Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Ther ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38943249

ABSTRACT

Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.

2.
BMC Immunol ; 19(1): 8, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29433450

ABSTRACT

BACKGROUND: Besides their prominent role in the elimination of infected or malignantly transformed cells, natural killer (NK) cells serve as modulators of adaptive immune responses. Enhancing bidirectional crosstalk between NK cells and dendritic cells (DC) is considered a promising tool to potentiate cancer vaccines. We investigated to what extent direct sensing of viral and bacterial motifs by NK cells contributes to the response of inflammatory DC against the same pathogenic stimulus. RESULTS: We demonstrated that sensing of bacterial and viral PAMPs by NK cells contributes to DC cytokine production via NK cell-derived soluble factors. This enhancement of DC cytokine production was dependent on the pattern recognition receptor (PRR) agonist but also on the cytokine environment in which NK cells recognized the pathogen, indicating the importance of accessory cell activation for this mechanism. We showed in blocking experiments that NK cell-mediated amplification of DC cytokine secretion is dependent on NK cell-derived IFN-γ irrespective of the PRR that is sensed by the NK cell. CONCLUSIONS: These findings illustrate the importance of bidirectional interaction between different PRR-expressing immune cells, which can have implications on the selection of adjuvants for vaccination strategies.


Subject(s)
Cytokines/immunology , Dendritic Cells/immunology , Inflammation Mediators/immunology , Interferon-gamma/immunology , Killer Cells, Natural/immunology , Monocytes/immunology , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/metabolism , Humans , Inflammation Mediators/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/microbiology , Killer Cells, Natural/virology , Lymphocyte Activation/immunology , Monocytes/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism
3.
Mediators Inflamm ; 2016: 5740373, 2016.
Article in English | MEDLINE | ID: mdl-26980946

ABSTRACT

A coordinated cellular interplay is of crucial importance in both host defense against pathogens and malignantly transformed cells. The various interactions of Dendritic Cells (DC), Natural Killer (NK) cells, and T helper (Th) cells can be influenced by a variety of pathogen-associated molecular patterns (PAMPs) and will lead to enhanced CD8(+) effector T cell responses. Specific Pattern Recognition Receptor (PRR) triggering during maturation enables DC to enhance Th1 as well as NK helper cell responses. This effect is correlated with the amount of IL-12p70 released by DC. Activated NK cells are able to amplify the proinflammatory cytokine profile of DC via the release of IFN-γ. The knowledge on how PAMP recognition can modulate the DC is of importance for the design and definition of appropriate therapeutic cancer vaccines. In this review we will discuss the potential role of specific PAMP-matured DC in optimizing therapeutic DC-based vaccines, as some of these DC are efficiently activating Th1, NK cells, and cytotoxic T cells. Moreover, to optimize these vaccines, also the inhibitory effects of tumor-derived suppressive factors, for example, on the NK-DC crosstalk, should be taken into account. Finally, the suppressive role of the tumor microenvironment in vaccination efficacy and some proposals to overcome this by using combination therapies will be described.


Subject(s)
Dendritic Cells/metabolism , Killer Cells, Natural/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Dendritic Cells/immunology , Humans , Killer Cells, Natural/immunology , Models, Biological , T-Lymphocytes, Helper-Inducer/immunology
4.
Cancer Immunol Immunother ; 64(8): 951-63, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25920521

ABSTRACT

Immunotherapy with allogeneic natural killer (NK) cells offers therapeutic perspectives for multiple myeloma patients. Here, we aimed to refine NK cell therapy by evaluation of the relevance of HLA-class I and HLA-E for NK anti-myeloma reactivity. We show that HLA-class I was strongly expressed on the surface of patient-derived myeloma cells and on myeloma cell lines. HLA-E was highly expressed by primary myeloma cells but only marginally by cell lines. HLA-E(low) expression on U266 cells observed in vitro was strongly upregulated after in vivo (bone marrow) growth in RAG-2(-/-) γc(-/-) mice, suggesting that in vitro HLA-E levels poorly predict the in vivo situation. Concurrent analysis of inhibitory receptors (KIR2DL1, KIR2DL2/3, KIR3DL1 and NKG2A) and NK cell degranulation upon co-culture with myeloma cells revealed that KIR-ligand-mismatched NK cells degranulate more than matched subsets and that HLA-E abrogates degranulation of NKG2A+ subsets. Inhibition by HLA-class I and HLA-E was also observed with IL-2-activated NK cells and at low oxygen levels (0.6 %) mimicking hypoxic bone marrow niches where myeloma cells preferentially reside. Our study demonstrates that NKG2A-negative, KIR-ligand-mismatched NK cells are the most potent subset for clinical application. We envision that infusion of high numbers of this subclass will enhance clinical efficacy.


Subject(s)
Cell Separation/methods , Histocompatibility Antigens Class I/immunology , Immunotherapy/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Multiple Myeloma/therapy , NK Cell Lectin-Like Receptor Subfamily C/immunology , Animals , Cell Degranulation , Cell Line, Tumor , Coculture Techniques , Cytotoxicity, Immunologic , DNA-Binding Proteins/genetics , Flow Cytometry , Humans , Interleukin-2/immunology , Mice , Mice, Knockout , Multiple Myeloma/immunology , Neoplasm Transplantation , Oxygen/metabolism , HLA-E Antigens
5.
J Neuroinflammation ; 12: 241, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26700169

ABSTRACT

BACKGROUND: Preterm infants are at risk for hypoxic-ischemic encephalopathy. No therapy exists to treat this brain injury and subsequent long-term sequelae. We have previously shown in a well-established pre-clinical model of global hypoxia-ischemia (HI) that mesenchymal stem cells are a promising candidate for the treatment of hypoxic-ischemic brain injury. In the current study, we investigated the neuroprotective capacity of multipotent adult progenitor cells (MAPC®), which are adherent bone marrow-derived cells of an earlier developmental stage than mesenchymal stem cells and exhibiting more potent anti-inflammatory and regenerative properties. METHODS: Instrumented preterm sheep fetuses were subjected to global hypoxia-ischemia by 25 min of umbilical cord occlusion at a gestational age of 106 (term ~147) days. During a 7-day reperfusion period, vital parameters (e.g., blood pressure and heart rate; baroreceptor reflex) and (amplitude-integrated) electroencephalogram were recorded. At the end of the experiment, the preterm brain was studied by histology. RESULTS: Systemic administration of MAPC therapy reduced the number and duration of seizures and prevented decrease in baroreflex sensitivity after global HI. In addition, MAPC cells prevented HI-induced microglial proliferation in the preterm brain. These anti-inflammatory effects were associated with MAPC-induced prevention of hypomyelination after global HI. Besides attenuation of the cerebral inflammatory response, our findings showed that MAPC cells modulated the peripheral splenic inflammatory response, which has been implicated in the etiology of hypoxic-ischemic injury in the preterm brain. CONCLUSIONS: In a pre-clinical animal model MAPC cell therapy improved the functional and structural outcome of the preterm brain after global HI. Future studies should establish the mechanism and long-term therapeutic effects of neuroprotection established by MAPC cells in the developing preterm brain exposed to HI. Our study may form the basis for future clinical trials, which will evaluate whether MAPC therapy is capable of reducing neurological sequelae in preterm infants with hypoxic-ischemic encephalopathy.


Subject(s)
Adult Stem Cells/transplantation , Hypoxia-Ischemia, Brain/therapy , Mesenchymal Stem Cell Transplantation/methods , Premature Birth , Animals , Animals, Newborn , Disease Models, Animal , Fetus , Sheep
6.
Cytotherapy ; 17(5): 613-20, 2015 May.
Article in English | MEDLINE | ID: mdl-25747742

ABSTRACT

BACKGROUND AIMS: Natural killer (NK) cell-based immunotherapy is a promising treatment for a variety of malignancies. However, generating sufficient cell numbers for therapy remains a challenge. To achieve this, optimization of protocols is required. METHODS: Mature NK cells were expanded from peripheral blood mononuclear cells PBMCs in the presence of anti-CD3 monoclonal antibody and interleukin-2. Additionally, NK-cell progenitors were generated from CD34(+) hematopoietic stem cells or different T/NK-cell progenitor populations. Generated NK cells were extensively phenotyped, and functionality was determined by means of cytotoxicity assay. RESULTS: Addition of ascorbic acid (AA) resulted in more proliferation of NK cells without influencing NK-cell functionality. In more detail, PBMC-derived NK cells expanded 2362-fold (median, range: 90-31,351) in the presence of AA and were capable of killing tumor cells under normoxia and hypoxia. Moreover, hematopoietic stem cell-derived progenitors appeared to mature faster in the presence of AA, which was also observed in the NK-cell differentiation from early T/NK-cell progenitors. CONCLUSIONS: Mature NK cells proliferate faster in the presence of phospho-L-AA, resulting in higher cell numbers with accurate functional capacity, which is required for adoptive immunotherapy.


Subject(s)
Ascorbic Acid/pharmacology , Cell Culture Techniques/methods , Killer Cells, Natural/cytology , Killer Cells, Natural/transplantation , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , K562 Cells , Killer Cells, Natural/drug effects , Stem Cells/cytology , Stem Cells/drug effects
7.
Langmuir ; 31(6): 2043-50, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25654744

ABSTRACT

Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.


Subject(s)
Biomimetics/methods , Hot Temperature , Molecular Imprinting , Molecular Probes/chemical synthesis , Polymers/chemical synthesis , Cell Culture Techniques , Cell Line, Tumor , Humans , Microsatellite Repeats , Molecular Probes/metabolism , Polymers/metabolism , Quality Control , Surface Properties
8.
Br J Nutr ; 113(5): 794-802, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25683704

ABSTRACT

Plant sterols and stanols inhibit intestinal cholesterol absorption and consequently lower serum LDL-cholesterol (LDL-C) concentrations. The underlying mechanisms are not yet known. In vitro and animal studies have suggested that changes in intestinal sterol metabolism are attributed to the LDL-C-lowering effects of plant stanol esters. However, similar studies in human subjects are lacking. Therefore, we examined the effects of an acute intake of plant stanol esters on gene expression profiles of the upper small intestine in healthy volunteers. In a double-blind cross-over design, fourteen healthy subjects (eight female and six male; age 21-55 years), with a BMI ranging from 21 to 29 kg/m², received in random order a shake with or without plant stanol esters (4 g). At 5 h after consumption of the shake, biopsies were taken from the duodenum (around the papilla of Vater) and from the jejunum (20 cm distal from the papilla of Vater). Microarray analysis showed that the expression profiles of genes involved in sterol metabolism were not altered. Surprisingly, the pathways involved in T-cell functions were down-regulated in the jejunum. Furthermore, immunohistochemical analysis showed that the number of CD3 (cluster of differentiation number 3), CD4 (cluster of differentiation number 4) and Foxp3⁺ (forkhead box P3-positive) cells was reduced in the plant stanol ester condition compared with the control condition, which is in line with the microarray data. The physiological and functional consequences of the plant stanol ester-induced reduction of intestinal T-cell-based immune activity in healthy subjects deserve further investigation.


Subject(s)
Anticholesteremic Agents/administration & dosage , Immunity, Mucosal , Immunomodulation , Intestinal Mucosa/immunology , Jejunum/immunology , Sitosterols/administration & dosage , T-Lymphocytes/immunology , Adult , Anticholesteremic Agents/adverse effects , Antigens, Surface/blood , Antigens, Surface/genetics , Antigens, Surface/metabolism , Beverages , Cross-Over Studies , Double-Blind Method , Down-Regulation , Duodenum/cytology , Duodenum/immunology , Duodenum/metabolism , Female , Forkhead Transcription Factors/blood , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Jejunum/cytology , Jejunum/metabolism , Male , Middle Aged , Sitosterols/adverse effects , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Young Adult
9.
Langmuir ; 30(12): 3631-9, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24606112

ABSTRACT

Surface-imprinted polymers allow for specific cell detection based on simultaneous recognition of the cell shape, cell size, and cell membrane functionalities by macromolecular cell imprints. In this study, the specificity of detection and the detection sensitivity for target cells within a pool of non-target cells were analyzed for a cell-specific surface-imprinted polymer combined with a heat-transfer-based read-out technique (HTM). A modified Chinese hamster ovarian cell line (CHO-ldlD) was used as a model system on which the transmembrane protein mucin-1 (MUC1) could be excessively expressed and for which the occurrence of MUC1 glycosylation could be controlled. In specific cancer cells, the overexpressed MUC1 protein typically shows an aberrant apical distribution and glycosylation. We show that surface-imprinted polymers discriminate between cell types that (1) only differ in the expression of a specific membrane protein (MUC1) or (2) only differ in the membrane protein being glycosylated or not. Moreover, surface-imprinted polymers of cells carrying different glycoforms of the same membrane protein do target both types of cells. These findings illustrate the high specificity of cell detection that can be reached by the structural imprinting of cells in polymer layers. Competitiveness between target and non-target cells was proven to negatively affect the detection sensitivity of target cells. Furthermore, we show that the detection sensitivity can be increased significantly by repetitively exposing the surface to the sample and eliminating non-specifically bound cells by flushing between consecutive cell exposures.


Subject(s)
Hot Temperature , Molecular Imprinting , Polyurethanes/chemistry , Animals , CHO Cells , Cells, Cultured , Cricetulus , Glycosylation , Microscopy, Fluorescence , Mucin-1/biosynthesis , Mucin-1/chemistry , Mucin-1/metabolism , Polyurethanes/metabolism , Surface Properties
10.
J Neuroinflammation ; 10: 13, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23347579

ABSTRACT

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of brain injury in preterm infants. Preterm HIE is predominantly caused by global hypoxia-ischemia (HI). In contrast, focal ischemia is most common in the adult brain and known to result in cerebral inflammation and activation of the peripheral immune system. These inflammatory responses are considered to play an important role in the adverse outcomes following brain ischemia. In this study, we hypothesize that cerebral and peripheral immune activation is also involved in preterm brain injury after global HI. METHODS: Preterm instrumented fetal sheep were exposed to 25 minutes of umbilical cord occlusion (UCO) (n = 8) at 0.7 gestation. Sham-treated animals (n = 8) were used as a control group. Brain sections were stained for ionized calcium binding adaptor molecule 1 (IBA-1) to investigate microglial proliferation and activation. The peripheral immune system was studied by assessment of circulating white blood cell counts, cellular changes of the spleen and influx of peripheral immune cells (MPO-positive neutrophils) into the brain. Pre-oligodendrocytes (preOLs) and myelin basic protein (MBP) were detected to determine white matter injury. Electro-encephalography (EEG) was recorded to assess functional impairment by interburst interval (IBI) length analysis. RESULTS: Global HI resulted in profound activation and proliferation of microglia in the hippocampus, periventricular and subcortical white matter. In addition, non-preferential mobilization of white blood cells into the circulation was observed within 1 day after global HI and a significant influx of neutrophils into the brain was detected 7 days after the global HI insult. Furthermore, global HI resulted in marked involution of the spleen, which could not be explained by increased splenic apoptosis. In concordance with cerebral inflammation, global HI induced severe brain atrophy, region-specific preOL vulnerability, hypomyelination and persistent suppressed brain function. CONCLUSIONS: Our data provided evidence that global HI in preterm ovine fetuses resulted in profound cerebral inflammation and mobilization of the peripheral innate immune system. These inflammatory responses were paralleled by marked injury and functional loss of the preterm brain. Further understanding of the interplay between preterm brain inflammation and activation of the peripheral immune system following global HI will contribute to the development of future therapeutic interventions in preterm HIE.


Subject(s)
Brain/immunology , Brain/pathology , Cell Movement/immunology , Hypoxia-Ischemia, Brain/immunology , Hypoxia-Ischemia, Brain/pathology , Animals , Animals, Newborn , Female , Fetus/immunology , Fetus/pathology , Immunity, Innate , Microglia/immunology , Microglia/pathology , Pregnancy , Sheep
11.
Blood ; 118(9): 2473-82, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21715307

ABSTRACT

Among prostaglandins (PGs), PGE2 is abundantly expressed in various malignancies and is probably one of many factors promoting tumor growth by inhibiting tumor immune surveillance. In the current study, we report on a novel mechanism by which PGE2 inhibits in vitro natural killer-dendritic cell (NK-DC) crosstalk and thereby innate and adaptive immune responses via its effect on NK-DC crosstalk. The presence of PGE2 during IFN-γ/membrane fraction of Klebsiella pneumoniae DC maturation inhibits the production of chemokines (CCL5, CCL19, and CXCL10) and cytokines (IL-12 and IL-18), which is cAMP-dependent and imprinted during DC maturation. As a consequence, these DCs fail to attract NK cells and show a decreased capacity to trigger NK cell IFN-γ production, which in turn leads to reduced T-helper 1 polarization. In addition, the presence of PGE2 during DC maturation impairs DC-mediated augmentation of NK-cell cytotoxicity. Opposed to their inhibitory effects on peripheral blood-derived NK cells, PGE2 matured DCs induce IL-22 secretion of inflammation constraining NKp44(+) NK cells present in mucosa-associated lymphoid tissue. The inhibition of NK-DC interaction is a novel regulatory property of PGE2 that is of possible relevance in dampening immune responses in vivo.


Subject(s)
Dendritic Cells/drug effects , Dinoprostone/pharmacology , Inflammation/immunology , Killer Cells, Natural/drug effects , Alprostadil/analogs & derivatives , Alprostadil/pharmacology , Bucladesine/pharmacology , Cell Differentiation , Cell Movement/drug effects , Cells, Cultured/drug effects , Cells, Cultured/immunology , Chemokines/biosynthesis , Chemokines/genetics , Coculture Techniques , Cytokines/biosynthesis , Cytokines/genetics , Cytotoxicity, Immunologic/drug effects , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Humans , Immunosuppression Therapy , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Killer Cells, Natural/immunology , Klebsiella pneumoniae/immunology , Misoprostol/pharmacology , Palatine Tonsil/cytology , T-Lymphocytes, Helper-Inducer/immunology
12.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37963635

ABSTRACT

BACKGROUND: The cancer stem cell theory proposes that tumor formation in vivo is driven only by specific tumor-initiating cells having stemness; however, clinical trials conducted to test drugs that target the tumor stemness provided unsatisfactory results thus far. Recent studies showed clear involvement of immunity in tumors; however, the requirements of tumor-initiation followed by stable growth in immunocompetent individuals remain largely unknown. METHODS: To clarify this, we used two similarly induced glioblastoma lines, 8B and 9G. They were both established by overexpression of an oncogenic H-RasL61 in p53-deficient neural stem cells. In immunocompromised animals in an orthotopic transplantation model using 1000 cells, both show tumor-forming potential. On the other hand, although in immunocompetent animals, 8B shows similar tumor-forming potential but that of 9G's are very poor. This suggests that 8B cells are tumor-initiating cells in immunocompetent animals. Therefore, we hypothesized that the differences in the interaction properties of 8B and 9G with immune cells could be used to identify the factors responsible for its tumor forming potential in immunocompetent animals and performed analysis. RESULTS: Different from 9G, 8B cells induced senescence-like state of macrophages around tumors. We investigated the senescence-inducing factor of macrophages by 8B cells and found that it was interleukin 6. Such senescence-like macrophages produced Arginase-1, an immunosuppressive molecule known to contribute to T-cell hyporesponsiveness. The senescence-like macrophages highly expressed CD38, a nicotinamide adenine dinucleotide (NAD) glycohydrolase associated with NAD shortage in senescent cells. The addition of nicotinamide mononucleotide (NMN), an NAD precursor, in vitro inhibited to the induction of macrophage senescence-like phenotype and inhibited Arginase-1 expression resulting in retaining T-cell function. Moreover, exogenous in vivo administration of NMN after tumor inoculation inhibited tumor-initiation followed by stable growth in the immunocompetent mouse tumor model. CONCLUSIONS: We identified one of the requirements for tumor-initiating cells in immunocompetent animals. In addition, we have shown that tumor growth can be inhibited by externally administered NMN against macrophage senescence-like state that occurs in the very early stages of tumor-initiating cell development. This therapy targeting the immunosuppressive environment formed by macrophage senescence-like state is expected to be a novel promising cancer therapeutic strategy.


Subject(s)
Arginase , NAD , Mice , Animals , Arginase/metabolism , NAD/genetics , NAD/metabolism , Cellular Senescence , Macrophages/metabolism , Phenotype , Disease Models, Animal
13.
Sci Rep ; 13(1): 11045, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422517

ABSTRACT

Loss of neurons in chronic neurodegenerative diseases may occur over a period of many years. Once initiated, neuronal cell death is accompanied by distinct phenotypic changes including cell shrinkage, neurite retraction, mitochondrial fragmentation, nuclear condensation, membrane blebbing and phosphatidylserine (PS) exposure at the plasma membrane. It is still poorly understood which events mark the point of no return for dying neurons. Here we analyzed the neuronal cell line SH-SY5Y expressing cytochrome C (Cyto.C)-GFP. Cells were exposed temporarily to ethanol (EtOH) and tracked longitudinally in time by light and fluorescent microscopy. Exposure to EtOH induced elevation of intracellular Ca2+ and reactive oxygen species, cell shrinkage, neurite retraction, mitochondrial fragmentation, nuclear condensation, membrane blebbing, PS exposure and Cyto.C release into the cytosol. Removing EtOH at predetermined time points revealed that all phenomena except Cyto.C release occurred in a phase of neuronal cell death in which full recovery to a neurite-bearing cell was still possible. Our findings underscore a strategy of treating chronic neurodegenerative diseases by removing stressors from neurons and harnessing intracellular targets that delay or prevent trespassing the point of no return.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Humans , Cytochromes c/metabolism , Apoptosis/physiology , Neuroblastoma/metabolism , Neurons/metabolism , Neurodegenerative Diseases/metabolism
14.
Nutrients ; 15(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37630843

ABSTRACT

Vitamin C is a crucial micronutrient for human immune cell function and has potent antioxidant properties. It is hypothesized that vitamin C serum levels decline during infection. However, the precise mechanisms remain unknown. To gain deeper insights into the true role of vitamin C during infections, we aimed to evaluate the body's vitamin C storage during a SARS-CoV-2 infection. In this single-center study, we examined serum and intracellular vitamin C levels in peripheral blood mononuclear cells (PBMCs) of 70 hospitalized COVID-19 patients on the first and fifth days of hospitalization. Also, clinical COVID-19 severity was evaluated at these timepoints. Our findings revealed a high prevalence of hypovitaminosis C and vitamin C deficiency in hospitalized COVID-19 patients (36% and 15%). Moreover, patients with severe or critical disease exhibited a higher prevalence of low serum vitamin C levels than those with moderate illness. Serum vitamin C levels had a weak negative correlation with clinical COVID-19 severity classification on the day of hospitalization; however, there was no correlation with intracellular vitamin C. Intracellular vitamin C levels were decreased in this cohort as compared to a healthy cohort and showed further decline during hospitalization, while serum levels showed no relevant change. Based on this observation, it can be suggested that the reduction of intracellular vitamin C may be attributed to its antioxidative function, the need for replenishing serum levels, or enhanced turnover by immune cells. These data give an incentive to further investigate the role of intracellular vitamin C in a larger and more heterogeneous cohort as well as the underlying mechanisms.


Subject(s)
Ascorbic Acid , COVID-19 , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , Vitamins , Antioxidants
15.
Br J Haematol ; 159(3): 299-310, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22934889

ABSTRACT

CD1A is a cell surface protein expressed on Langerhans cells and cortical thymocytes that could potentially be used as an immunotherapeutic target in Langerhans Cell Histiocytosis (LCH), the cortical subtype of T-cell acute lymphocytic leukaemia (T-ALL) and other CD1A-positive tumours. The monoclonal antibody (mAb) CR2113 was selected from a panel of six fully human mAbs isolated from a semi-synthetic phage display library, based on specificity and avidity against cells expressing CD1 antigen variants. CR2113 recognized CD1A in T-ALL cell lines and patient samples. Confocal microscopy revealed that the CR2113-CD1A complex was internalized at 37°C. Furthermore, while CR2113 induced moderate complement-dependent cytotoxicity (CDC), potent antibody-dependent cell cytotoxicity (ADCC) activity was observed against CD1A expressing cell lines as well as T-ALL cell lines and T-ALL patient samples. In vivo experiments showed that CR2113 as a naked antibody has modest but specific anti-tumour activity against CD1A-expressing tumours. CR2113 is a high-affinity human anti-CD1A mAb with significant ADCC activity. These properties make CR2113 a candidate for clinical diagnostic imaging and therapeutic targeting of LCH as well as potential use in other clinical applications.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigens, CD1/immunology , Cell Surface Display Techniques , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/isolation & purification , Antibody Affinity/immunology , Antibody Specificity/immunology , Antigens, CD1/metabolism , Cell Line, Tumor , Humans , Immunoglobulin G/immunology , Kinetics , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Peptide Library , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Single-Chain Antibodies/immunology , Single-Chain Antibodies/isolation & purification
16.
Blood ; 115(2): 261-4, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19828700

ABSTRACT

Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is a treatment option for patients with hematopoietic malignancies that is hampered by treatment-related morbidity and mortality, in part the result of opportunistic infections, a direct consequence of delayed T-cell recovery. Thymic output can be improved by facilitation of thymic immigration, known to require precommitment of CD34(+) cells. We demonstrate that Delta-like ligand-mediated predifferentiation of mobilized CD34(+) cells in vitro results in a population of thymocyte-like cells arrested at a T/natural killer (NK)-cell progenitor stage. On intrahepatic transfer to Rag2(-/-)gamma(c)(-/-) mice, these cells selectively home to the thymus and differentiate toward surface T-cell receptor-alphabeta(+) mature T cells considerably faster than animals transplanted with noncultured CD34(+) cells. This finding creates the opportunity to develop an early T-cell reconstitution therapy to combine with HSCT.


Subject(s)
Antigens, CD34 , Killer Cells, Natural/metabolism , Lymphoid Progenitor Cells/metabolism , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Animals , Cell Differentiation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Hematopoietic Stem Cell Transplantation , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Mice , Mice, Knockout , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Transplantation, Heterologous , Transplantation, Homologous
17.
BMC Immunol ; 12: 17, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21332988

ABSTRACT

BACKGROUND: Haplo-identical hematopoietic stem cell (HSC) transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. RESULTS: Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL). In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. CONCLUSIONS: Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.


Subject(s)
Cell Differentiation , Hematopoietic Stem Cells/cytology , Skin/cytology , T-Lymphocytes/cytology , Animals , Cell Culture Techniques , Cell Line , Cells, Cultured , Coculture Techniques , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Hematopoietic Stem Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Keratinocytes/cytology , Keratinocytes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism
18.
Eur J Immunol ; 40(11): 3138-49, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20865789

ABSTRACT

Besides their role in destruction of altered self-cells, NK cells have been shown to potentiate T-cell responses by interacting with DC. To take advantage of NK-DC crosstalk in therapeutic DC-based vaccination for infectious diseases and cancer, it is essential to understand the biology of this crosstalk. We aimed to elucidate the in vitro mechanisms responsible for NK-cell recruitment and activation by DC during infection. To mimic bacterial infection, DC were exposed to a membrane fraction of Klebsiella pneumoniae, which triggers TLR2/4. DC matured with these bacterial fragments can actively recruit NK cells in a CCR5-dependent manner. An additional mechanism of DC-induced NK-cell recruitment is characterized by the induction of CCR7 expression on CD56(dim) CD16(+) NK cells after physical contact with membrane fraction of K. pneumoniae-matured DC, resulting in an enhanced migratory responsiveness to the lymph node-associated chemokine CCL19. Bacterial fragment-matured DC do not only mediate NK-cell migration but also meet the prerequisites needed for augmentation of NK-cell cytotoxicity and IFN-γ production, the latter of which contributes to Th1 polarization.


Subject(s)
Cell Movement/immunology , Chemokine CCL19/immunology , Dendritic Cells/immunology , Killer Cells, Natural/immunology , Klebsiella Infections/immunology , Klebsiella pneumoniae/immunology , Lymphocyte Activation/immunology , Receptors, CCR5/immunology , Cells, Cultured , Gene Expression Regulation/immunology , Humans , Interferon-gamma/immunology , Receptors, CCR7/immunology , Th1 Cells/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology
19.
J Hematol Oncol ; 14(1): 73, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33933160

ABSTRACT

Due to their efficient recognition and lysis of malignant cells, natural killer (NK) cells are considered as specialized immune cells that can be genetically modified to obtain capable effector cells for adoptive cellular treatment of cancer patients. However, biological and technical hurdles related to gene delivery into NK cells have dramatically restrained progress. Recent technological advancements, including improved cell expansion techniques, chimeric antigen receptors (CAR), CRISPR/Cas9 gene editing and enhanced viral transduction and electroporation, have endowed comprehensive generation and characterization of genetically modified NK cells. These promising developments assist scientists and physicians to design better applications of NK cells in clinical therapy. Notably, redirecting NK cells using CARs holds important promise for cancer immunotherapy. Various preclinical and a limited number of clinical studies using CAR-NK cells show promising results: efficient elimination of target cells without side effects, such as cytokine release syndrome and neurotoxicity which are seen in CAR-T therapies. In this review, we focus on the details of CAR-NK technology, including the design of efficient and safe CAR constructs and associated NK cell engineering techniques: the vehicles to deliver the CAR-containing transgene, detection methods for CARs, as well as NK cell sources and NK cell expansion. We summarize the current CAR-NK cell literature and include valuable lessons learned from the CAR-T cell field. This review also provides an outlook on how these approaches may transform current clinical products and protocols for cancer treatment.


Subject(s)
Killer Cells, Natural/immunology , Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Tissue Engineering/methods , Humans
20.
Cancers (Basel) ; 13(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070311

ABSTRACT

Antibodies are commonly used in cancer immunotherapy because of their high specificity for tumor-associated antigens. The binding of antibodies can have direct effects on tumor cells but also engages natural killer (NK) cells via their Fc receptor. Mucin 1 (MUC1) is a highly glycosylated protein expressed in normal epithelial cells, while the under-glycosylated MUC1 epitope (MUC1-Tn/STn) is only expressed on malignant cells, making it an interesting diagnostic and therapeutic target. Several anti-MUC1 antibodies have been tested for therapeutic applications in solid tumors thus far without clinical success. Herein, we describe the generation of fully humanized antibodies based on the murine 5E5 antibody, targeting the tumor-specific MUC1-Tn/STn epitope. We confirmed that these antibodies specifically recognize tumor-associated MUC1 epitopes and can activate human NK cells in vitro. Defucosylation of these newly developed anti-MUC1 antibodies further enhanced antigen-dependent cellular cytotoxicity (ADCC) mediated by NK cells. We show that endocytosis inhibitors augment the availability of MUC1-Tn/STn epitopes on tumor cells but do not further enhance ADCC in NK cells. Collectively, this study describes novel fully humanized anti-MUC1 antibodies that, especially after defucosylation, are promising therapeutic candidates for cellular immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL