Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 715
Filter
Add more filters

Publication year range
1.
Gastroenterology ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810839

ABSTRACT

BACKGROUND & AIMS: Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. METHODS: We measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model. RESULTS: Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid ß-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. CONCLUSIONS: We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.

2.
Hepatology ; 79(1): 25-38, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37505225

ABSTRACT

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is a chronic progressive liver disease characterized by the infiltration of intrahepatic tissue-resident memory CD8 + T cells (T RM ). Itaconate has demonstrated therapeutic potential in modulating inflammation. An unmet need for PSC is the reduction of biliary inflammation, and we hypothesized that itaconate may directly modulate pathogenic T RM . APPROACH AND RESULTS: The numbers of intrahepatic CD103 + T RM were evaluated by immunofluorescence in PSC (n = 32), and the serum levels of itaconate in PSC (n = 64), primary biliary cholangitis (PBC) (n = 60), autoimmune hepatitis (AIH) (n = 49), and healthy controls (n = 109) were determined by LC-MS/MS. In addition, the frequencies and immunophenotypes of intrahepatic T RM using explants from PSC (n = 5) and healthy donors (n = 6) were quantitated by flow cytometry. The immunomodulatory properties of 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) on CD103 + T RM were studied in vitro. Finally, the therapeutic potential of itaconate was studied by the administration of 4-OI and deficiency of immune-responsive gene 1 (encodes the aconitate decarboxylase producing itaconate) in murine models of PSC. Intrahepatic CD103 + T RM was significantly expanded in PSC and was positively correlated with disease severity. Serum itaconate levels decreased in PSC. Importantly, 4-OI inhibited the induction and effector functions of CD103 + T RM in vitro. Mechanistically, 4-OI blocked DNA demethylation of RUNX3 in CD8 + T cells. Moreover, 4-OI reduced intrahepatic CD103 + T RM and ameliorated liver injury in murine models of PSC. CONCLUSIONS: Itaconate exerted immunomodulatory activity on CD103 + T RM in both in vitro and murine PSC models. Our study suggests that targeting pathogenic CD103 + T RM with itaconate has therapeutic potential in PSC.


Subject(s)
Cholangitis, Sclerosing , Liver Diseases , Animals , Mice , Cholangitis, Sclerosing/pathology , Chromatography, Liquid , Tandem Mass Spectrometry , Inflammation
3.
J Immunol ; 210(11): 1629-1639, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37186939

ABSTRACT

Nonpathogenic commensal microbiota and their metabolites and components are essential to maintain a tolerogenic environment and promote beneficial health effects. The metabolic environment critically impacts the outcome of immune responses and likely impacts autoimmune and allergic responses. Short-chain fatty acids (SCFAs) are the main metabolites produced by microbial fermentation in the gut. Given the high concentration of SCFAs in the gut and portal vein and their broad immune regulatory functions, SCFAs significantly influence immune tolerance and gut-liver immunity. Alterations of SCFA-producing bacteria and SCFAs have been identified in a multitude of inflammatory diseases. These data have particular significance in primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis because of the close proximity of the liver to the gut. In this focused review, we provide an update on the immunologic consequences of SCFA-producing microbiota and in particular on three dominant SCFAs in autoimmune liver diseases.


Subject(s)
Gastrointestinal Microbiome , Hepatitis, Autoimmune , Microbiota , Humans , Fatty Acids, Volatile/metabolism , Immunity
4.
Clin Gastroenterol Hepatol ; 22(6): 1265-1274.e19, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38354969

ABSTRACT

BACKGROUND & AIMS: Hypercholesterolemia is frequently diagnosed in patients with primary biliary cholangitis (PBC). However, its association with the prognosis and lipid metabolism is unknown. In this study, we aimed to investigate the prognostic value of baseline total cholesterol (TC) levels in PBC and characterized the associated lipid metabolism. METHODS: Five hundred and thirty-one patients with PBC without prior cirrhosis-related complications were randomly divided into the derivation and validation cohorts at a ratio of 7:3. Complete clinical data were obtained and analyzed. The endpoints were defined as liver-related death, liver transplantation, and cirrhosis-related complications. Lipidomics was performed in 89 patients and 28 healthy controls. RESULTS: Baseline TC was independently associated with poor liver-related outcomes, and adjusted C-statistics were 0.80 (95% confidence interval [CI]: 0.74-0.85) and 0.88 (95% CI: 0.78-0.91) in the derivation and validation cohorts, respectively. The predictive ability of TC for disease outcomes was stable over time and comparable with the Globe score. The 200 mg/dL cut-off optimally divided patients into low- and high-TC groups. A combination of TC and Globe score provided a more accurate stratification of patients into risk subgroups. Lipidomics indicated an up-regulation of lipid families in high-TC patients. Pathway analysis of 66 up-regulated lipids revealed the dysregulation of glycerophospholipid and sphingolipid metabolism in high-TC patients, which were associated with poor liver-related outcomes. CONCLUSIONS: Our results indicate that patients with PBC having baseline TC levels above 200 mg/dL have unique lipidome characteristics and are at a higher risk of poor liver-related outcomes.


Subject(s)
Hypercholesterolemia , Lipid Metabolism , Liver Cirrhosis, Biliary , Humans , Male , Female , Middle Aged , Prognosis , Liver Cirrhosis, Biliary/metabolism , Liver Cirrhosis, Biliary/complications , Hypercholesterolemia/epidemiology , Aged , Adult , Lipidomics , Cholesterol/blood
5.
J Autoimmun ; 148: 103289, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059058

ABSTRACT

Patients with primary biliary cholangitis (PBC) commonly experience extrahepatic rheumatic diseases. However, the epidemiologic and genetic associations as well as causal relationship between PBC and these extrahepatic conditions remain undetermined. In this study, we first conducted systematic review and meta-analyses by analyzing 73 studies comprising 334,963 participants across 17 countries and found strong phenotypic associations between PBC and rheumatic diseases. Next, we utilized large-scale genome-wide association study summary data to define the shared genetic architecture between PBC and rheumatic diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and Sjögren's syndrome (SS). We observed significant genetic correlations between PBC and each of the four rheumatic diseases. Pleiotropy and heritability enrichment analysis suggested the involvement of humoral immunity and interferon-associated processes for the comorbidity. Of note, we identified four variants shared between PBC and RA (rs80200208), SLE (rs9843053), and SSc (rs27524, rs3873182) using cross-trait meta-analysis. Additionally, several pleotropic loci for PBC and rheumatic diseases were found to share causal variants with gut microbes possessing immunoregulatory functions. Finally, Mendelian randomization revealed consistent evidence for a causal effect of PBC on RA, SLE, SSc, and SS, but no or inconsistent evidence for a causal effect of extrahepatic rheumatic diseases on PBC. Our study reveals a profound genetic overlap and causal relationships between PBC and extrahepatic rheumatic diseases, thus providing insights into shared biological mechanisms and novel therapeutic interventions.

6.
J Autoimmun ; 148: 103287, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033687

ABSTRACT

Increasing evidence suggests that, in addition to a loss of tolerance, bile acid (BA) modulates the natural history of primary biliary cholangitis (PBC). We focused on the impacts of dietary changes on the immunopathology of PBC, along with alterations in BA composition and gut microbiota. In this study, we have taken advantage of our unique PBC model, a Cyp2c70/Cyp2a12 double knockout (DKO), which includes a human-like BA composition, and develops progressive cholangitis following immunization with the PDC-E2 mimic, 2-octynoic acid (2OA). We compared the effects of a ten-week high-fat diet (HFD) (60 % kcal from fat) and a normal diet (ND) on 2OA-treated DKO mice. Importantly, we report that 2OA-treated DKO mice fed HFD had significantly exacerbated cholangitis, leading to cirrhosis, with increased hepatic expression of Th1 cytokines/chemokines and hepatic fibrotic markers. Serum lithocholic acid (LCA) levels and the ratio of chenodeoxycholic acid (CDCA)-derived BAs to cholic acid-derived BAs were significantly increased by HFD. This was also associated with downregulated expression of key regulators of BA synthesis, including Cyp8b1, Cyp3a11, and Sult2a1. In addition, there were increases in the relative abundances of Acetatifactor and Lactococcus and decreases in Desulfovibrio and Lachnospiraceae_NK4A136_group, which corresponded to the abundances of CDCA and LCA. In conclusion, HFD and HFD-induced alterations in the gut microbiota modulate BA composition and nuclear receptor activation, leading to cirrhotic change in this murine PBC model. These findings have significant implications for understanding the progression of human PBC.

7.
J Autoimmun ; 143: 103163, 2024 02.
Article in English | MEDLINE | ID: mdl-38301505

ABSTRACT

BACKGROUND: In patients with primary biliary cholangitis (PBC) treated with ursodeoxycholic acid (UDCA), the presence of moderate-to-severe interface hepatitis is associated with a higher risk of liver transplantation and death. This highlights the need for novel treatment approaches. In this study, we aimed to investigate whether combination therapy of UDCA and immunosuppressant (IS) was more effective than UDCA monotherapy. METHODS: We conducted a multicenter study involving PBC patients with moderate-to-severe interface hepatitis who underwent paired liver biopsies. Firstly, we compared the efficacy of the combination therapy with UDCA monotherapy on improving biochemistry, histology, survival rates, and prognosis. Subsequently we investigated the predictors of a beneficial response. RESULTS: This retrospective cohort study with prospectively collected data was conducted in China from January 2009 to April 2023. Of the 198 enrolled patients, 32 underwent UDCA monotherapy, while 166 received combination therapy, consisting of UDCA combined with prednisolone, prednisolone plus mycophenolate mofetil (MMF), or prednisolone plus azathioprine (AZA). The monotherapy group was treated for a median duration of 37.6 months (IQR 27.5-58.1), and the combination therapy group had a median treatment duration of 39.3 months (IQR 34.5-48.8). The combination therapy showed a significantly greater efficacy in reducing fibrosis compared to UDCA monotherapy, with an 8.3-fold increase in the regression rate (from 6.3% to 52.4%, P < 0.001). Other parameters, including biochemistry, survival rates, and prognosis, supported its effectiveness. Baseline IgG >1.3 × ULN and ALP <2.4 × ULN were identified as predictors of regression following the combination therapy. A predictive score named FRS, combining these variables, accurately identified individuals achieving fibrosis regression with a cut-off point of ≥ -0.163. The predictive value was validated internally and externally. CONCLUSION: Combination therapy with IS improves outcomes in PBC patients with moderate-to-severe interface hepatitis compared to UDCA monotherapy. Baseline IgG and ALP are the most significant predictors of fibrosis regression. The new predictive score, FRS, incorporating baseline IgG and ALP, can effectively identify individuals who would benefit from the combination therapy.


Subject(s)
Hepatitis , Liver Cirrhosis, Biliary , Humans , Liver Cirrhosis, Biliary/diagnosis , Liver Cirrhosis, Biliary/drug therapy , Cholagogues and Choleretics/therapeutic use , Retrospective Studies , Treatment Outcome , Ursodeoxycholic Acid/therapeutic use , Immunosuppressive Agents/therapeutic use , Prednisolone/therapeutic use , Immunosuppression Therapy , Hepatitis/complications , Immunoglobulin G
8.
Hepatology ; 78(1): 10-25, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36799463

ABSTRACT

BACKGROUNDS: Prolyl-4-hydroxylases (P4Hs) are key enzymes in collagen synthesis. The P4HA subunit (P4HA1, P4HA2, and P4HA3) contains a substrate binding and catalyzation domain. We postulated that P4HA2 would play a key role in the cholangiocyte pathology of cholestatic liver diseases. METHODS: We studied humans with primary biliary cholangitis (PBC) and Primary sclerosing cholangitis (PSC), P4HA2 -/- mice injured by DDC, and P4HA2 -/- /MDR2 -/- double knockout mice. A parallel study was performed in patients with PBC, PSC, and controls using immunohistochemistry and immunofluorescence. In the murine model, the level of ductular reaction and biliary fibrosis were monitored by histology, qPCR, immunohistochemistry, and Western blotting. Expression of Yes1 Associated Transcriptional Regulator (YAP) phosphorylation was measured in isolated mouse cholangiocytes. The mechanism of P4HA2 was explored in RBE and 293T cell lines by using qPCR, Western blot, immunofluorescence, and co-immunoprecipitation. RESULTS: The hepatic expression level of P4HA2 was highly elevated in patients with PBC or PSC. Ductular reactive cholangiocytes predominantly expressed P4HA2. Cholestatic patients with more severe liver injury correlated with levels of P4HA2 in the liver. In P4HA2 -/- mice, there was a significantly reduced level of ductular reaction and fibrosis compared with controls in the DDC-induced chronic cholestasis. Decreased liver fibrosis and ductular reaction were observed in P4HA2 -/- /MDR2 -/- mice compared with MDR2 -/- mice. Cholangiocytes isolated from P4HA2 -/- /MDR2 -/- mice displayed a higher level of YAP phosphorylation, resulting in cholangiocytes proliferation inhibition. In vitro studies showed that P4HA2 promotes RBE cell proliferation by inducing SAV1 degradation, eventually resulting in the activation of YAP. CONCLUSIONS: P4HA2 promotes hepatic ductular reaction and biliary fibrosis by regulating the SAV1-mediated Hippo signaling pathway. P4HA2 is a potential therapeutic target for PBC and PSC.


Subject(s)
Cholangitis, Sclerosing , Cholestasis , Liver Diseases , Animals , Humans , Mice , Cholangitis, Sclerosing/pathology , Cholestasis/metabolism , Disease Models, Animal , Fibrosis , Liver/pathology , Liver Cirrhosis/pathology , Liver Diseases/pathology , Mice, Knockout , Procollagen-Proline Dioxygenase/metabolism
9.
Liver Int ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101371

ABSTRACT

BACKGROUND AND AIMS: There is increased interest in utilizing dietary interventions to alter the progression of autoimmune diseases. These efforts are driven by associations of gut microbiota/metabolites with levels of short-chain fatty acids (SCFAs). Propionate is a key SCFA that is commonly used as a food preservative and is endogenously generated by bacterial fermentation of non-digestible carbohydrates in the gut. A thesis has suggested that a diet rich in propionate and other SCFAs can successfully modulate autoimmunity. Herein, we investigated the effect of long-term administration of propionylated high-amylose resistant starches (HAMSP) on the course of murine primary biliary cholangitis. MATERIALS AND METHODS: Groups of female ARE-Del mice were fed an HAMSP diet either before or after disease onset. A detailed immunobiological analysis was performed involving autoantibodies and rigorous T-cell phenotyping, including enumeration of T-cell subsets in the spleen, liver, intestinal intraepithelial lymphocytes and lamina propria by flow cytometry. Histopathological scores were used to assess the frequency and severity of liver inflammation and damage to hepatocytes and bile ducts. RESULTS: Our results demonstrate that a long-term propionate-yielding diet re-populated the T-cell pool with decreased naïve and central memory T-cell subsets and an increase in the effector memory T cells in mice. Similarly, long-term HAMSP intake reduced CD4+CD8+ double-positive T cells in intraepithelial lymphocytes and the intestinal lamina propria. Critically, HAMSP consumption led to moderate-to-severe hepatocellular steatosis in ARE-Del mice, independent of the stage of autoimmune cholangitis. CONCLUSIONS: Our data suggest that administration of HAMSP induces both regulatory and effector T cells. Furthermore, HAMSP administration resulted in hepatocellular steatosis. Given the interest in dietary modulation of autoimmunity and because propionate is widely used as a food preservative, these data have significant implications. This study also provides new insights into the immunological and pathological effects of chronic propionate exposure.

10.
J Pathol ; 260(2): 222-234, 2023 06.
Article in English | MEDLINE | ID: mdl-36853094

ABSTRACT

Autoimmune regulator (Aire) and TGF-ß signaling play important roles in central tolerance and peripheral tolerance, respectively, by eliminating or suppressing the activity of autoreactive T cells. We previously demonstrated that dnTGFßRII mice develop a defect in peripheral tolerance and a primary biliary cholangitis (PBC)-like disease. We hypothesized that by introducing the Aire gene to this model, we would observe a more severe PBC phenotype. Interestingly, however, we demonstrated that, while dnTGFßRII Aire-/- mice do manifest key histological and serological features of autoimmune cholangitis, they also develop mild to moderate interface hepatitis and show high levels of alanine transaminase (ALT) and antinuclear antibodies (ANA), characteristics of autoimmune hepatitis (AIH). To further understand this unique phenotype, we performed RNA sequencing (RNA-seq) and flow cytometry to explore the functional pathways and immune cell pathways in the liver of dnTGFßRII Aire-/- mice. Our data revealed enrichments of programmed cell death pathways and predominant CD8+ T cell infiltrates. Depleting CD8+ T cells using an anti-CD8α antibody significantly alleviated hepatic inflammation and prolonged the life span of these mice. Finally, RNA-seq data indicated the clonal expansion of hepatic CD8+ T cells. In conclusion, these mice developed an autoreactive CD8+ T-cell-mediated autoimmune cholangitis with concurrent hepatitis that exhibited key histological and serological features of the AIH-PBC overlap syndrome, representing a novel model for the study of tolerance and autoimmune liver disease. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Cholangitis , Hepatitis, Autoimmune , Liver Cirrhosis, Biliary , Mice , Animals , Hepatitis, Autoimmune/genetics , Hepatitis, Autoimmune/metabolism , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/metabolism , CD8-Positive T-Lymphocytes , Cholangitis/genetics , Cholangitis/metabolism
11.
J Hepatol ; 79(6): 1478-1490, 2023 12.
Article in English | MEDLINE | ID: mdl-37659731

ABSTRACT

BACKGROUND & AIMS: Macrophages are key elements in the pathogenesis of cholestatic liver diseases. Arid3a plays a prominent role in the biologic properties of hematopoietic stem cells, B lymphocytes and tumor cells, but its ability to modulate macrophage function during cholestasis remains unknown. METHODS: Gene and protein expression and cellular localization were assessed by q-PCR, immunohistochemistry, immunofluorescence staining and flow cytometry. We generated myeloid-specific Arid3a knockout mice and established three cholestatic murine models. The transcriptome was analyzed by RNA-seq. A specific inhibitor of the Mertk receptor was used in vitro and in vivo. Promoter activity was determined by chromatin immunoprecipitation-seq against Arid3a and a luciferase reporter assay. RESULTS: In cholestatic murine models, myeloid-specific deletion of Arid3a alleviated cholestatic liver injury (accompanied by decreased accumulation of macrophages). Arid3a-deficient macrophages manifested a more reparative phenotype, which was eliminated by in vitro treatment with UNC2025, a specific inhibitor of the efferocytosis receptor Mertk. Efferocytosis of apoptotic cholangiocytes was enhanced in Arid3a-deficient macrophages via upregulation of Mertk. Arid3a negatively regulated Mertk transcription by directly binding to its promoter. Targeting Mertk in vivo effectively reversed the protective phenotype of Arid3a deficiency in macrophages. Arid3a was upregulated in hepatic macrophages and circulating monocytes in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Mertk was correspondingly upregulated and negatively correlated with Arid3a expression in PBC and PSC. Mertk+ cells were located in close proximity to cholangiocytes, while Arid3a+ cells were scattered among immune cells with greater spatial distances to hyperplastic cholangiocytes in PBC and PSC. CONCLUSIONS: Arid3a promotes cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes by macrophages during cholestasis. The Arid3a-Mertk axis is a promising novel therapeutic target for cholestatic liver diseases. IMPACT AND IMPLICATIONS: Macrophages play an important role in the pathogenesis of cholestatic liver diseases. This study reveals that macrophages with Arid3a upregulation manifest a pro-inflammatory phenotype and promote cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes during cholestasis. Although we now offer a new paradigm to explain how efferocytosis is regulated in a myeloid cell autonomous manner, the regulatory effects of Arid3a on chronic liver diseases remain to be further elucidated.


Subject(s)
Cholestasis , DNA-Binding Proteins , Liver Diseases , Transcription Factors , c-Mer Tyrosine Kinase , Animals , Mice , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Cholestasis/metabolism , Liver Diseases/metabolism , Macrophages/metabolism , Mice, Knockout , Phagocytosis/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
J Hepatol ; 78(1): 99-113, 2023 01.
Article in English | MEDLINE | ID: mdl-35987275

ABSTRACT

BACKGROUND & AIMS: Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS: At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS: Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION: Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS: Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.


Subject(s)
Liver Cirrhosis, Biliary , Secretin , Male , Female , Humans , Mice , Animals , Infant, Newborn , Secretin/metabolism , Liver Cirrhosis, Biliary/metabolism , Bicarbonates/metabolism , Secretory Pathway , Cystic Fibrosis Transmembrane Conductance Regulator , Bile Ducts/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Bile Acids and Salts/metabolism , RNA/metabolism , Mucins/metabolism , Mucoproteins/metabolism , Oncogene Proteins/metabolism
13.
J Autoimmun ; 139: 103070, 2023 09.
Article in English | MEDLINE | ID: mdl-37390745

ABSTRACT

Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.


Subject(s)
Autoimmune Diseases , COVID-19 , Animals , Autoimmunity , Molecular Mimicry , Molecular Docking Simulation , SARS-CoV-2 , Autoimmune Diseases/epidemiology
14.
J Autoimmun ; 140: 103121, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37826920

ABSTRACT

Autoimmune pancreatitis (AIP) is an uncommon fibro-inflammatory disorder precipitated by autoimmune/inflammatory reactions. Currently, there are two clinical subtypes of AIP (type 1 [AIP-1] and type 2 [AIP-2]) that correspond to two histologic descriptors (lymphoplasmacytic sclerosing pancreatitis and idiopathic duct-centric pancreatitis, respectively). While our understanding of AIP-1 has evolved considerably over the years, little is known about AIP-2 due to its rarity, often leading to misdiagnosis, delayed treatment, and even unnecessary surgical resection. Compared to AIP-1, AIP-2 exhibits distinct clinical and histologic features. Because AIP-2 is a pancreas-restricted disease without a specific serum marker, the evaluation of histologic features (e.g., granulocytic epithelial lesions) is essential for an accurate diagnosis. Patients with AIP-2 respond well to glucocorticoids, with anti-tumor necrosis factor-alpha antibodies as a promising alternative therapy. The prognosis of AIP-2 is generally favorable and relapse is uncommon. Here, we provide an overview of our current knowledge on the clinical features, diagnosis, therapeutic regimens, prognosis, and putative mechanisms underlying AIP-2. Notably, the diagnostic differentiation between AIP-2, especially the mass-forming/focal type, and pancreatic cancer is important, but challenging. In this regard, endoscopic ultrasound-guided core biopsy has a key role, but novel diagnostic markers and modalities are clearly needed.

15.
J Autoimmun ; 137: 102997, 2023 May.
Article in English | MEDLINE | ID: mdl-36737299

ABSTRACT

BACKGROUND: Escherichia coli (E.coli) infection has been proposed to play an important role as an initial trigger in the development of autoimmunity via molecular mimicry. However, there has been no preliminary cohort study to establish the association of E.coli infection with autoimmune diseases. Therefore, we conducted a large scale, population-matched cohort study to determine the risk of autoimmune disease among patients with exposure to E.coli. METHODS: Utilizing the National Health Insurance Service database, we retrospectively analyzed a total of 259,875 Korean children that consisted of 23,625 exposed and 236,250 unexposed persons from January 1, 2002 to December 31, 2017. The exposed cohort was defined as patients diagnosed with E.coli infection. Unexposed controls were matched by birth year and sex at a 1:10 ratio for each exposed patient, using incidence density sampling. The primary outcome was autoimmune disease development. We used the Cox model to estimate the risks of autoimmune diseases among patients diagnosed with E.coli infection. RESULTS: Over a mean follow-up of 10 years, there were 1455 autoimmune disease cases among exposed patients (incidence rate, 63.6 per 10,000 person-years) and 11,646 autoimmune disease cases among unexposed persons (incidence rate, 50.4 per 10,000 person-years), with an adjusted hazard ratio (HR) of 1.254 (95% CI 1.187-1.325). E.coli infection was associated with increased risks of autoimmune diseases; Reactive arthritis, HR 1.487, 95% CI 1.131-1.956; Henoch Schönlein purpura, HR 1.265, 95% CI 1.050-1.524; Systemic lupus erythematosus, HR 1.838, 95% CI 1.165-2.898; Sjögren's syndrome, HR 2.002, 95% CI 1.342-2.987; IgA nephropathy, HR 1.613, 95% CI 1.388-1.874. Kaplan-Meier cumulative incidence curves also showed a significant association between E.coli infection and incident autoimmune disease (p < 0.0001). This relationship was not only independent of demographic variables, but also remained consistent across various sensitivity analyses. On the other hand, patients with longer hospital stay for E.coli infection were at a higher risk of autoimmune disease (p = 0.0003), and the risk of autoimmune disease also tended to increase, as the frequency of E.coli infection was higher. Moreover, the relative risk of autoimmune disease seemed to be attenuated by use of antibiotics and a history of intestinal infectious disease, but elevated by coexistence of other autoimmune diseases. CONCLUSIONS: Our cohort study indicates that E.coli infection was significantly associated with increased susceptibility to autoimmune diseases, even after adjusting for different factors. Thus, among environmental factors, a previous history of E.coli infection could be a predisposing risk factor in the development of autoimmune diseases.


Subject(s)
Autoimmune Diseases , Escherichia coli Infections , Humans , Child , Retrospective Studies , Cohort Studies , Autoimmune Diseases/epidemiology , Risk Factors , Escherichia coli Infections/epidemiology , Incidence
16.
J Autoimmun ; 141: 103114, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37748979

ABSTRACT

The gastrointestinal tract is home to the largest microbial population in the human body. The gut microbiota plays significant roles in the development of the gut immune system and has a substantial impact on the maintenance of immune tolerance beginning in early life. These microbes interact with the immune system in a dynamic and interdependent manner. They generate immune signals by presenting a vast repertoire of antigenic determinants and microbial metabolites that influence the development, maturation and maintenance of immunological function and homeostasis. At the same time, both the innate and adaptive immune systems are involved in modulating a stable microbial ecosystem between the commensal and pathogenic microorganisms. Hence, the gut microbial population and the host immune system work together to maintain immune homeostasis synergistically. In susceptible hosts, disruption of such a harmonious state can greatly affect human health and lead to various auto-inflammatory and autoimmune disorders. In this review, we discuss our current understanding of the interactions between the gut microbiota and immunity with an emphasis on: a) important players of gut innate and adaptive immunity; b) the contribution of gut microbial metabolites; and c) the effect of disruption of innate and adaptive immunity as well as alteration of gut microbiome on the molecular mechanisms driving autoimmunity in various autoimmune diseases.


Subject(s)
Autoimmune Diseases , Gastrointestinal Microbiome , Humans , Ecosystem , Immune System , Adaptive Immunity , Immune Tolerance , Dysbiosis
17.
J Autoimmun ; 135: 102993, 2023 02.
Article in English | MEDLINE | ID: mdl-36642058

ABSTRACT

BACKGROUND & AIMS: The N6-methyladenosine (m6A) reader YTH domain-containing family protein 2 (YTHDF2) is critically involved in a multiplicity of biological processes by mediating the degradation of m6A modified mRNAs. Based on our current understanding of this process, we hypothesized that YTHDF2 will play a role in the natural history and function of myeloid-derived suppressor cells (MDSC) and in particular in AIH. APPROACH & RESULTS: We took advantage of YTHDF2 conditional knock-out mice to first address the phenotype and function of MDSCs by flow cytometry. Importantly, the loss of YTHDF2 resulted in a gradual elevation of MDSCs including PMN-MDSCs both in liver and ultimately in the BM. Notably, YTHDF2 deficiency in myeloid cells attenuated concanavalin (ConA)-induced liver injury, with enhanced expansion and chemotaxis to liver. Furthermore, MDSCs from Ythdf2CKO mice had a greater suppressive ability to inhibit the proliferation of T cells. Using multi-omic analysis of m6A RNA immunoprecipitation (RIP) and mRNA sequencing, we noted RXRα as potential target of YTHDF2. Indeed YTHDF2-RIP-qPCR confirmed that YTHDF2 directly binds RXRα mRNA thus promoting degradation and decreasing gene expression. Finally, by IHC and immunofluorescence, YTHDF2 expression was significantly upregulated in the liver of patients with AIH which correlated with the degree of inflammation. CONCLUSION: Suppression of YTHDF2 enhances the expansion, chemotaxis and suppressive function of MDSCs and our data reveals a unique therapeutical target in immune mediated hepatitis.


Subject(s)
Hepatitis, Autoimmune , Myeloid-Derived Suppressor Cells , Animals , Mice , Myeloid Cells , T-Lymphocytes , Transcription Factors/metabolism
18.
J Autoimmun ; 136: 103027, 2023 04.
Article in English | MEDLINE | ID: mdl-36996700

ABSTRACT

Primary biliary cholangitis (PBC) is a classic autoimmune disease due to the loss of tolerance to self-antigens. Bile acids (BA) reportedly play a major role in biliary inflammation and/or in the modulation of dysregulated immune responses in PBC. Several murine models have indicated that molecular mimicry plays a role in autoimmune cholangitis; however, they have all been limited by the relative failure to develop hepatic fibrosis. We hypothesized that species-specific differences in the BA composition between mice and humans were the primary reason for this limited pathology. Here, we aimed to study the impact of human-like hydrophobic BA composition on the development of autoimmune cholangitis and hepatic fibrosis. We took advantage of a unique construct, Cyp2c70/Cyp2a12 double knockout (DKO) mice, which have human-like BA composition, and immunized them with a well-defined mimic of the major mitochondrial autoantigen of PBC, namely 2-octynoic acid (2OA). 2OA-treated DKO mice were significantly exacerbated portal inflammation and bile duct damage with increased Th1 cytokines/chemokines at 8 weeks post-initial immunization. Most importantly, there was clear progression of hepatic fibrosis and increased expression of hepatic fibrosis-related genes. Interestingly, these mice demonstrated increased serum BA concentrations and decreased biliary BA concentrations; hepatic BA levels did not increase because of the upregulation of transporters responsible for the basolateral efflux of BA. Furthermore, cholangitis and hepatic fibrosis were more advanced at 24 weeks post-initial immunization. These results indicate that both the loss of tolerance and the effect of hydrophobic BA are essential for the progression of PBC.


Subject(s)
Autoimmune Diseases , Cholangitis , Liver Cirrhosis, Biliary , Humans , Animals , Mice , Bile Acids and Salts , Liver Cirrhosis , Inflammation , Autoantigens , Disease Models, Animal
19.
Hepatology ; 75(2): 266-279, 2022 02.
Article in English | MEDLINE | ID: mdl-34608663

ABSTRACT

BACKGROUND AND AIMS: The increased frequency of urinary tract infections in patients with primary biliary cholangitis (PBC) and the cross-reactivity between the lipoyl domains (LD) of human pyruvate dehydrogenase complex (hPDC-E2) and Escherichia coli PDC-E2 (ePDC-E2) have long suggested a role of E. coli in causality of PBC. This issue, however, has remained speculative. We hypothesized that by generating specific constructs of human and E. coli PDC-E2, we would be able to assess the specificity of autoantibody responses and define whether exposure to E. coli in susceptible hosts is the basis for the antimitochondrial antibody (AMA) response. APPROACH AND RESULTS: Importantly, the reactivity of hPDC-E2 LD (hPDC-E2LD) affinity-purified antibodies against hPDC-E2LD could only be removed by prior absorption with hPDC-E2LD and not ePDC-E2, suggesting the presence of unique human PDC-E2 epitopes distinct from E. coli PDC-E2. To identify the autoepitope(s) present in hPDC-E2LD, a more detailed study using a variety of PDC-E2 constructs was tested, including the effect of lipoic acid (LA) on ePDC-E2 conformation and AMA recognition. Individual recombinant ePDCE2 LD domains LD1, LD2 and LD3 did not react with either AMA or antibodies to LA (anti-LA), but in contrast, anti-LA was readily reactive against purified recombinant LD1, LD2, and LD3 expressed in tandem (LP); such reactivity increased when LP was precultured with LA. Moreover, when the three LD (LD1, LD2, LD3) domains were expressed in tandem in pET28a or when LD1 was expressed in another plasmid pGEX, they were lipoylated and reactive to PBC sera. CONCLUSIONS: In conclusion, our data are consistent with an exposure to E. coli that elicits specific antibody to ePDC-E2 resulting in determinant spreading and the classic autoantibody to hPDC-E2LD. We argue this is the first step to development of human PBC.


Subject(s)
Autoantigens/immunology , Dihydrolipoyllysine-Residue Acetyltransferase/immunology , Escherichia coli Infections/complications , Escherichia coli/immunology , Liver Cirrhosis, Biliary/microbiology , Mitochondria/immunology , Mitochondrial Proteins/immunology , Autoantibodies/blood , Case-Control Studies , Cross Reactions/immunology , Epitopes/immunology , Escherichia coli/enzymology , Hepatitis, Autoimmune/blood , Humans , Lipoylation , Molecular Conformation/drug effects , Thioctic Acid/immunology , Thioctic Acid/pharmacology
20.
Hepatology ; 76(3): 564-575, 2022 09.
Article in English | MEDLINE | ID: mdl-35184318

ABSTRACT

BACKGROUND AND AIMS: Autoimmune hepatitis (AIH) is a rare and chronic autoimmune liver disease. While genetic factors are believed to play a crucial role in the etiopathogenesis of AIH, our understanding of these genetic risk factors is still limited. In this study, we aimed to identify susceptibility loci to further understand the pathogenesis of this disease. APPROACH AND RESULTS: We conducted a case-control association study of 1,622 Chinese patients with AIH type 1 and 10,466 population controls from two independent cohorts. A meta-analysis was performed to ascertain variants associated with AIH type 1. A single-nucleotide polymorphism within the human leukocyte antigen (HLA) region showed the strongest association with AIH (rs6932730: OR = 2.32; p = 9.21 × 10-73 ). The meta-analysis also identified two non-HLA loci significantly associated with AIH: CD28/CTLA4/ICOS on 2q33.3 (rs72929257: OR = 1.31; p = 2.92 × 10-9 ) and SYNPR on 3p14.2 (rs6809477: OR = 1.25; p = 5.48 × 10-9 ). In silico annotation, reporter gene assays, and CRISPR activation experiments identified a distal enhancer at 2q33.3 that regulated expression of CTLA4. In addition, variants near STAT1/STAT4 (rs11889341: OR = 1.24; p = 1.34 × 10-7 ), LINC00392 (rs9564997: OR = 0.81; p = 2.53 × 10-7 ), IRF8 (rs11117432: OR = 0.72; p = 6.10 × 10-6 ), and LILRA4/LILRA5 (rs11084330: OR = 0.65; p = 5.19 × 10-6 ) had suggestive association signals with AIH. CONCLUSIONS: Our study identifies two novel loci (CD28/CTLA4/ICOS and SYNPR) exceeding genome-wide significance and suggests four loci as potential risk factors. These findings highlight the importance of costimulatory signaling and neuro-immune interaction in the pathogenesis of AIH.


Subject(s)
Hepatitis, Autoimmune , CD28 Antigens/genetics , CTLA-4 Antigen/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , HLA Antigens , Hepatitis, Autoimmune/genetics , Humans , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL