Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Gastroenterology ; 163(6): 1522-1530.e5, 2022 12.
Article in English | MEDLINE | ID: mdl-35970241

ABSTRACT

BACKGROUND & AIMS: Interval colorectal cancers (CRCs), cancers diagnosed after a screening/surveillance examination in which no cancer is detected, and before the date of next recommended examination, reflect an unprecedented challenge in CRC detection and prevention. To better understand this poorly characterized CRC variant, we examined the clinical and mutational characteristics of interval CRCs in comparison with screen detected CRCs. METHODS: We included 1175 CRCs documented in the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial and 3661 CRCs in the Nurses' Health Study (NHS) and Health Professionals Follow-up Study (HPFS). Multivariable Cox models were performed to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of death risk. Whole exome sequencing was conducted in 147 PLCO cases and 796 NHS/HPFS cases. RESULTS: A total of 619 deaths (312 CRC-specific) and 2404 deaths (1904 CRC-specific) were confirmed during follow-up of PLCO and NHS/HPFS, respectively. Compared with screen detected CRCs, interval CRCs had a multivariate-adjusted HR (95% CI) of 1.47 (1.21-1.78) for CRC-specific mortality and 1.27 (1.09-1.47) for overall mortality (meta-analysis combining all 3 cohorts). However, we did not observe significant differences in mutational features between interval and screen detected CRCs (false discovery rate adjusted P > .05). CONCLUSION: Interval CRCs had a significantly increased risk of death compared with screen detected CRCs that were not explained by established clinical prognostic factors, including stage at diagnosis. The survival disadvantage of interval CRCs did not appear to be explained by differences in the genomic landscape of tumors characterized by whole exome sequencing.


Subject(s)
Colorectal Neoplasms , Genomics , Humans , Male , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Follow-Up Studies , Prospective Studies
2.
Proc Natl Acad Sci U S A ; 115(26): 6810-6815, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29844167

ABSTRACT

The constitutively active androgen receptor (AR) splice variant 7 (AR-V7) plays an important role in the progression of castration-resistant prostate cancer (CRPC). Although biomarker studies established the role of AR-V7 in resistance to AR-targeting therapies, how AR-V7 mediates genomic functions in CRPC remains largely unknown. Using a ChIP-exo approach, we show AR-V7 binds to distinct genomic regions and recognizes a full-length androgen-responsive element in CRPC cells and patient tissues. Remarkably, we find dramatic differences in AR-V7 cistromes across diverse CRPC cells and patient tissues, regulating different target gene sets involved in CRPC progression. Surprisingly, we discover that HoxB13 is universally required for and colocalizes with AR-V7 binding to open chromatin across CRPC genomes. HoxB13 pioneers AR-V7 binding through direct physical interaction, and collaborates with AR-V7 to up-regulate target oncogenes. Transcriptional coregulation by HoxB13 and AR-V7 was further supported by their coexpression in tumors and circulating tumor cells from CRPC patients. Importantly, HoxB13 silencing significantly decreases CRPC growth through inhibition of AR-V7 oncogenic function. These results identify HoxB13 as a pivotal upstream regulator of AR-V7-driven transcriptomes that are often cell context-dependent in CRPC, suggesting that HoxB13 may serve as a therapeutic target for AR-V7-driven prostate tumors.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/biosynthesis , Up-Regulation , Cell Line, Tumor , Homeodomain Proteins/genetics , Humans , Male , Neoplasm Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Protein Binding , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Receptors, Androgen/genetics
3.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979379

ABSTRACT

Background & Aims: Single-cell RNA sequencing (scRNA) has empowered many insights into gastrointestinal microenvironments. However, profiling human biopsies using droplet-based scRNA (D-scRNA) is challenging since it requires immediate processing to minimize epithelial cell damage. In contrast, picowell-based (P-scRNA) platforms permit short-term frozen storage before sequencing. We compared P- and D-scRNA platforms on cells derived from human colon biopsies. Methods: Endoscopic rectosigmoid mucosal biopsies were obtained from two adults and conducted D-scRNA (10X Chromium) and P-scRNA (Honeycomb HIVE) in parallel using an individual's pool of single cells (> 10,000 cells/participant). Three experiments were performed to evaluate 1) P-scRNA with cells under specific storage conditions (immediately processed [fresh], vs. frozen at -20C vs. -80C [2 weeks]); 2) fresh P-scRNA versus fresh D-scRNA; and 3) P-scRNA stored at -80C with fresh D-scRNA. Results: Significant recovery of loaded cells was achieved for fresh (80.9%) and -80C (48.5%) P-scRNA and D-scRNA (76.6%), but not -20C P-scRNA (3.7%). However, D-scRNA captures more typeable cells among recovered cells (71.5% vs. 15.8% Fresh and 18.4% -80C P-scRNA), and these cells exhibit higher gene coverage at the expense of higher mitochondrial read fractions across most cell types. Cells profiled using D-scRNA demonstrated more consistent gene expression profiles among the same cell type than those profiled using P-scRNA. Significant intra-cell-type differences were observed in profiled gene classes across platforms. Conclusions: Our results highlight non-overlapping advantages of P-scRNA and D-scRNA and underscore the need for innovation to enable high-fidelity capture of colonic epithelial cells. The platform-specific variation highlights the challenges of maintaining rigor and reproducibility across studies that use different platforms.

4.
Sci Rep ; 10(1): 21824, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311549

ABSTRACT

Chronic pancreatitis (CP) is a fibro-inflammatory syndrome in individuals who develop persistent pathological responses to parenchymal injury or stress. Novel therapeutic or dietary interventions that could lessen inflammation in this disease could significantly improve quality of life in patients with CP. Complex dietary foods like soy and tomatoes are composed of active metabolites with anti-inflammatory effects. Data from our group reports that bioactive agents in soy and tomatoes can reduce pro-inflammatory cytokines and suppressive immune populations. Additionally, our team has developed a novel soy-tomato juice currently being studied in healthy individuals with no toxicities, and good compliance and bioavailability. Thus, we hypothesize that administration of a soy-tomato enriched diet can reduce inflammation and severity of CP. C57BL/6 mice were injected intraperitoneally with 50 µg/kg caeurlein (7 hourly injections, twice weekly) for 6 weeks to induce CP. After 4 weeks of caerulein injections, mice were administered a control or a soy-tomato enriched diet for 2 weeks. Disease severity was measured via immunohistochemical analysis of pancreata measuring loss of acini, fibrosis, inflammation, and necrosis. Serum lipase and amylase levels were analyzed at the end of the study. Inflammatory factors in the serum and pancreas, and immune populations in the spleen of mice were analyzed by cytokine multiplex detection, qRT-PCR, and flow cytometry respectively. Infra-red (IR) sensing of mice was used to monitor spontaneous activity and distress of mice. Mice fed a soy-tomato enriched diet had a significantly reduced level of inflammation and severity of CP (p = 0.032) compared to mice administered a control diet with restored serum lipase and amylase levels (p < 0.05). Mice with CP fed a soy-tomato diet had a reduction in inflammatory factors (TNF-α, IL-1ß, IL-5) and suppressive immune populations (myeloid-derived suppressor cells; MDSC) compared to control diet fed mice (p < 0.05). Infra-red sensing to monitor spontaneous activity of mice showed that soy-tomato enriched diet improved total activity and overall health of mice with CP (p = 0.055) and CP mice on a control diet were determined to spend more time at rest (p = 0.053). These pre-clinical results indicate that a soy-tomato enriched diet may be a novel treatment approach to reduce inflammation and pain in patients with CP.


Subject(s)
Fruit , Glycine max , Pancreatitis, Chronic/diet therapy , Severity of Illness Index , Solanum lycopersicum , Animals , Disease Models, Animal , Humans , Inflammation/diet therapy , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology
5.
Sci Rep ; 9(1): 5068, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30911044

ABSTRACT

Soybeans are a rich source of isoflavones that have been linked with anti-inflammatory processes and various health benefits. However, specific mechanisms whereby soy bioactives impact immune cell subsets are unclear. Isoflavones, such as genistein and daidzein, are metabolized by microbes to bioactive metabolites as O-desmethylangolensin (O-DMA) and equol, whose presence has been linked to health benefits. We examined how soy isoflavones and metabolites impact natural killer (NK) cell signaling and function. We observe no impact of isoflavones on viability of healthy donor peripheral blood mononuclear cells (PBMCs) or NK cells, even at high (25 µM) concentrations. However, pre-treatment of PBMCs with physiologically-relevant concentrations of genistein (p = 0.0023) and equol (p = 0.006) decreases interleukin (IL)-12/IL-18-induced interferon-gamma (IFN-γ) production versus controls. Detailed cellular analyses indicate genistein and equol decrease IL-12/IL-18-induced IFN-γ production by human NK cell subsets, but do not consistently alter cytotoxicity. At the level of signal transduction, genistein decreases IL-12/IL-18-induced total phosphorylated tyrosine, and phosphorylation MAPK pathway components. Further, genistein limits IL-12/IL-18-mediated upregulation of IL-18Rα expression on NK cells (p = 0.0109). Finally, in vivo studies revealed that C57BL/6 mice fed a soy-enriched diet produce less plasma IFN-γ following administration of IL-12/IL-18 versus control-fed animals (p < 0.0001). This study provides insight into how dietary soy modulates NK cell functions.


Subject(s)
Cytokine-Induced Killer Cells/drug effects , Cytokine-Induced Killer Cells/immunology , Glycine max/chemistry , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Isoflavones/chemistry , Isoflavones/pharmacology , Biomarkers , Cell Survival/drug effects , Cytokine-Induced Killer Cells/metabolism , Cytokines/genetics , Cytokines/metabolism , Gene Expression , Genistein/metabolism , Humans , Immunologic Factors/metabolism , Immunomodulation/drug effects , Immunophenotyping , Isoflavones/metabolism , Molecular Structure , Signal Transduction , Glycine max/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL