Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
Cell ; 140(1): 74-87, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20074521

ABSTRACT

We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific beta-tubulin isotype III, result in a spectrum of human nervous system disorders that we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show that the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate that normal TUBB3 is required for axon guidance and maintenance in mammals.


Subject(s)
Tubulin/metabolism , Amino Acid Sequence , Animals , Axons/metabolism , Brain/embryology , Brain/metabolism , Cell Survival , Child , Developmental Disabilities , Female , Humans , Kinesins/metabolism , Male , Mice , Mice, Inbred C57BL , Microtubules/metabolism , Models, Molecular , Molecular Sequence Data , Mutation, Missense , Protein Transport , Tubulin/chemistry , Tubulin/genetics
2.
Hum Mol Genet ; 31(21): 3597-3612, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35147173

ABSTRACT

Mitochondrial diseases are a group of inherited diseases with highly varied and complex clinical presentations. Here, we report four individuals, including two siblings, affected by a progressive mitochondrial encephalopathy with biallelic variants in the cardiolipin biosynthesis gene CRLS1. Three affected individuals had a similar infantile presentation comprising progressive encephalopathy, bull's eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death. The fourth affected individual presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly. Using patient-derived fibroblasts, we characterized cardiolipin synthase 1 (CRLS1) dysfunction that impaired mitochondrial morphology and biogenesis, providing functional evidence that the CRLS1 variants cause mitochondrial disease. Lipid profiling in fibroblasts from two patients further confirmed the functional defect demonstrating reduced cardiolipin levels, altered acyl-chain composition and significantly increased levels of phosphatidylglycerol, the substrate of CRLS1. Proteomic profiling of patient cells and mouse Crls1 knockout cell lines identified both endoplasmic reticular and mitochondrial stress responses, and key features that distinguish between varying degrees of cardiolipin insufficiency. These findings support that deleterious variants in CRLS1 cause an autosomal recessive mitochondrial disease, presenting as a severe encephalopathy with multi-systemic involvement. Furthermore, we identify key signatures in cardiolipin and proteome profiles across various degrees of cardiolipin loss, facilitating the use of omics technologies to guide future diagnosis of mitochondrial diseases.


Subject(s)
Brain Diseases , Mitochondrial Diseases , Animals , Mice , Brain Diseases/genetics , Brain Diseases/metabolism , Cardiolipins/genetics , Cardiolipins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Proteomics
3.
J Pediatr Hematol Oncol ; 46(2): e121-e126, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38411659

ABSTRACT

BACKGROUND: Asparaginases are a mainstay treatment for pediatric acute lymphoblastic leukemia (ALL). Recent reports identified hypoglycemia associated with asparaginases. Other reports describe hypoglycemia associated with 6-mercaptopurine (6-MP), another fundamental ALL therapy. Little is known about the risk of hypoglycemia associated with ALL therapy, an adverse event that puts children at risk of decreased level of consciousness, seizures, and possibly negative neurocognitive sequelae. METHODS: We performed a retrospective chart review of 6 children with hypoglycemia during ALL treatment in our institution from May 2016 to August 2019. Timing and duration of hypoglycemia relative to polyethylene glycol (PEG)-asparaginase, 6-MP, and corticosteroids were determined. Laboratory values of the critical sample were collected. RESULTS: The median age was 2.75 (interquartile range: 1.88 to 3.63) years. Three patients had trisomy 21. The onset of hypoglycemia was 5 to 19 days after the most recent PEG-asparaginase administration or 6 to 7 months after initiating daily 6-MP. Sixteen hypoglycemic events were documented, and 9/16 had a critical sample drawn. Six events were hypoketotic, associated with PEG-asparaginase. Three were ketotic, associated with 6-MP. Two patients required treatment with diazoxide and cornstarch. CONCLUSIONS: Hypoglycemia associated with PEG-asparaginase occurred later and lasted longer than previous reports with l-asparaginase, with the likely mechanism being hyperinsulinism. 6-MP was associated with ketotic hypoglycemia.


Subject(s)
Hypoglycemia , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Child, Preschool , Asparaginase/adverse effects , Mercaptopurine/adverse effects , Retrospective Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Polyethylene Glycols/adverse effects , Hypoglycemia/chemically induced
4.
BMC Pediatr ; 24(1): 37, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216926

ABSTRACT

BACKGROUND: Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS: We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS: The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS: Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.


Subject(s)
Lipid Metabolism, Inborn Errors , Outcome Assessment, Health Care , Child , Humans , Acyl-CoA Dehydrogenase , Canada , Prospective Studies , Child, Preschool
5.
N Engl J Med ; 380(15): 1433-1441, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30970188

ABSTRACT

We report an inborn error of metabolism caused by an expansion of a GCA-repeat tract in the 5' untranslated region of the gene encoding glutaminase (GLS) that was identified through detailed clinical and biochemical phenotyping, combined with whole-genome sequencing. The expansion was observed in three unrelated patients who presented with an early-onset delay in overall development, progressive ataxia, and elevated levels of glutamine. In addition to ataxia, one patient also showed cerebellar atrophy. The expansion was associated with a relative deficiency of GLS messenger RNA transcribed from the expanded allele, which probably resulted from repeat-mediated chromatin changes upstream of the GLS repeat. Our discovery underscores the importance of careful examination of regions of the genome that are typically excluded from or poorly captured by exome sequencing.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Ataxia/genetics , Developmental Disabilities/genetics , Glutaminase/deficiency , Glutaminase/genetics , Glutamine/metabolism , Microsatellite Repeats , Mutation , Atrophy/genetics , Cerebellum/pathology , Child, Preschool , Female , Genotype , Glutamine/analysis , Humans , Male , Phenotype , Polymerase Chain Reaction , Whole Genome Sequencing
6.
J Inherit Metab Dis ; 44(4): 926-938, 2021 07.
Article in English | MEDLINE | ID: mdl-33543789

ABSTRACT

D,L-3-hydroxybutyrate (D,L-3-HB, a ketone body) treatment has been described in several inborn errors of metabolism, including multiple acyl-CoA dehydrogenase deficiency (MADD; glutaric aciduria type II). We aimed to improve the understanding of enantiomer-specific pharmacokinetics of D,L-3-HB. Using UPLC-MS/MS, we analyzed D-3-HB and L-3-HB concentrations in blood samples from three MADD patients, and blood and tissue samples from healthy rats, upon D,L-3-HB salt administration (patients: 736-1123 mg/kg/day; rats: 1579-6317 mg/kg/day of salt-free D,L-3-HB). D,L-3-HB administration caused substantially higher L-3-HB concentrations than D-3-HB. In MADD patients, both enantiomers peaked at 30 to 60 minutes, and approached baseline after 3 hours. In rats, D,L-3-HB administration significantly increased Cmax and AUC of D-3-HB in a dose-dependent manner (controls vs ascending dose groups for Cmax : 0.10 vs 0.30-0.35-0.50 mmol/L, and AUC: 14 vs 58-71-106 minutes*mmol/L), whereas for L-3-HB the increases were significant compared to controls, but not dose proportional (Cmax : 0.01 vs 1.88-1.92-1.98 mmol/L, and AUC: 1 vs 380-454-479 minutes*mmol/L). L-3-HB concentrations increased extensively in brain, heart, liver, and muscle, whereas the most profound rise in D-3-HB was observed in heart and liver. Our study provides important knowledge on the absorption and distribution upon oral D,L-3-HB. The enantiomer-specific pharmacokinetics implies differential metabolic fates of D-3-HB and L-3-HB.


Subject(s)
3-Hydroxybutyric Acid/administration & dosage , 3-Hydroxybutyric Acid/pharmacokinetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Acyl-CoA Dehydrogenase/genetics , Administration, Oral , Animals , Chromatography, Liquid , Humans , Male , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Rats , Rats, Wistar , Tandem Mass Spectrometry
7.
Genet Med ; 22(5): 908-916, 2020 05.
Article in English | MEDLINE | ID: mdl-31904027

ABSTRACT

PURPOSE: Multiple acyl-CoA dehydrogenase deficiency (MADD) is a life-threatening, ultrarare inborn error of metabolism. Case reports described successful D,L-3-hydroxybutyrate (D,L-3-HB) treatment in severely affected MADD patients, but systematic data on efficacy and safety is lacking. METHODS: A systematic literature review and an international, retrospective cohort study on clinical presentation, D,L-3-HB treatment method, and outcome in MADD(-like) patients. RESULTS: Our study summarizes 23 MADD(-like) patients, including 14 new cases. Median age at clinical onset was two months (interquartile range [IQR]: 8 months). Median age at starting D,L-3-HB was seven months (IQR: 4.5 years). D,L-3-HB doses ranged between 100 and 2600 mg/kg/day. Clinical improvement was reported in 16 patients (70%) for cardiomyopathy, leukodystrophy, liver symptoms, muscle symptoms, and/or respiratory failure. D,L-3-HB appeared not effective for neuropathy. Survival appeared longer upon D,L-3-HB compared with historical controls. Median time until first clinical improvement was one month, and ranged up to six months. Reported side effects included abdominal pain, constipation, dehydration, diarrhea, and vomiting/nausea. Median D,L-3-HB treatment duration was two years (IQR: 6 years). D,L-3-HB treatment was discontinued in 12 patients (52%). CONCLUSION: The strength of the current study is the international pooling of data demonstrating that D,L-3-HB treatment can be effective and safe in MADD(-like) patients.


Subject(s)
Cardiomyopathies , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , 3-Hydroxybutyric Acid , Acyl-CoA Dehydrogenase/genetics , Humans , Infant , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Retrospective Studies
8.
Mol Genet Metab ; 129(3): 213-218, 2020 03.
Article in English | MEDLINE | ID: mdl-31864849

ABSTRACT

Carnitine Uptake Defect (CUD) is an autosomal recessive disorder due to mutations in the SLC22A5 gene. Classically patients present in infancy with profound muscle weakness and cardiomyopathy with characteristic EKG findings. Later presentations include recurrent hypoketotic hypoglycemia, proximal limb girdle myopathy,and/or recurrent muscle pain. Newborn screening detects most of these clinical variants but in addition has identified maternal CUD often in asymptomatic women. We describe a family ascertained through 3 newborn screening (NBS) positive infants found to be unaffected themselves but in whom the mothers (sisters) were affected. There were also two affected children born to an affected male and his heterozygous wife who were false negatives on NBS but had increased fractional excretion of free carnitine in the urine. Analysis on a Next Generation Sequencing panel specifically designed to fully cover newborn screening disease targets showed a homozygous change in the five probands (SLC22A5; NM_003060:c.-149G > A; p.?). The mutation segregates with the CUD within the family. It is in the 5' UTR and has a frequency within the gnomAd database of 0.001198. Plasma carnitine was decreased and fractional excretion of free carnitine was increased in all affected individuals. Functional carnitine uptake studies in cultured skin fibroblasts of one proband showed carnitine uptake at the 5 µM concentration to be 6% of controls. Relative expression of OCTN2 mRNA to beta-actin mRNA by qRT-PCR was increased in a proband relative to controls by a factor of 465-fold. Western blotting revealed a 120 kDa protein band, as well as a weaker 240 kDa band in the proband, the significance of which is unknown at this time.


Subject(s)
5' Untranslated Regions/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Carnitine/blood , Carnitine/deficiency , Hyperammonemia/diagnosis , Hyperammonemia/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Solute Carrier Family 22 Member 5/genetics , Actins/genetics , Actins/metabolism , Biological Transport, Active/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Carnitine/genetics , Carnitine/metabolism , Cells, Cultured , Child , Child, Preschool , Female , Fibroblasts/metabolism , Heterozygote , High-Throughput Nucleotide Sequencing , Homozygote , Humans , Hyperammonemia/metabolism , Hyperammonemia/physiopathology , Infant , Infant, Newborn , Male , Muscular Diseases/metabolism , Muscular Diseases/physiopathology , Mutation , Neonatal Screening , Pedigree , Skin/cytology , Skin/metabolism , Solute Carrier Family 22 Member 5/metabolism , Exome Sequencing
9.
J Inherit Metab Dis ; 43(6): 1321-1332, 2020 11.
Article in English | MEDLINE | ID: mdl-32588908

ABSTRACT

We investigated seven children from six families to expand the phenotypic spectrum associated with an early infantile epileptic encephalopathy caused by biallelic pathogenic variants in the phosphatidylinositol glycan anchor biosynthesis class Q (PIGQ) gene. The affected children were all identified by clinical or research exome sequencing. Clinical data, including EEGs and MRIs, was comprehensively reviewed and flow cytometry and transfection experiments were performed to investigate PIGQ function. Pathogenic biallelic PIGQ variants were associated with increased mortality. Epileptic seizures, axial hypotonia, developmental delay and multiple congenital anomalies were consistently observed. Seizure onset occurred between 2.5 months and 7 months of age and varied from treatable seizures to recurrent episodes of status epilepticus. Gastrointestinal issues were common and severe, two affected individuals had midgut volvulus requiring surgical correction. Cardiac anomalies including arrythmias were observed. Flow cytometry using granulocytes and fibroblasts from affected individuals showed reduced expression of glycosylphosphatidylinositol (GPI)-anchored proteins. Transfection of wildtype PIGQ cDNA into patient fibroblasts rescued this phenotype. We expand the phenotypic spectrum of PIGQ-related disease and provide the first functional evidence in human cells of defective GPI-anchoring due to pathogenic variants in PIGQ.


Subject(s)
Abnormalities, Multiple/genetics , Membrane Proteins/genetics , Muscle Hypotonia/genetics , Seizures/genetics , Spasms, Infantile/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/metabolism , Child , Child, Preschool , Fatal Outcome , Female , Humans , Infant , Infant, Newborn , Male , Muscle Hypotonia/pathology , Mutation, Missense , Phenotype , Seizures/diagnosis , Seizures/metabolism , Spasms, Infantile/metabolism , Spasms, Infantile/pathology , Exome Sequencing
10.
J Pediatr Gastroenterol Nutr ; 70(4): 436-443, 2020 04.
Article in English | MEDLINE | ID: mdl-31834111

ABSTRACT

OBJECTIVES: Biliary atresia (BA) is the most common reason for liver transplant in childhood, and outcomes worsen with older age at hepatoportoenterostomy (HPE). We determined direct health care costs in children with BA, compared to controls in a population-based cohort of children in Ontario, Canada. METHODS: We used health administrative data to identify all children diagnosed with BA between 2002 and 2016 (n = 121) and matched controls (n = 602). We determined annual direct healthcare costs, and rates of health services utilization, liver transplantation, death, portal hypertension, cirrhosis, esophageal varices, and major upper gastrointestinal bleeding requiring hospitalization. Multivariable regression models determined the association between age at HPE, risk of liver transplant, and direct costs. RESULTS: Incidence of BA was 6.07 (4.99-7.15) per 100,000 live births. The annual median (interquartile range) direct health care costs were higher in BA cases ($4210; interquartile range $1091-$16,765) compared to controls ($283; $112-$634). Compared to age at HPE <45 days, there was no significant association between direct costs and HPE ≥90 days (rate ratio 1.24, 95% confidence interval [CI] 0.78-1.97) or 45 to 90 days (rate ratio 1.05, 95% CI 0.73-1.50). Age at HPE ≥90 days was significantly associated with risk of undergoing liver transplant compared to age <45 days (hazard ratio 5.27, 95% CI 2.45-11.34). Direct costs were higher in patients with BA who underwent liver transplantation compared to those who did not ($39,476±$84,367 vs $22,579 ±â€Š$67,913). CONCLUSIONS: Direct ealth care costs were high in patients with BA, especially in those who underwent liver transplantation. Age at HPE was associated with risk of liver transplantation, but not direct health care costs, utilization, or other risk outcomes.


Subject(s)
Biliary Atresia , Aged , Biliary Atresia/surgery , Child , Cohort Studies , Facilities and Services Utilization , Health Care Costs , Humans , Infant , Ontario/epidemiology , Portoenterostomy, Hepatic , Treatment Outcome
11.
Hum Mutat ; 40(8): 1084-1100, 2019 08.
Article in English | MEDLINE | ID: mdl-31228227

ABSTRACT

Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe, rare autosomal recessive disorder caused by variants in the heparan-α-glucosaminide N-acetyltransferase (HGSNAT) gene which result in lysosomal accumulation of heparan sulfate. We analyzed clinical presentation, molecular defects and their haplotype context in 78 (27 novel) MPSIIIC cases from 22 countries, the largest group studied so far. We describe for the first time disease-causing variants in the patients from Brazil, Algeria, Azerbaijan, and Iran, and extend their spectrum within Canada, Colombia, Turkey, and the USA. Six variants are novel: two missense, c.773A>T/p.N258I and c.1267G>T/p.G423W, a nonsense c.164T>A/p.L55*, a splice-site mutation c.494-1G>A/p.[P165_L187delinsQSCYVTQAGVRWHHLGSLQALPPGFTPFSYLSLLSSWNC,P165fs], a deletion c.1348delG/p.(D450fs) and an insertion c.1479dupA/p.(Leu494fs). The missense HGSNAT variants lacked lysosomal targeting, enzymatic activity, and likely the correct folding. The haplotype analysis identified founder mutations, p.N258I, c.525dupT, and p.L55* in the Brazilian state of Paraiba, c.493+1G>A in Eastern Canada/Quebec, p.A489E in the USA, p.R384* in Poland, p.R344C and p.S518F in the Netherlands and suggested that variants c.525dupT, c.372-2G>A, and c.234+1G>A present in cis with c.564-98T>C and c.710C>A rare single-nucleotide polymorphisms, have been introduced by Portuguese settlers in Brazil. Altogether, our results provide insights into the origin, migration roots and founder effects of HGSNAT disease-causing variants, and reveal the evolutionary history of MPSIIIC.


Subject(s)
Acetyltransferases/genetics , Mucopolysaccharidosis III/genetics , Mutation , Acetyltransferases/chemistry , Algeria , Animals , Azerbaijan , Brazil , COS Cells , Canada , Chlorocebus aethiops , Colombia , Evolution, Molecular , Female , Founder Effect , Haplotypes , Humans , Iran , Male , Netherlands , Pedigree , Phylogeography , Poland , Protein Folding
12.
Can J Neurol Sci ; 46(6): 717-726, 2019 11.
Article in English | MEDLINE | ID: mdl-31387656

ABSTRACT

BACKGROUND: An improved understanding of diagnostic and treatment practices for patients with rare primary mitochondrial disorders can support benchmarking against guidelines and establish priorities for evaluative research. We aimed to describe physician care for patients with mitochondrial diseases in Canada, including variation in care. METHODS: We conducted a cross-sectional survey of Canadian physicians involved in the diagnosis and/or ongoing care of patients with mitochondrial diseases. We used snowball sampling to identify potentially eligible participants, who were contacted by mail up to five times and invited to complete a questionnaire by mail or internet. The questionnaire addressed: personal experience in providing care for mitochondrial disorders; diagnostic and treatment practices; challenges in accessing tests or treatments; and views regarding research priorities. RESULTS: We received 58 survey responses (52% response rate). Most respondents (83%) reported spending 20% or less of their clinical practice time caring for patients with mitochondrial disorders. We identified important variation in diagnostic care, although assessments frequently reported as diagnostically helpful (e.g., brain magnetic resonance imaging, MRI/MR spectroscopy) were also recommended in published guidelines. Approximately half (49%) of participants would recommend "mitochondrial cocktails" for all or most patients, but we identified variation in responses regarding specific vitamins and cofactors. A majority of physicians recommended studies on the development of effective therapies as the top research priority. CONCLUSIONS: While Canadian physicians' views about diagnostic care and disease management are aligned with published recommendations, important variations in care reflect persistent areas of uncertainty and a need for empirical evidence to support and update standard protocols.


Les soins de santé prodigués au Canada à des individus atteints de troubles mitochondriaux : une enquête menée auprès de médecins. Contexte: Dans le cas de patients atteints de troubles mitochondriaux rares, il est permis de croire qu'une meilleure compréhension des pratiques en matière de diagnostic et de traitement peut contribuer, au moyen des lignes directrices, à l'étalonnage et à l'établissement de priorités en ce qui regarde la recherche évaluative. Notre intention a été de décrire les soins prodigués au Canada par des médecins, notamment leur variabilité, dans le cas de ces patients. Méthodes: Pour ce faire, nous avons effectué une enquête transversale auprès de médecins canadiens qui posent des diagnostics de troubles mitochondriaux et qui prodiguent des soins continus aux patients qui en sont atteints. À cet effet, nous avons fait appel à la méthode d'enquête dite « en boule de neige ¼ (snowball sampling) afin d'identifier des participants possiblement admissibles. Ces derniers ont été ensuite contactés par la poste, et ce, à cinq reprises au maximum. Ils ont été invités à remplir un questionnaire et à le retourner par la poste ou en ligne. Ce questionnaire abordait les aspects suivants : leur expérience personnelle à titre de prestataire de soins ; leurs pratiques en matière de diagnostic et de traitement ; les défis se présentant à eux au moment d'avoir accès à des tests ou à des traitements ; et finalement leurs points de vue en ce qui regarde les priorités de la recherche. Résultats: Dans le cadre de cette enquête, nous avons reçu 58 réponses, ce qui représente un taux de 52 %. Une majorité de répondants (83 %) ont indiqué allouer 20 % ou moins de leur temps de pratique clinique aux soins de patients atteints de ces troubles. Nous avons également noté d'importantes variations concernant les soins et les diagnostics, et ce, même si les outils d'évaluation fréquemment considérés utiles sur le plan diagnostic (p. ex. : des IRM du cerveau/la spectroscopie par RM) étaient également recommandés dans des lignes directrices déjà publiées. Environ la moitié de nos répondants (49 %) recommanderaient volontiers un « cocktail ¼ de vitamines pour tous leurs patients ou la plupart d'entre eux. Quand il est question de vitamines spécifiques et de cofacteurs, nous avons cependant identifié une variation dans leurs réponses. Interrogés quant à la priorité numéro un en matière de recherche, une majorité de répondants a dit recommander la poursuite d'études portant sur la mise sur pied de traitements thérapeutiques efficaces. Conclusions: Bien que les points de vue de ces médecins canadiens en ce qui regarde les diagnostics et la prise en charge des troubles mitochondriaux soient en phase avec des recommandations publiées, d'importantes variations reflètent la persistance d'aspects incertains ainsi qu'un besoin de données empiriques afin de renforcer et de mettre à jour les protocoles de rééférence.


Subject(s)
Brain/diagnostic imaging , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/therapy , Practice Patterns, Physicians' , Cross-Sectional Studies , Health Care Surveys , Humans , Magnetic Resonance Imaging , Mitochondrial Diseases/diagnostic imaging , Neuroimaging
13.
Mol Genet Metab ; 123(3): 309-316, 2018 03.
Article in English | MEDLINE | ID: mdl-29269105

ABSTRACT

Serine biosynthesis defects are autosomal recessive metabolic disorders resulting from the deficiency of any of the three enzymes involved in de novo serine biosynthesis, specifically phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). In this study, we performed metabolomic profiling on 4 children with serine biosynthesis defects; 3 with PGDH deficiency and 1 with PSAT deficiency. The evaluations were performed at baseline and with serine and glycine supplementation. Metabolomic profiling performed at baseline showed low phospholipid species, including glycerophosphocholine, glycerophosphoethanolamine, and sphingomyelin. All children had low serine and glycine as expected. Low glycerophosphocholine compounds were found in 4 children, low glycerophosphoethanolamine compounds in 3 children, and low sphingomyelin species in 2 children. Metabolic profiling with serine and glycine supplementation showed normalization of most of the low phospholipid compounds in the 4 children. Phospholipids are the major component of plasma and intracellular membranes, and phosphatidylcholine is the most abundant phospholipid of all mammalian cell types and subcellular organelles. Phosphatidylcholine is of particular importance for the nervous system, where it is essential for neuronal differentiation. The observed low phosphatidylcholine species in children with serine biosynthesis defects that improved after serine supplementation, supports the role of serine as a significant precursor for phosphatidylcholine. The vital role that phosphatidylcholine has during neuronal differentiation and the pronounced neurological manifestations in serine biosynthesis defects suggest that phosphatidylcholine deficiency occurring secondary to serine deficiency may have a significant contribution to the development of the neurological manifestations in individuals with serine biosynthesis defects.


Subject(s)
Carbohydrate Metabolism, Inborn Errors/metabolism , Dietary Supplements , Glycine/administration & dosage , Microcephaly/metabolism , Phosphatidylcholines/metabolism , Phosphoglycerate Dehydrogenase/deficiency , Psychomotor Disorders/metabolism , Seizures/metabolism , Serine/biosynthesis , Transaminases/deficiency , Carbohydrate Metabolism, Inborn Errors/blood , Carbohydrate Metabolism, Inborn Errors/diet therapy , Cell Differentiation , Child , Child, Preschool , Female , Glycine/blood , Humans , Infant , Male , Metabolomics/methods , Microcephaly/blood , Microcephaly/diet therapy , Neurons/metabolism , Phosphoglycerate Dehydrogenase/blood , Phosphoglycerate Dehydrogenase/metabolism , Psychomotor Disorders/blood , Psychomotor Disorders/diet therapy , Seizures/blood , Seizures/diet therapy , Serine/administration & dosage , Serine/blood , Transaminases/blood , Transaminases/metabolism
14.
Am J Med Genet A ; 176(5): 1115-1127, 2018 05.
Article in English | MEDLINE | ID: mdl-29575569

ABSTRACT

Short-chain enoyl-CoA hydratase (SCEH or ECHS1) deficiency is a rare inborn error of metabolism caused by biallelic mutations in the gene ECHS1 (OMIM 602292). Clinical presentation includes infantile-onset severe developmental delay, regression, seizures, elevated lactate, and brain MRI abnormalities consistent with Leigh syndrome (LS). Characteristic abnormal biochemical findings are secondary to dysfunction of valine metabolism. We describe four patients from two consanguineous families (one Pakistani and one Irish Traveler), who presented in infancy with LS. Urine organic acid analysis by GC/MS showed increased levels of erythro-2,3-dihydroxy-2-methylbutyrate and 3-methylglutaconate (3-MGC). Increased urine excretion of methacrylyl-CoA and acryloyl-CoA related metabolites analyzed by LC-MS/MS, were suggestive of SCEH deficiency; this was confirmed in patient fibroblasts. Both families were shown to harbor homozygous pathogenic variants in the ECHS1 gene; a c.476A > G (p.Gln159Arg) ECHS1variant in the Pakistani family and a c.538A > G, p.(Thr180Ala) ECHS1 variant in the Irish Traveler family. The c.538A > G, p.(Thr180Ala) ECHS1 variant was postulated to represent a Canadian founder mutation, but we present SNP genotyping data to support Irish ancestry of this variant with a haplotype common to the previously reported Canadian patients and our Irish Traveler family. The presence of detectable erythro-2,3-dihydroxy-2-methylbutyrate is a nonspecific marker on urine organic acid analysis but this finding, together with increased excretion of 3-MGC, elevated plasma lactate, and normal acylcarnitine profile in patients with a Leigh-like presentation should prompt consideration of a diagnosis of SCEH deficiency and genetic analysis of ECHS1. ECHS1 deficiency can be added to the list of conditions with 3-MGA.


Subject(s)
Biomarkers , Enoyl-CoA Hydratase/deficiency , Genetic Association Studies , Genetic Predisposition to Disease , Phenotype , Amino Acid Sequence , Brain/abnormalities , Brain/diagnostic imaging , Chromatography, Liquid , DNA Mutational Analysis , Enoyl-CoA Hydratase/genetics , Enoyl-CoA Hydratase/metabolism , Enzyme Activation , Female , Genetic Association Studies/methods , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Metabolic Networks and Pathways , Metabolome , Metabolomics/methods , Pedigree , Tandem Mass Spectrometry , Valine/metabolism
15.
Hum Mol Genet ; 24(22): 6293-300, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26307080

ABSTRACT

Protein translation is an essential cellular process initiated by the association of a methionyl-tRNA with the translation initiation factor eIF2. The Met-tRNA/eIF2 complex then associates with the small ribosomal subunit, other translation factors and mRNA, which together comprise the translational initiation complex. This process is regulated by the phosphorylation status of the α subunit of eIF2 (eIF2α); phosphorylated eIF2α attenuates protein translation. Here, we report a consanguineous family with severe microcephaly, short stature, hypoplastic brainstem and cord, delayed myelination and intellectual disability in two siblings. Whole-exome sequencing identified a homozygous missense mutation, c.1972G>A; p.Arg658Cys, in protein phosphatase 1, regulatory subunit 15b (PPP1R15B), a protein which functions with the PPP1C phosphatase to maintain dephosphorylated eIF2α in unstressed cells. The p.R658C PPP1R15B mutation is located within the PPP1C binding site. We show that patient cells have greatly diminished levels of PPP1R15B-PPP1C interaction, which results in increased eIF2α phosphorylation and resistance to cellular stress. Finally, we find that patient cells have elevated levels of PPP1R15B mRNA and protein, suggesting activation of a compensatory program aimed at restoring cellular homeostasis which is ineffective due to PPP1R15B alteration. PPP1R15B now joins the expanding list of translation-associated proteins which when mutated cause rare genetic diseases.


Subject(s)
Dwarfism/genetics , Eukaryotic Initiation Factor-2/genetics , Intellectual Disability/genetics , Protein Phosphatase 1/genetics , Binding Sites , Body Height/genetics , Cell Cycle Proteins/genetics , Child, Preschool , Consanguinity , Dwarfism/enzymology , Eukaryotic Initiation Factor-2/metabolism , Female , Homozygote , Humans , Intellectual Disability/enzymology , Male , Microcephaly/enzymology , Microcephaly/genetics , Mutation , Mutation, Missense , Phosphorylation , Protein Biosynthesis , Protein Phosphatase 1/metabolism , Protein Subunits , Sequence Analysis, DNA
16.
Hum Mol Genet ; 23(10): 2752-68, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24381304

ABSTRACT

Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Child Development Disorders, Pervasive/genetics , Glycoproteins/genetics , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Chromosomes, Human, Pair 9 , DNA Copy Number Variations , Exons , Female , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease , Glycoproteins/metabolism , Humans , Infant , Infant, Newborn , Male , Nerve Tissue Proteins/metabolism , Organ Specificity , Phenotype , Polymorphism, Single Nucleotide , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Risk Factors , Sequence Deletion , Transcription Factors/metabolism , Transcription Initiation Site , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Young Adult
17.
Mol Genet Metab ; 119(1-2): 44-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27477828

ABSTRACT

Primary 5-oxoprolinuria (pyroglutamic aciduria) is caused by a genetic defect in the γ-glutamyl cycle, affecting either glutathione synthetase or 5-oxoprolinase. While several dozens of patients with glutathione synthetase deficiency have been reported, with hemolytic anemia representing the clinical key feature, 5-oxoprolinase deficiency due to OPLAH mutations is less frequent and so far has not attracted much attention. This has prompted us to investigate the clinical phenotype as well as the underlying genotype in patients from 14 families of various ethnic backgrounds who underwent diagnostic mutation analysis following the detection of 5-oxoprolinuria. In all patients with 5-oxoprolinuria studied, bi-allelic mutations in OPLAH were indicated. An autosomal recessive mode of inheritance for 5-oxoprolinase deficiency is further supported by the identification of a single mutation in all 9/14 parent sample sets investigated (except for the father of one patient whose result suggests homozygosity), and the absence of 5-oxoprolinuria in all tested heterozygotes. It is remarkable, that all 20 mutations identified were novel and private to the respective families. Clinical features were highly variable and in several sib pairs, did not segregate with 5-oxoprolinuria. Although a pathogenic role of 5-oxoprolinase deficiency remains possible, this is not supported by our findings. Additional patient ascertainment and long-term follow-up is needed to establish the benign nature of this inborn error of metabolism. It is important that all symptomatic patients with persistently elevated levels of 5-oxoproline and no obvious explanation are investigated for the genetic etiology.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Glutathione Synthase/deficiency , Pyroglutamate Hydrolase/deficiency , Pyroglutamate Hydrolase/genetics , Pyrrolidonecarboxylic Acid/metabolism , Adolescent , Alleles , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/physiopathology , Child , Child, Preschool , Female , Glutathione/metabolism , Glutathione Synthase/genetics , Heterozygote , Homozygote , Humans , Infant , Male , Mutation
18.
Am J Med Genet A ; 170A(4): 967-77, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26692240

ABSTRACT

We report 13 new individuals with duplications in Xp11.22-p11.23. The index family has one male and two female members in three generations with mild-severe intellectual disability (ID), speech delay, dysmorphic features, early puberty, constipation, and/or hand and foot abnormalities. Affected individuals were found to have two small duplications in Xp11.22 at nucleotide position (hg19) 50,112,063-50,456,458 bp (distal) and 53,160,114-53,713,154 bp (proximal). Collectively, these two regions include 14 RefSeq genes, prompting collection of a larger cohort of patients, in an attempt to delineate critical genes associated with the observed phenotype. In total, we have collected data on nine individuals with duplications overlapping the distal duplication region containing SHROOM4 and DGKK and eight individuals overlapping the proximal region including HUWE1. Duplications of HUWE1 have been previously associated with non-syndromic ID. Our data, with previously published reports, suggest that duplications involving SHROOM4 and DGKK may represent a new syndromic X-linked ID critical region associated with mild to severe ID, speech delay +/- dysarthria, attention deficit disorder, precocious puberty, constipation, and motor delay. We frequently observed foot abnormalities, 5th finger clinodactyly, tapering fingers, constipation, and exercise intolerance in patients with duplications of these two genes. Regarding duplications including the proximal region, our observations agree with previous studies, which have found associations with intellectual disability. In addition, expressive language delay, failure to thrive, motor delay, and 5th finger clinodactyly were also frequently observed in patients with the proximal duplication.


Subject(s)
Chromosome Duplication , Chromosomes, Human, X , Genetic Association Studies , Sex Chromosome Disorders/diagnosis , Sex Chromosome Disorders/genetics , Adolescent , Adult , Aged , Child , Chromosome Mapping , Comparative Genomic Hybridization , Facies , Female , Genotype , Humans , Male , Middle Aged , Pedigree , Phenotype , Young Adult
19.
J Med Genet ; 52(7): 431-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25951830

ABSTRACT

PURPOSE AND SCOPE: The aim of this Position Statement is to provide recommendations for Canadian medical geneticists, clinical laboratory geneticists, genetic counsellors and other physicians regarding the use of genome-wide sequencing of germline DNA in the context of clinical genetic diagnosis. This statement has been developed to facilitate the clinical translation and development of best practices for clinical genome-wide sequencing for genetic diagnosis of monogenic diseases in Canada; it does not address the clinical application of this technology in other fields such as molecular investigation of cancer or for population screening of healthy individuals. METHODS OF STATEMENT DEVELOPMENT: Two multidisciplinary groups consisting of medical geneticists, clinical laboratory geneticists, genetic counsellors, ethicists, lawyers and genetic researchers were assembled to review existing literature and guidelines on genome-wide sequencing for clinical genetic diagnosis in the context of monogenic diseases, and to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and, following incorporation of feedback, approved by the CCMG Board of Directors. The CCMG is a Canadian organisation responsible for certifying medical geneticists and clinical laboratory geneticists, and for establishing professional and ethical standards for clinical genetics services in Canada. RESULTS AND CONCLUSIONS: Recommendations include (1) clinical genome-wide sequencing is an appropriate approach in the diagnostic assessment of a patient for whom there is suspicion of a significant monogenic disease that is associated with a high degree of genetic heterogeneity, or where specific genetic tests have failed to provide a diagnosis; (2) until the benefits of reporting incidental findings are established, we do not endorse the intentional clinical analysis of disease-associated genes other than those linked to the primary indication; and (3) clinicians should provide genetic counselling and obtain informed consent prior to undertaking clinical genome-wide sequencing. Counselling should include discussion of the limitations of testing, likelihood and implications of diagnosis and incidental findings, and the potential need for further analysis to facilitate clinical interpretation, including studies performed in a research setting. These recommendations will be routinely re-evaluated as knowledge of diagnostic and clinical utility of clinical genome-wide sequencing improves. While the document was developed to direct practice in Canada, the applicability of the statement is broader and will be of interest to clinicians and health jurisdictions internationally.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetics, Medical/methods , Genome, Human/genetics , Sequence Analysis, DNA/methods , Translational Research, Biomedical/methods , Canada , Genetic Diseases, Inborn/genetics , Genetics, Medical/trends , Humans , Sequence Analysis, DNA/trends , Translational Research, Biomedical/trends
20.
BMC Pediatr ; 16: 24, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26839208

ABSTRACT

BACKGROUND: In thyroid-stimulating-hormone (TSH)-based newborn congenital hypothyroidism (CH) screening programs, the optimal screening-TSH cutoff level is critical to ensuring that true cases of CH are not missed. Screening-TSH results can also be used to predict the likelihood of CH and guide appropriate clinical management. The purpose of this study is to evaluate the predictive value of various screening-TSH levels in predicting a diagnosis of CH in the Ontario Newborn Screening Program (ONSP). METHODS: The initial screening and follow-up data of 444,744 full term infants born in Ontario, Canada from April 1, 2006 to March 31, 2010 were analyzed. Confirmed CH cases were based on local endocrinologists' report and initiation of thyroxine treatment. RESULTS: There were a total of 541 positive screening tests (~1/822 live births) of which 296 were true positives (~1:1,500 live births). Subjects were further subdivided based on screening-TSH and positive predictive values (PPV) were calculated. Twenty four percent in the 17-19.9 mIU/L range were true positives. In the 17-30 mIU/L range, 29 % were true positives with a significantly higher PPV for those sampled after (43 %) rather than before (25 %) 28 h of age (p < 0.02). Seventy three percent of neonates with an initial screening-TSH of ≥ 30 mIU/L and 97 % of those with ≥ 40 mIU/L were later confirmed to have CH. CONCLUSIONS: Infants with modestly elevated screening positive TSH levels between 17 and 19.9 mIU/L have a significant risk (24 %) of having CH. The very high frequency of true positives in term newborns with initial TSH values ≥ 30mIU/L suggests that this group should be referred directly to a pediatric endocrinologist in an effort to expedite further assessment and treatment. Screen positives with a modestly elevated TSH values (17-19.9 mIU/L) need to be examined in more detail with extended follow-up data to determine if they have transient or permanent CH.


Subject(s)
Congenital Hypothyroidism/diagnosis , Neonatal Screening , Thyrotropin/blood , Biomarkers/blood , Congenital Hypothyroidism/blood , Female , Follow-Up Studies , Humans , Infant, Newborn , Male , Ontario , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL