Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
Add more filters

Publication year range
1.
Cell ; 163(5): 1108-1123, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26582131

ABSTRACT

Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication, and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals.


Subject(s)
Dengue/virology , HSP70 Heat-Shock Proteins/metabolism , Virus Replication , Animals , Capsid Proteins/metabolism , Culicidae/virology , Dengue/metabolism , Dengue Virus , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Humans , Virus Replication/drug effects
2.
Mol Cell ; 81(17): 3496-3508.e5, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34380015

ABSTRACT

The Hsp90 chaperone promotes folding and activation of hundreds of client proteins in the cell through an ATP-dependent conformational cycle guided by distinct cochaperone regulators. The FKBP51 immunophilin binds Hsp90 with its tetratricopeptide repeat (TPR) domain and catalyzes peptidyl-prolyl isomerase (PPIase) activity during folding of kinases, nuclear receptors, and tau. Here we determined the cryoelectron microscopy (cryo-EM) structure of the human Hsp90:FKBP51:p23 complex to 3.3 Å, which, together with mutagenesis and crosslinking analyses, reveals the basis for cochaperone binding to Hsp90 during client maturation. A helix extension in the TPR functions as a key recognition element, interacting across the Hsp90 C-terminal dimer interface presented in the closed, ATP conformation. The PPIase domain is positioned along the middle domain, adjacent to Hsp90 client binding sites, whereas a single p23 makes stabilizing interactions with the N-terminal dimer. With this architecture, FKBP51 is positioned to act on specific client residues presented during Hsp90-catalyzed remodeling.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , Tacrolimus Binding Proteins/chemistry , Amino Acid Sequence , Binding Sites , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/metabolism , Cryoelectron Microscopy/methods , HSP90 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Molecular Conformation , Protein Binding , Tacrolimus Binding Proteins/metabolism , Tumor Protein, Translationally-Controlled 1
3.
Proc Natl Acad Sci U S A ; 120(2): e2212931120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598939

ABSTRACT

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small-molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic, there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high-resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 153 Mac1-ligand complex crystal structures were determined, typically to 1 Å resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated conformational changes within the active site, and key inhibitor motifs that will template future drug development against Mac1.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Crystallography , Pandemics , Ligands , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
4.
J Biol Chem ; 300(7): 107435, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830406

ABSTRACT

The protein phosphatase 5 (PP5) is normally recruited to its substrates by the molecular chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90). This interaction requires the tetratricopeptide repeat (TPR) domain of PP5, which binds to an EEVD motif at the extreme C termini of cytosolic Hsp70 and Hsp90 isoforms. In addition to bringing PP5 into proximity with chaperone-bound substrates, this interaction also relieves autoinhibition in PP5's catalytic domain, promoting its phosphatase activity. To better understand the molecular determinants of this process, we screened a large, pentapeptide library for binding to PP5. This screen identified the amino acid preferences at each position, which we validated by showing that the optimal sequences bind 4- to 7-fold tighter than the natural EEVD motifs and stimulate PP5's enzymatic activity. The enhanced affinity for PP5's TPR domain was confirmed using a protein-adaptive differential scanning fluorimetry assay. Using this increased knowledge of structure-activity relationships, we re-examined affinity proteomics results to look for potential EEVD-like motifs in the C termini of known PP5-binding partners. This search identified elongator acetyltransferase complex subunit 1 (IKBKAP) as a putative partner, and indeed, we found that its C-terminal sequence, LSLLD, binds directly to PP5's TPR domain in vitro. Consistent with this idea, mutation of elongator acetyltransferase complex subunit 1's terminal aspartate was sufficient to interrupt the interaction with PP5 in vitro and in cells. Together, these findings reveal the sequence preferences of PP5's TPR domain and expand the scope of PP5's functions to include chaperone-independent complexes.

5.
J Biol Chem ; 298(3): 101697, 2022 03.
Article in English | MEDLINE | ID: mdl-35148989

ABSTRACT

Chaperones of the heat shock protein 70 (Hsp70) family engage in protein-protein interactions with many cochaperones. One "hotspot" for cochaperone binding is the EEVD motif, found at the extreme C terminus of cytoplasmic Hsp70s. This motif is known to bind tetratricopeptide repeat domain cochaperones, such as the E3 ubiquitin ligase CHIP. In addition, the EEVD motif also interacts with a structurally distinct domain that is present in class B J-domain proteins, such as DnaJB4. These observations suggest that CHIP and DnaJB4 might compete for binding to Hsp70's EEVD motif; however, the molecular determinants of such competition are not clear. Using a collection of EEVD-derived peptides, including mutations and truncations, we explored which residues are critical for binding to both CHIP and DnaJB4. These results revealed that some features, such as the C-terminal carboxylate, are important for both interactions. However, CHIP and DnaJB4 also had unique preferences, especially at the isoleucine position immediately adjacent to the EEVD. Finally, we show that competition between these cochaperones is important in vitro, as DnaJB4 limits the ubiquitination activity of the Hsp70-CHIP complex, whereas CHIP suppresses the client refolding activity of the Hsp70-DnaJB4 complex. Together, these data suggest that the EEVD motif has evolved to support diverse protein-protein interactions, such that competition between cochaperones may help guide whether Hsp70-bound proteins are folded or degraded.


Subject(s)
HSP70 Heat-Shock Proteins , Molecular Chaperones , HSP70 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Protein Binding , Protein Folding , Ubiquitin-Protein Ligases/metabolism
6.
J Am Chem Soc ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36753572

ABSTRACT

The aggregation of tau into insoluble fibrils is a defining feature of neurodegenerative tauopathies. However, tau has a positive overall charge and is highly soluble; so, polyanions, such as heparin, are typically required to promote its aggregation in vitro. There are dozens of polyanions in living systems, and it is not clear which ones might promote this process. Here, we systematically measure the ability of 37 diverse, anionic biomolecules to initiate tau aggregation using either wild-type (WT) tau or the disease-associated P301S mutant. We find that polyanions from many different structural classes can promote fibril formation and that P301S tau is sensitive to a greater number of polyanions (28/37) than WT tau (21/37). We also find that some polyanions preferentially reduce the lag time of the aggregation reactions, while others enhance the elongation rate, suggesting that they act on partially distinct steps. From the resulting structure-activity relationships, the valency of the polyanion seems to be an important chemical feature such that anions with low valency tend to be weaker aggregation inducers, even at the same overall charge. Finally, the identity of the polyanion influences fibril morphology based on electron microscopy and limited proteolysis. These results provide insights into the crucial role of polyanion-tau interactions in modulating tau conformational dynamics with implications for understanding the tau aggregation landscape in a complex cellular environment.

7.
Pharmacol Res ; 189: 106692, 2023 03.
Article in English | MEDLINE | ID: mdl-36773708

ABSTRACT

Ubiquitin proteasome activity is suppressed in enzalutamide resistant prostate cancer cells, and the heat shock protein 70/STIP1 homology and U-box-containing protein 1 (HSP70/STUB1) machinery are involved in androgen receptor (AR) and AR variant protein stabilization. Targeting HSP70 could be a viable strategy to overcome resistance to androgen receptor signaling inhibitor (ARSI) in advanced prostate cancer. Here, we showed that a novel HSP70 allosteric inhibitor, JG98, significantly suppressed drug-resistant C4-2B MDVR and CWR22Rv1 cell growth, and enhanced enzalutamide treatment. JG98 also suppressed cell growth in conditional reprogramed cell cultures (CRCs) and organoids derived from advanced prostate cancer patient samples. Mechanistically, JG98 degraded AR/AR-V7 expression in resistant cells and promoted STUB1 nuclear translocation to bind AR-V7. Knockdown of the E3 ligase STUB1 significantly diminished the anticancer effects and partially restored AR-V7 inhibitory effects of JG98. JG231, a more potent analog developed from JG98, effectively suppressed the growth of the drug-resistant prostate cancer cells, CRCs, and organoids. Notably, the combination of JG231 and enzalutamide synergistically inhibited AR/AR-V7 expression and suppressed CWR22Rv1 xenograft tumor growth. Inhibition of HSP70 using novel small-molecule inhibitors coordinates with STUB1 to regulate AR/AR-V7 protein stabilization and ARSI resistance.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Androgen Antagonists , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Line, Tumor , Nitriles/pharmacology , Androgen Receptor Antagonists , Androgens/pharmacology , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/pharmacology , Drug Resistance, Neoplasm , Ubiquitin-Protein Ligases
8.
J Biol Chem ; 297(5): 101282, 2021 11.
Article in English | MEDLINE | ID: mdl-34624315

ABSTRACT

The major classes of molecular chaperones have highly variable sequences, sizes, and shapes, yet they all bind to unfolded proteins, limit their aggregation, and assist in their folding. Despite the central importance of this process to protein homeostasis, it has not been clear exactly how chaperones guide this process or whether the diverse families of chaperones use similar mechanisms. For the first time, recent advances in NMR spectroscopy have enabled detailed studies of how unfolded, "client" proteins interact with both ATP-dependent and ATP-independent classes of chaperones. Here, we review examples from four distinct chaperones, Spy, Trigger Factor, DnaK, and HscA-HscB, highlighting the similarities and differences between their mechanisms. One striking similarity is that the chaperones all bind weakly to their clients, such that the chaperone-client interactions are readily outcompeted by stronger, intra- and intermolecular contacts in the folded state. Thus, the relatively weak affinity of these interactions seems to provide directionality to the folding process. However, there are also key differences, especially in the details of how the chaperones release clients and how ATP cycling impacts that process. For example, Spy releases clients in a largely folded state, while clients seem to be unfolded upon release from Trigger Factor or DnaK. Together, these studies are beginning to uncover the similarities and differences in how chaperones use weak interactions to guide protein folding.


Subject(s)
Molecular Chaperones/metabolism , Protein Folding , Humans , Protein Binding , Protein Conformation
9.
J Biol Chem ; 296: 100613, 2021.
Article in English | MEDLINE | ID: mdl-33798554

ABSTRACT

Overexpression and aggregation of α-synuclein (ASyn) are linked to the onset and pathology of Parkinson's disease and related synucleinopathies. Elevated levels of the stress-induced chaperone Hsp70 protect against ASyn misfolding and ASyn-driven neurodegeneration in cell and animal models, yet there is minimal mechanistic understanding of this important protective pathway. It is generally assumed that Hsp70 binds to ASyn using its canonical and promiscuous substrate-binding cleft to limit aggregation. Here we report that this activity is due to a novel and unexpected mode of Hsp70 action, involving neither ATP nor the typical substrate-binding cleft. We use novel ASyn oligomerization assays to show that Hsp70 directly blocks ASyn oligomerization, an early event in ASyn misfolding. Using truncations, mutations, and inhibitors, we confirm that Hsp70 interacts with ASyn via an as yet unidentified, noncanonical interaction site in the C-terminal domain. Finally, we report a biological role for a similar mode of action in H4 neuroglioma cells. Together, these findings suggest that new chemical approaches will be required to target the Hsp70-ASyn interaction in synucleinopathies. Such approaches are likely to be more specific than targeting Hsp70's canonical action. Additionally, these results raise the question of whether other misfolded proteins might also engage Hsp70 via the same noncanonical mechanism.


Subject(s)
Adenosine Triphosphate/metabolism , Glioma/pathology , HSP70 Heat-Shock Proteins/metabolism , Protein Aggregation, Pathological , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/genetics , Glioma/metabolism , HSP70 Heat-Shock Proteins/genetics , Humans , Mutation , Tumor Cells, Cultured
10.
Hum Mol Genet ; 29(1): 1-19, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31509197

ABSTRACT

Genetic diversity provides a rich repository for understanding the role of proteostasis in the management of the protein fold in human biology. Failure in proteostasis can trigger multiple disease states, affecting both human health and lifespan. Niemann-Pick C1 (NPC1) disease is a rare genetic disorder triggered by mutations in NPC1, a multi-spanning transmembrane protein that is trafficked through the exocytic pathway to late endosomes (LE) and lysosomes (Ly) (LE/Ly) to globally manage cholesterol homeostasis. Defects triggered by >300 NPC1 variants found in the human population inhibit export of NPC1 protein from the endoplasmic reticulum (ER) and/or function in downstream LE/Ly, leading to cholesterol accumulation and onset of neurodegeneration in childhood. We now show that the allosteric inhibitor JG98, that targets the cytosolic Hsp70 chaperone/co-chaperone complex, can significantly improve the trafficking and post-ER protein level of diverse NPC1 variants. Using a new approach to model genetic diversity in human disease, referred to as variation spatial profiling, we show quantitatively how JG98 alters the Hsp70 chaperone/co-chaperone system to adjust the spatial covariance (SCV) tolerance and set-points on an amino acid residue-by-residue basis in NPC1 to differentially regulate variant trafficking, stability, and cholesterol homeostasis, results consistent with the role of BCL2-associated athanogene family co-chaperones in managing the folding status of NPC1 variants. We propose that targeting the cytosolic Hsp70 system by allosteric regulation of its chaperone/co-chaperone based client relationships can be used to adjust the SCV tolerance of proteostasis buffering capacity to provide an approach to mitigate systemic and neurological disease in the NPC1 population.


Subject(s)
Genetic Variation/physiology , HSP70 Heat-Shock Proteins/metabolism , Niemann-Pick C1 Protein/metabolism , Niemann-Pick Disease, Type C/genetics , Allosteric Regulation/genetics , Allosteric Regulation/physiology , Cholesterol/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Genetic Variation/genetics , HSP70 Heat-Shock Proteins/genetics , Humans , Lysosomes/metabolism , Niemann-Pick C1 Protein/genetics
11.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162987

ABSTRACT

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the RET proto-oncogene. We previously demonstrated that depletion of the mitochondrial molecular chaperone, mortalin, can effectively suppress human MTC cells in culture and in mouse xenografts, by disrupting mitochondrial bioenergetics and subsequently inducing apoptosis and RET downregulation. Similar effects were induced by MKT-077, a water-soluble rhodocyanine dye analog known to inhibit mortalin, but with notable toxicity in animals. These observations led us to evaluate recently developed MKT-077 analogs that exhibited higher selectivity to HSP70 proteins and improved bioavailability. We validated the MTC cell-suppressive effects of mortalin depletion in three-dimensional cultures of the human MTC lines, TT, and MZ-CRC-1, and then evaluated different MKT-077 analogs in two- and three-dimensional cell cultures, to show that the MKT-077 analogs, JG-98 and JG-194, effectively and consistently inhibited propagation of TT and MZ-CRC-1 cells in these cultures. Of note, these compounds also effectively suppressed the viability of TT and MZ-CRC-1 progenies resistant to vandetanib and cabozantinib. Moreover, JG-231, an analog with improved microsomal stability, consistently suppressed TT and MZ-CRC-1 xenografts in mice. These data suggest that mortalin inhibition may have therapeutic potential for MTC.


Subject(s)
Carcinoma, Neuroendocrine , Thyroid Neoplasms , Animals , Carcinoma, Neuroendocrine/pathology , Cell Line, Tumor , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Mice , Pyridines , Thiazoles/therapeutic use , Thyroid Neoplasms/metabolism
12.
Nat Chem Biol ; 15(8): 786-794, 2019 08.
Article in English | MEDLINE | ID: mdl-31320752

ABSTRACT

Protein-protein interactions between E3 ubiquitin ligases and protein termini help shape the proteome. These interactions are sensitive to proteolysis, which alters the ensemble of cellular N and C termini. Here we describe a mechanism wherein caspase activity reveals latent C termini that are then recognized by the E3 ubiquitin ligase CHIP. Using expanded knowledge of CHIP's binding specificity, we predicted hundreds of putative interactions arising from caspase activity. Subsequent validation experiments confirmed that CHIP binds the latent C termini at tauD421 and caspase-6D179. CHIP binding to tauD421, but not tauFL, promoted its ubiquitination, while binding to caspase-6D179 mediated ubiquitin-independent inhibition. Given that caspase activity generates tauD421 in Alzheimer's disease (AD), these results suggested a concise model for CHIP regulation of tau homeostasis. Indeed, we find that loss of CHIP expression in AD coincides with the accumulation of tauD421 and caspase-6D179. These results illustrate an unanticipated link between caspases and protein homeostasis.


Subject(s)
Caspases/metabolism , Ubiquitin-Protein Ligases/metabolism , Caspases/genetics , Cell Line, Tumor , Crystallography, X-Ray , Escherichia coli/metabolism , Gene Expression Regulation , Humans , Protein Binding , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism , Ubiquitination
13.
Bioorg Med Chem Lett ; 41: 128025, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33839251

ABSTRACT

The molecular chaperone, Heat Shock Protein 70 (Hsp70), is an emerging drug target for neurodegenerative diseases, because of its ability to promote degradation of microtubule-associated protein tau (MAPT/tau). Recently, we reported YM-08 as a brain penetrant, allosteric Hsp70 inhibitor, which reduces tau levels. However, the benzothiazole moiety of YM-08 is vulnerable to metabolism by CYP3A4, limiting its further application as a chemical probe. In this manuscript, we designed and synthesized seventeen YM-08 derivatives by systematically introducing halogen atoms to the benzothiazole ring and shifting the position of the heteroatom in a distal pyridine. In microsome assays, we found that compound JG-23 has 12-fold better metabolic stability and it retained the ability to reduce tau levels in two cell-based models. These chemical probes of Hsp70 are expected to be useful tools for studying tau homeostasis.


Subject(s)
Benzothiazoles/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Thiazolidines/pharmacology , tau Proteins/antagonists & inhibitors , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Dose-Response Relationship, Drug , HSP70 Heat-Shock Proteins/metabolism , Humans , Molecular Structure , Structure-Activity Relationship , Thiazolidines/chemical synthesis , Thiazolidines/chemistry , tau Proteins/metabolism
14.
Bioorg Med Chem ; 34: 115990, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33549906

ABSTRACT

Destabilizing mutations in small heat shock proteins (sHsps) are linked to multiple diseases; however, sHsps are conformationally dynamic, lack enzymatic function and have no endogenous chemical ligands. These factors render sHsps as classically "undruggable" targets and make it particularly challenging to identify molecules that might bind and stabilize them. To explore potential solutions, we designed a multi-pronged screening workflow involving a combination of computational and biophysical ligand-discovery platforms. Using the core domain of the sHsp family member Hsp27/HSPB1 (Hsp27c) as a target, we applied mixed solvent molecular dynamics (MixMD) to predict three possible binding sites, which we confirmed using NMR-based solvent mapping. Using this knowledge, we then used NMR spectroscopy to carry out a fragment-based drug discovery (FBDD) screen, ultimately identifying two fragments that bind to one of these sites. A medicinal chemistry effort improved the affinity of one fragment by ~50-fold (16 µM), while maintaining good ligand efficiency (~0.32 kcal/mol/non-hydrogen atom). Finally, we found that binding to this site partially restored the stability of disease-associated Hsp27 variants, in a redox-dependent manner. Together, these experiments suggest a new and unexpected binding site on Hsp27, which might be exploited to build chemical probes.


Subject(s)
Heat-Shock Proteins/chemistry , Models, Chemical , Molecular Chaperones/chemistry , Molecular Dynamics Simulation , Binding Sites , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Reproducibility of Results
15.
J Biol Chem ; 294(6): 2151-2161, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30213856

ABSTRACT

The molecular chaperones are central mediators of protein homeostasis. In that role, they engage in widespread protein-protein interactions (PPIs) with each other and with their "client" proteins. Together, these PPIs form the backbone of a network that ensures proper vigilance over the processes of protein folding, trafficking, quality control, and degradation. The core chaperones, such as the heat shock proteins Hsp60, Hsp70, and Hsp90, are widely expressed in most tissues, yet there is growing evidence that the PPIs among them may be re-wired in disease conditions. This possibility suggests that these PPIs, and perhaps not the individual chaperones themselves, could be compelling drug targets. Indeed, recent efforts have yielded small molecules that inhibit (or promote) a subset of inter-chaperone PPIs. These chemical probes are being used to study chaperone networks in a range of models, and the successes with these approaches have inspired a community-wide objective to produce inhibitors for a broader set of targets. In this Review, we discuss progress toward that goal and point out some of the challenges ahead.


Subject(s)
Chaperonin 60 , Enzyme Inhibitors , HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Protein Interaction Maps/drug effects , Proteostasis/drug effects , Animals , Chaperonin 60/antagonists & inhibitors , Chaperonin 60/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans
16.
J Biol Chem ; 294(50): 18952-18966, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31578281

ABSTRACT

Intercellular propagation of protein aggregation is emerging as a key mechanism in the progression of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia (FTD). However, we lack a systematic understanding of the cellular pathways controlling prion-like propagation of aggregation. To uncover such pathways, here we performed CRISPR interference (CRISPRi) screens in a human cell-based model of propagation of tau aggregation monitored by FRET. Our screens uncovered that knockdown of several components of the endosomal sorting complexes required for transport (ESCRT) machinery, including charged multivesicular body protein 6 (CHMP6), or CHMP2A in combination with CHMP2B (whose gene is linked to familial FTD), promote propagation of tau aggregation. We found that knocking down the genes encoding these proteins also causes damage to endolysosomal membranes, consistent with a role for the ESCRT pathway in endolysosomal membrane repair. Leakiness of the endolysosomal compartment significantly enhanced prion-like propagation of tau aggregation, likely by making tau seeds more available to pools of cytoplasmic tau. Together, these findings suggest that endolysosomal escape is a critical step in tau propagation in neurodegenerative diseases.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Lysosomes/metabolism , tau Proteins/metabolism , Cells, Cultured , HEK293 Cells , Humans , Protein Aggregates
17.
Anal Biochem ; 611: 113947, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32918866

ABSTRACT

Protein-protein interactions (PPIs) involving the extreme C-terminus serve important scaffolding and regulatory functions. Here, we leveraged NanoBiT technology to build a luminescent complementation assay for use in studying this subcategory of PPI. As a model system, we fused one component of NanoBiT to the disordered C-terminus of heat shock protein (Hsp70) and the other to its binding partner, the tetratricopeptide repeat (TPR) domain of CHIP/STUB1. We found that HEK293 cells that stably express these chimeras under a doxycycline promoter produced a robust luminescence signal. This signal was sensitive to mutations and it was further tuned by the expression of competitive C-termini. Using this system, we identified a promising, membrane permeable inhibitor of the Hsp70-CHIP interaction. More broadly, we anticipate that NanoBiT is well-suited for studying PPIs that involve C-termini.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Luminescence , Ubiquitin-Protein Ligases/metabolism , HEK293 Cells , HSP70 Heat-Shock Proteins/genetics , Humans , Protein Binding , Protein Domains , Ubiquitin-Protein Ligases/genetics
18.
Bioorg Med Chem Lett ; 30(5): 126954, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31952963

ABSTRACT

The heat shock protein 70 (Hsp70) family of molecular chaperones are highly expressed in tumors. Inhibitors containing a pyridinium-modified benzothiazole, such as JG-98, bind to a conserved, allosteric site in Hsp70, showing promising anti-proliferative activity in cancer cells. When bound to Hsp70, the charged pyridinium makes favorable contacts; however, this moiety also increases the inhibitor's fluorescence, giving rise to undesirable interference in biochemical and cell-based assays. Here, we explore whether the pyridinium can be replaced with a neutral pyridine. We report that pyridine-modified benzothiazoles, such as compound 17h (JG2-38), have reduced fluorescence, yet retain promising anti-proliferative activity (EC50 values ~0.1 to 0.07 µM) in breast and prostate cancer cell lines. These chemical probes are expected to be useful in exploring the roles of Hsp70s in tumorigenesis and cell survival.


Subject(s)
Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Benzothiazoles/chemical synthesis , Benzothiazoles/metabolism , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Fluorescent Dyes/pharmacology , HSP70 Heat-Shock Proteins/metabolism , Humans , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship
19.
Org Biomol Chem ; 18(22): 4157-4163, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32458889

ABSTRACT

There are relatively few methods available for discovering inhibitors of the protein-protein interactions (PPIs) that hold together homo-oligomers. We envisioned that Differential Scanning Fluorimetry (DSF) might be a versatile way to discover this type of inhibitor because oligomers are often more thermally stable than monomers. Using the homo-heptameric chaperonin, Hsp60, as a model, we screened ∼5000 diverse compounds in 384-well plates by DSF, revealing molecules that partially inhibited oligomerization. Because DSF does not require protein labeling or structural information, we propose that it could be a versatile way to uncover PPI inhibitors.


Subject(s)
Chaperonin 60/antagonists & inhibitors , Fluorometry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Molecular Structure , Protein Binding/drug effects
20.
J Neurosci ; 38(15): 3680-3688, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29540553

ABSTRACT

Hyperacetylation of tau has been implicated in neurodegeneration and cognitive decline in tauopathy brains. The nicotinamide adenosine dinucleotide-dependent class-III protein deacetylase SIRT1 is one of the major enzymes involved in removal of acetyl groups from tau in vitro However, whether SIRT1 regulates acetylation of pathogenic tau and ameliorates tau-mediated pathogenesis remains unclear. Here, we report deacetylating activity of SIRT1 for acetylated Lys174 (K174) of tau in tauP301S transgenic mice with a brain-specific SIRT1 deletion. We show that SIRT1 deficiency leads to exacerbation of premature mortality, synapse loss, and behavioral disinhibition in tauP301S transgenic mice of both sexes. By contrast, SIRT1 overexpression by stereotaxic delivery of adeno-associated virus that encodes SIRT1 into the hippocampus reduces acetylated K174 tau. Furthermore, SIRT1 overexpression significantly attenuates the spread of tau pathology into anatomically connected brain regions of tauP301S transgenic mice of both sexes. These findings suggest the functional importance of SIRT1 in regulating pathogenic tau acetylation and in suppressing the spread of tau pathology in vivoSIGNIFICANCE STATEMENT In neurodegenerative disorders with inclusions of microtubule-associated protein tau, aberrant lysine acetylation of tau plays critical roles in promoting tau accumulation and toxicity. Identifying strategies to deacetylate tau could interfere with disease progression; however, little is known about how pathogenic tau is deacetylated in vivo Here we show that the protein deacetylase SIRT1 reduces tau acetylation in a mouse model of neurodegeneration. SIRT1 deficiency in the brain aggravates synapse loss and behavioral disinhibition, and SIRT1 overexpression ameliorates propagation of tau pathology.


Subject(s)
Sirtuin 1/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Acetylation , Animals , Female , HEK293 Cells , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Male , Maze Learning , Mice , Sirtuin 1/genetics , Synaptic Transmission , Tauopathies/pathology , Tauopathies/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL