP) in the CA1 region of mouse hippocampal slices. We made several distinct observations: First, GluN2D KO mice have higher levels of LTP compared to wild-type (WT) mice, an effect that was occluded by blockade of GABA receptor-mediated inhibition or by using a strong LTP induction protocol. Second, UBP145 partially inhibited LTP in WT but not GluN2D KO mice. Third, UBP145 inhibited a component of STP, termed STP2, in WT but not GluN2D KO mice. Taken together, these findings suggest an involvement for GluN2D-containing NMDARs in both STP and LTP in mouse hippocampus.


Subject(s)
Hippocampus , Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate , Animals , Hippocampus/physiology , In Vitro Techniques , Long-Term Potentiation/physiology , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology , Receptors, GABA , Receptors, N-Methyl-D-Aspartate/physiology , Phenanthrenes/pharmacology
18.
Nat Commun ; 12(1): 413, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462202

ABSTRACT

Long-term potentiation (LTP) at hippocampal CA1 synapses can be expressed by an increase either in the number (N) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors or in their single channel conductance (γ). Here, we have established how these distinct synaptic processes contribute to the expression of LTP in hippocampal slices obtained from young adult rodents. LTP induced by compressed theta burst stimulation (TBS), with a 10 s inter-episode interval, involves purely an increase in N (LTPN). In contrast, either a spaced TBS, with a 10 min inter-episode interval, or a single TBS, delivered when PKA is activated, results in LTP that is associated with a transient increase in γ (LTPγ), caused by the insertion of calcium-permeable (CP)-AMPA receptors. Activation of CaMKII is necessary and sufficient for LTPN whilst PKA is additionally required for LTPγ. Thus, two mechanistically distinct forms of LTP co-exist at these synapses.


Subject(s)
CA1 Region, Hippocampal/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/physiology , Receptors, AMPA/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Male , Memory, Long-Term/physiology , Patch-Clamp Techniques , Rats , Theta Rhythm/physiology
19.
Proc Natl Acad Sci U S A ; 104(52): 20973-8, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18093944

ABSTRACT

The intracellular signaling targets used by mammalian axon guidance receptors to organize the nervous system in vivo are unclear. The Nck1 and Nck2 SH2/SH3 adaptors (collectively Nck) can couple phosphotyrosine (pTyr) signals to reorganization of the actin cytoskeleton and are therefore candidates for linking guidance cues to the regulatory machinery of the cytoskeleton. We find that selective inactivation of Nck in the murine nervous system causes a hopping gait and a defect in the spinal central pattern generator, which is characterized by synchronous firing of bilateral ventral motor neurons. Nck-deficient mice also show abnormal projections of corticospinal tract axons and defective development of the posterior tract of the anterior commissure. These phenotypes are consistent with a role for Nck in signaling initiated by different classes of guidance receptors, including the EphA4 receptor tyrosine kinase. Our data indicate that Nck adaptors couple pTyr guidance signals to cytoskeletal events required for the ipsilateral projections of spinal cord neurons and thus for normal limb movement.


Subject(s)
Oncogene Proteins/physiology , Walking , Actins/chemistry , Adaptor Proteins, Signal Transducing , Animals , Axons/metabolism , Chimerin 1/metabolism , Cytoskeleton/metabolism , Fibroblasts/metabolism , Locomotion , Mice , Models, Biological , Motor Neurons/metabolism , Oncogene Proteins/metabolism , Phenotype , Receptor, EphA4/chemistry , Signal Transduction , Spinal Cord/metabolism , src Homology Domains
20.
Article in English | MEDLINE | ID: mdl-32308573

ABSTRACT

Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.


Subject(s)
Brain/metabolism , Neuronal Plasticity/physiology , Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Potentials/physiology , Animals , Brain/ultrastructure , Brain-Derived Neurotrophic Factor/metabolism , Humans , Presynaptic Terminals/ultrastructure , Receptors, AMPA/metabolism , Synapses/ultrastructure , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL