Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 143(18): 1845-1855, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38320121

ABSTRACT

ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.


Subject(s)
Cell Adhesion Molecules , Factor VIII , Kininogens , Lectins, C-Type , Receptors, Cell Surface , von Willebrand Factor , Humans , von Willebrand Factor/genetics , von Willebrand Factor/metabolism , Factor VIII/genetics , Factor VIII/metabolism , Polymorphism, Single Nucleotide , Human Umbilical Vein Endothelial Cells/metabolism , Mendelian Randomization Analysis , Genome-Wide Association Study , Thrombosis/genetics , Thrombosis/blood , Genetic Association Studies , Male , Endothelial Cells/metabolism , Female
2.
PLoS Genet ; 19(7): e1010786, 2023 07.
Article in English | MEDLINE | ID: mdl-37459304

ABSTRACT

Human ear morphology, a complex anatomical structure represented by a multidimensional set of correlated and heritable phenotypes, has a poorly understood genetic architecture. In this study, we quantitatively assessed 136 ear morphology traits using deep learning analysis of digital face images in 14,921 individuals from five different cohorts in Europe, Asia, and Latin America. Through GWAS meta-analysis and C-GWASs, a recently introduced method to effectively combine GWASs of many traits, we identified 16 genetic loci involved in various ear phenotypes, eight of which have not been previously associated with human ear features. Our findings suggest that ear morphology shares genetic determinants with other surface ectoderm-derived traits such as facial variation, mono eyebrow, and male pattern baldness. Our results enhance the genetic understanding of human ear morphology and shed light on the shared genetic contributors of different surface ectoderm-derived phenotypes. Additionally, gene editing experiments in mice have demonstrated that knocking out the newly ear-associated gene (Intu) and a previously ear-associated gene (Tbx15) causes deviating mouse ear morphology.


Subject(s)
Genetic Loci , Genome-Wide Association Study , Humans , Male , Animals , Mice , Genome-Wide Association Study/methods , Phenotype , Asia , Polymorphism, Single Nucleotide/genetics
3.
Proc Natl Acad Sci U S A ; 119(43): e2206083119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36269859

ABSTRACT

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.


Subject(s)
ATP-Binding Cassette Transporters , Alzheimer Disease , Ceramides , Animals , Mice , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Ceramides/metabolism , Chromatography, Liquid , Genome-Wide Association Study , Lactosylceramides , Metabolome , Mice, Knockout , Sphingomyelins , Tandem Mass Spectrometry
4.
Hum Mol Genet ; 31(20): 3566-3579, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35234888

ABSTRACT

Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of abdominal aortic aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in 10 cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects [Partners Biobank cohort 1 (PBIO)] as replication. Maximum anterior-posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In genome-wide association study (GWAS) on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = -0.02, SE = 0.004, P-value = 2.10 × 10-8). The association replicated in the PBIO1 cohort (P-value = 8.19 × 10-4). In exome-array single-variant analysis (P-value threshold = 9 × 10-7), the lowest P-value was found for rs239259 located in SLC22A20 (beta = 0.007, P-value = 1.2 × 10-5). In the gene-based analysis (P-value threshold = 1.85 × 10-6), PCSK5 showed an association with AAD (P-value = 8.03 × 10-7). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = -0.003, P-value = 0.02), triglycerides (beta = -0.16, P-value = 0.008) and height (beta = 0.03, P-value < 0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Exome/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Triglycerides
5.
Clin Exp Immunol ; 215(3): 251-260, 2024 02 19.
Article in English | MEDLINE | ID: mdl-37950349

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression and different immune-related pathways. There is a great interest in identifying miRNAs involved in immune cell development and function to elucidate the biological mechanisms underlying the immune system, its regulation, and disease. In this study, we aimed to investigate the association of circulating miRNAs with blood cell compositions and blood-based immune markers. Circulating levels of 2083 miRNAs were measured by RNA-sequencing in plasma samples of 1999 participants from the population-based Rotterdam Study collected between 2002 and 2005. Full blood count measurements were performed for absolute granulocyte, platelet, lymphocyte, monocyte, white, and red blood cell counts. Multivariate analyses were performed to test the association of miRNAs with blood cell compositions and immune markers. We evaluated the overlap between predicted target genes of candidate miRNAs associated with immune markers and genes determining the blood immune response markers. First, principal component regression analysis showed that plasma levels of circulating miRNAs were significantly associated with red blood cell, granulocyte, and lymphocyte counts. Second, the cross-sectional analysis identified 210 miRNAs significantly associated (P < 2.82 × 10-5) with neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index. Further genetic look-ups showed that target genes of seven identified miRNAs (miR-1233-3p, miR-149-3p, miR-150-5p, miR-342-3p, miR-34b-3p, miR-4644, and miR-7106-5p) were also previously linked to NLR and PLR markers. Collectively, our study suggests several circulating miRNAs that regulate the innate and adaptive immune systems, providing insight into the pathogenesis of miRNAs in immune-related diseases and paving the way for future clinical applications.


Subject(s)
Circulating MicroRNA , MicroRNAs , Humans , Circulating MicroRNA/genetics , Cross-Sectional Studies , MicroRNAs/genetics , Biomarkers , Blood Platelets
6.
Hepatology ; 78(1): 284-294, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36738080

ABSTRACT

BACKGROUND AND AIMS: Fatty liver disease (FLD) is caused by excess fat in the liver, and its global prevalence exceeds 33%. The role of protein expression on the pathogenesis of FLD and accompanied fibrosis and its potential as a disease biomarker is currently not clear. Hence, we aimed to identify plasma proteomics associated with FLD and fibrosis using population-based data. APPROACH AND RESULTS: Blood samples were collected from 2578 participants from the population-based Rotterdam Study cohort. The proximity extension assay reliably measured plasma levels of 171 cardiometabolic and inflammatory-related proteins (Olink Proteomics). FLD was assessed by ultrasound, and fibrosis by transient elastography. Logistic regression models quantified the association of plasma proteomics with FLD and fibrosis. In addition, we aimed to validate our results in liver organoids. The cross-sectional analysis identified 27 proteins significantly associated with FLD surpassing the Bonferroni-corrected p <2.92×10 -4 . The strongest association was observed for FGF-21 (ß=0.45, p =1.07×10 -18 ) and carboxylesterase 1 (CES1) protein (ß=0.66, p =4.91×10 -40 ). Importantly, 15 of the 27 proteins significantly associated with FLD were also associated with liver fibrosis. Finally, consistent with plasma proteomic profiling, we found the expression levels of IL-18 receptor 1 (IL-18R1) and CES1 to be upregulated in an FLD model of 3-dimensional culture human liver organoids. CONCLUSIONS: Among the general population, several inflammatory and cardiometabolic plasma proteins were associated with FLD and fibrosis. Particularly, plasma levels of FGF-21, IL-18R1, and CES1 were largely dependent on the presence of FLD and fibrosis and may therefore be important in their pathogenesis.


Subject(s)
Cardiovascular Diseases , Non-alcoholic Fatty Liver Disease , Humans , Cross-Sectional Studies , Proteomics , Liver Cirrhosis
7.
Hum Genomics ; 17(1): 104, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996941

ABSTRACT

BACKGROUND: Genetic variants in the coding region could directly affect the structure and expression levels of genes and proteins. However, the importance of variants in the non-coding region, such as microRNAs (miRNAs), remain to be elucidated. Genetic variants in miRNA-related sequences could affect their biogenesis or functionality and ultimately affect disease risk. Yet, their implications and pleiotropic effects on many clinical conditions remain unknown. METHODS: Here, we utilised genotyping and hospital records data in the UK Biobank (N = 423,419) to investigate associations between 346 genetic variants in miRNA-related sequences and a wide range of clinical diagnoses through phenome-wide association studies. Further, we tested whether changes in blood miRNA expression levels could affect disease risk through colocalisation and Mendelian randomisation analysis. RESULTS: We identified 122 associations for six variants in the seed region of miRNAs, nine variants in the mature region of miRNAs, and 27 variants in the precursor miRNAs. These included associations with hypertension, dyslipidaemia, immune-related disorders, and others. Nineteen miRNAs were associated with multiple diagnoses, with six of them associated with multiple disease categories. The strongest association was reported between rs4285314 in the precursor of miR-3135b and celiac disease risk (odds ratio (OR) per effect allele increase = 0.37, P = 1.8 × 10-162). Colocalisation and Mendelian randomisation analysis highlighted potential causal role of miR-6891-3p in dyslipidaemia. CONCLUSIONS: Our study demonstrates the pleiotropic effect of miRNAs and offers insights to their possible clinical importance.


Subject(s)
Dyslipidemias , MicroRNAs , Humans , MicroRNAs/genetics , Biological Specimen Banks , United Kingdom , Genome-Wide Association Study
8.
Hum Genomics ; 17(1): 61, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37430296

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Differential miRNA expression, which is widely shown to be associated with the pathogenesis of various diseases, can be influenced by lifestyle factors, including smoking. This study aimed to investigate the plasma miRNA signature of smoking habits, the potential effect of smoking cessation on miRNA levels, and relate the findings with lung cancer incidence. RESULTS: A targeted RNA-sequencing approach measured plasma miRNA levels in 2686 participants from the population-based Rotterdam study cohort. The association between cigarette smoking (current versus never) and 591 well-expressed miRNAs was assessed via adjusted linear regression models, identifying 41 smoking-associated miRNAs that passed the Bonferroni-corrected threshold (P < 0.05/591 = 8.46 × 10-5). Moreover, we found 42 miRNAs with a significant association (P < 8.46 × 10-5) between current (reference group) and former smokers. Then, we used adjusted linear regression models to explore the effect of smoking cessation time on miRNA expression levels. The expression levels of two miRNAs were significantly different within 5 years of cessation (P < 0.05/41 = 1.22 × 10-3) from current smokers, while for cessation time between 5 and 15 years we found 19 miRNAs to be significantly different from current smokers, and finally, 38 miRNAs were significantly different after more than 15 years of cessation time (P < 1.22 × 10-3). These results imply the reversibility of the smoking effect on plasma levels of at least 38 out of the 41 smoking-miRNAs following smoking cessation. Next, we found 8 out of the 41 smoking-related miRNAs to be nominally associated (P < 0.05) with the incidence of lung cancer. CONCLUSIONS: This study demonstrates smoking-related dysregulation of plasma miRNAs, which might have a potential for reversibility when comparing different smoking cessation groups. The identified miRNAs are involved in several cancer-related pathways and include 8 miRNAs associated with lung cancer incidence. Our results may lay the groundwork for further investigation of miRNAs as potential mechanism linking smoking, gene expression and cancer.


Subject(s)
Circulating MicroRNA , Lung Neoplasms , MicroRNAs , Humans , Circulating MicroRNA/genetics , Smoking/adverse effects , Smoking/epidemiology , Smoking/genetics , MicroRNAs/genetics , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Life Style
9.
Brain Behav Immun ; 120: 71-81, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782212

ABSTRACT

BACKGROUND: The immune system has been proposed to play a role in the link between social health and all-cause dementia risk. We explored cross-sectional and longitudinal associations between social health, immune system balance and plasma neurodegeneration markers in community-dwelling older adults, and explored whether the balance between innate and adaptive immunity mediates associations between social health and both cognition and total brain volume. METHODS: Social health markers (social support, marital status, loneliness) were measured in the Rotterdam Study between 2002-2008. Immune system cell counts and balance were assessed repeatedly from 2002 to 2016 using white blood-cell-based indices and individual counts (granulocyte-to-lymphocyte ratio (GLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII)). Plasma neurodegeneration biomarkers (amyloid-ß40, amyloid-ß42, total tau and neurofilament light chain) were measured once from blood samples collected between 2002-2008. Global cognitive function and total brain volume (MRI) were measured at the follow-up visit between 2009-2014. We used linear mixed models to study longitudinal associations and performed causal mediation analyses. RESULTS: In 8374 adults (mean age 65.7, 57 % female), never married participants (n = 394) had higher GLR, PLR and SII compared to married peers at baseline and during follow-up, indicating imbalance towards innate immunity. Being never married was associated with higher plasma amyloid-ß40, and being widowed or divorced with higher plasma total tau levels at baseline. Widowed or divorced males, but not females, had higher GLR, PLR and SII at baseline. Higher social support was associated with lower PLR in females, but higher PLR in males. Loneliness was not associated with any of the immune system balance ratios. Never married males had higher levels of all plasma neurodegeneration markers at baseline. Immune system balance did not mediate associations between social health and cognition or total brain volume, but does interact with marital status. CONCLUSION: This study indicates that marital status is associated with blood-based immune system markers toward innate immunity and higher levels of plasma neurodegeneration markers. This is particularly evident for never married or previously married male older adults compared to married or female peers.

10.
Eur J Epidemiol ; 39(2): 183-206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324224

ABSTRACT

The Rotterdam Study is a population-based cohort study, started in 1990 in the district of Ommoord in the city of Rotterdam, the Netherlands, with the aim to describe the prevalence and incidence, unravel the etiology, and identify targets for prediction, prevention or intervention of multifactorial diseases in mid-life and elderly. The study currently includes 17,931 participants (overall response rate 65%), aged 40 years and over, who are examined in-person every 3 to 5 years in a dedicated research facility, and who are followed-up continuously through automated linkage with health care providers, both regionally and nationally. Research within the Rotterdam Study is carried out along two axes. First, research lines are oriented around diseases and clinical conditions, which are reflective of medical specializations. Second, cross-cutting research lines transverse these clinical demarcations allowing for inter- and multidisciplinary research. These research lines generally reflect subdomains within epidemiology. This paper describes recent methodological updates and main findings from each of these research lines. Also, future perspective for coming years highlighted.


Subject(s)
Health Personnel , Aged , Humans , Adult , Middle Aged , Cohort Studies , Netherlands/epidemiology
11.
Psychiatry Clin Neurosci ; 78(2): 97-103, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37843431

ABSTRACT

AIM: Investigating what is underlying late-life depression is becoming increasingly important with the rapidly growing elderly population. Yet, the associations between plasma biomarkers of neuroaxonal damage and late-life depression remain largely unclear. Therefore, we determined cross-sectional and longitudinal associations of neurofilament light chain (NfL) with depression in middle-aged and elderly individuals, and total tau, ß-amyloid 40 and 42 for comparison. METHODS: We included 3,895 participants (71.78 years [SD = 7.37], 53.4% women) from the population-based Rotterdam Study. Between 2002 and 2005, NfL, total tau, ß-amyloid 40 and ß-amyloid 42 were determined in blood and depressive symptoms were measured with the Center for Epidemiologic Studies Depression scale (CES-D). Incident depressive events (clinically relevant depressive symptoms, depressive syndromes, major depressive disorders) were measured prospectively with the Center for Epidemiologic Studies Depression, a clinical interview and follow-up of medical records over a median follow-up of 7.0 years (interquartile range 1.80). We used linear and Cox proportional hazard regression models. RESULTS: Each log2 pg./mL increase in NfL was cross-sectionally associated with more depressive symptoms (adjusted mean difference: 0.32, 95% CI 0.05-0.58), as well as with an increased risk of any incident depressive event over time (hazard ratio: 1.22, 95% CI 1.01-1.47). Further, more amyloid-ß 40 was cross-sectionally associated with more depressive symptoms (adjusted mean difference: 0.70, 95% CI 0.15-1.25). CONCLUSION: Higher levels of NfL are cross-sectionally associated with more depressive symptoms and a higher risk of incident depressive events longitudinally. The association was stronger for NfL compared to other plasma biomarkers, suggesting a potential role of neuroaxonal damage in developing late-life depression.


Subject(s)
Depression , Depressive Disorder, Major , Aged , Female , Humans , Male , Middle Aged , Amyloid beta-Peptides , Biomarkers , Cross-Sectional Studies , Depression/epidemiology , Depression/complications , Depressive Disorder, Major/epidemiology , Intermediate Filaments
12.
Circulation ; 145(14): 1040-1052, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35050683

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS: We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS: In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS: Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.


Subject(s)
Diabetes Mellitus, Type 2 , White Matter , Aged , Brain/pathology , Diabetes Mellitus, Type 2/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Metabolome , Middle Aged , White Matter/diagnostic imaging
13.
Hum Mol Genet ; 30(1): 103-118, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33555315

ABSTRACT

Oligodendrocytes exist in a heterogenous state and are implicated in multiple neuropsychiatric diseases including dementia. Cortical oligodendrocytes are a glial population uniquely positioned to play a key role in neurodegeneration by synchronizing circuit connectivity but molecular pathways specific to this role are lacking. We utilized oligodendrocyte-specific translating ribosome affinity purification and RNA-seq (TRAP-seq) to transcriptionally profile adult mature oligodendrocytes from different regions of the central nervous system. Weighted gene co-expression network analysis reveals distinct region-specific gene networks. Two of these mature myelinating oligodendrocyte gene networks uniquely define cortical oligodendrocytes and differentially regulate cortical myelination (M8) and synaptic signaling (M4). These two cortical oligodendrocyte gene networks are enriched for genes associated with dementia including MAPT and include multiple gene targets of the regulatory microRNA, miR-142-3p. Using a combination of TRAP-qPCR, miR-142-3p overexpression in vitro, and miR-142-null mice, we show that miR-142-3p negatively regulates cortical myelination. In rTg4510 tau-overexpressing mice, cortical myelination is compromised, and tau-mediated neurodegeneration is associated with gene co-expression networks that recapitulate both the M8 and M4 cortical oligodendrocyte gene networks identified from normal cortex. We further demonstrate overlapping gene networks in mature oligodendrocytes present in normal cortex, rTg4510 and miR-142-null mice, and existing datasets from human tauopathies to provide evidence for a critical role of miR-142-3p-regulated cortical myelination and oligodendrocyte-mediated synaptic signaling in neurodegeneration.


Subject(s)
MicroRNAs/genetics , Tauopathies/genetics , tau Proteins/genetics , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Cerebellar Cortex/metabolism , Cerebellar Cortex/pathology , Disease Models, Animal , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Humans , Mice , Nerve Fibers, Myelinated/metabolism , Nerve Fibers, Myelinated/pathology , Oligodendroglia/metabolism , RNA-Seq , Tauopathies/metabolism , Tauopathies/pathology
14.
Hum Genet ; 142(1): 145-160, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36190543

ABSTRACT

Rapidly mutating Y-chromosomal short tandem repeats (RM Y-STRs) were suggested for differentiating patrilineally related men as relevant in forensic genetics, anthropological genetics, and genetic genealogy. Empirical data are available for closely related males, while differentiation rates for more distant relatives are scarce. Available RM Y-STR mutation rate estimates are typically based on father-son pair data, while pedigree-based studies for efficient analysis requiring less samples are rare. Here, we present a large-scale pedigree analysis in 9379 pairs of men separated by 1-34 meioses on 30 Y-STRs with increased mutation rates including all known RM Y-STRs (RMplex). For comparison, part of the samples were genotyped at 25 standard Y-STRs mostly with moderate mutation rates (Yfiler Plus). For 43 of the 49 Y-STRs analyzed, pedigree-based mutation rates were similar to previous father-son based estimates, while for six markers significant differences were observed. Male relative differentiation rates from the 30 RMplex Y-STRs were 43%, 84%, 96%, 99%, and 100% for relatives separated by one, four, six, nine, and twelve meioses, respectively, which largely exceeded rates obtained by 25 standard Y-STRs. Machine learning based models for predicting the degree of patrilineal consanguinity yielded accurate and reasonably precise predictions when using RM Y-STRs. Fully matching haplotypes resulted in a 95% confidence interval of 1-6 meioses with RMplex compared to 1-25 with Yfiler Plus. Our comprehensive pedigree study demonstrates the value of RM Y-STRs for differentiating male relatives of various types, in many cases achieving individual identification, thereby overcoming the largest limitation of forensic Y-chromosome analysis.


Subject(s)
Chromosomes, Human, Y , Microsatellite Repeats , Humans , Male , Pedigree , Consanguinity , Chromosomes, Human, Y/genetics , Haplotypes , Microsatellite Repeats/genetics , Genetics, Population , DNA Fingerprinting
15.
J Nutr ; 152(12): 2677-2688, 2023 01 14.
Article in English | MEDLINE | ID: mdl-36130258

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) represent a class of noncoding RNAs that regulate gene expression and are implicated in the pathogenesis of different diseases. Alcohol consumption might affect the expression of miRNAs, which in turn could play a role in risk of diseases. OBJECTIVES: We investigated whether plasma concentrations of miRNAs are altered by alcohol consumption. Given the existing evidence showing the link between alcohol and liver diseases, we further explored the extent to which these associations are mediated by miRNAs. METHODS: Profiling of plasma miRNAs was conducted using the HTG EdgeSeq miRNA Whole Transcriptome Assay in 1933 participants of the Rotterdam Study. Linear regression was implemented to explore the link between alcohol consumption (glasses/d) and miRNA concentrations, adjusted for age, sex, cohort, BMI, and smoking. Sensitivity analysis for alcohol categories (nondrinkers, light drinkers, and heavy drinkers) was performed, where light drinkers corresponded to 0-2 glasses/d in men and 0-1 glasses/d in women, and heavy drinkers to >2 glasses/d in men and >1 glass/d in women. Moreover, we utilized the alcohol-associated miRNAs to explore their potential mediatory role between alcohol consumption and liver-related traits. Finally, we retrieved putative target genes of identified miRNAs to gain an understanding of the molecular pathways concerning alcohol consumption. RESULTS: Plasma concentrations of miR-193b-3p, miR-122-5p, miR-3937, and miR-4507 were significantly associated with alcohol consumption surpassing the Bonferroni-corrected P < 8.46 × 10-5. The top significant association was observed for miR-193b-3p (ß = 0.087, P = 2.90 × 10-5). Furthermore, a potential mediatory role of miR-3937 and miR-122-5p was observed between alcohol consumption and liver traits. Pathway analysis of putative target genes revealed involvement in biological regulation and cellular processes. CONCLUSIONS: This study indicates that alcohol consumption is associated with plasma concentrations of 4 miRNAs. We outline a potential mediatory role of 2 alcohol-associated miRNAs (miR-3937 and miR-122-5p), laying the groundwork for further exploration of miRNAs as potential mediators between lifestyle factors and disease development.


Subject(s)
MicroRNAs , Female , Animals , MicroRNAs/metabolism , Gene Expression Profiling , Transcriptome , Phenotype , Alcohol Drinking
16.
Alzheimers Dement ; 19(4): 1194-1203, 2023 04.
Article in English | MEDLINE | ID: mdl-35946915

ABSTRACT

INTRODUCTION: MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Their role in the pathophysiology of dementia and potential as biomarkers remains undetermined. METHODS: We conducted a single- (one-by-one) and multi-marker (joint) analysis to identify well-expressed circulating miRNAs in plasma (total = 591) associated with general cognition and incident dementia, for 1615 participants of the population-based Rotterdam Study. RESULTS: During single-marker analysis, 47 miRNAs were nominally (P ≤ .05) associated with cognition and 18 miRNAs were nominally associated with incident dementia, after adjustment for potential confounders. Three miRNAs were common between cognition and dementia (miR-4539, miR-372-3p, and miR-566), with multi-marker analysis revealing another common miRNA (miR-7106-5p). In silico analysis of these four common miRNAs led to several putative target genes expressed in the brain, highlighting the mitogen-activated protein kinase signaling pathway. DISCUSSION: We provide population-based evidence on the relationship between circulatory miRNAs with cognition and dementia, including four common miRNAs that may elucidate downstream mechanisms. HIGHLIGHTS: MicroRNAs (miRNAs) are involved in the (dys)function of the central nervous system. Four circulating miRNAs in plasma are associated with cognition and incident dementia. Several predicted target genes of these four miRNAs are expressed in the brain. These four miRNAs may be linked to pathways underlying dementia. Although miRNAs are promising biomarkers, experimental validation remains essential.


Subject(s)
Dementia , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling , Biomarkers , Cognition , Dementia/genetics
17.
Circulation ; 144(24): 1899-1911, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34587750

ABSTRACT

BACKGROUND: The most prominent risk factor for atrial fibrillation (AF) is chronological age; however, underlying mechanisms are unexplained. Algorithms using epigenetic modifications to the human genome effectively predict chronological age. Chronological and epigenetic predicted ages may diverge in a phenomenon referred to as epigenetic age acceleration (EAA), which may reflect accelerated biological aging. We sought to evaluate for associations between epigenetic age measures and incident AF. METHODS: Measures for 4 epigenetic clocks (Horvath, Hannum, DNA methylation [DNAm] PhenoAge, and DNAm GrimAge) and an epigenetic predictor of PAI-1 (plasminogen activator inhibitor-1) levels (ie, DNAm PAI-1) were determined for study participants from 3 population-based cohort studies. Cox models evaluated for associations with incident AF and results were combined via random-effects meta-analyses. Two-sample summary-level Mendelian randomization analyses evaluated for associations between genetic instruments of the EAA measures and AF. RESULTS: Among 5600 participants (mean age, 65.5 years; female, 60.1%; Black, 50.7%), there were 905 incident AF cases during a mean follow-up of 12.9 years. Unadjusted analyses revealed all 4 epigenetic clocks and the DNAm PAI-1 predictor were associated with statistically significant higher hazards of incident AF, though the magnitudes of their point estimates were smaller relative to the associations observed for chronological age. The pooled EAA estimates for each epigenetic measure, with the exception of Horvath EAA, were associated with incident AF in models adjusted for chronological age, race, sex, and smoking variables. After multivariable adjustment for additional known AF risk factors that could also potentially function as mediators, pooled EAA measures for 2 clocks remained statistically significant. Five-year increases in EAA measures for DNAm GrimAge and DNAm PhenoAge were associated with 19% (adjusted hazard ratio [HR], 1.19 [95% CI, 1.09-1.31]; P<0.01) and 15% (adjusted HR, 1.15 [95% CI, 1.05-1.25]; P<0.01) higher hazards of incident AF, respectively. Mendelian randomization analyses for the 5 EAA measures did not reveal statistically significant associations with AF. CONCLUSIONS: Our study identified adjusted associations between EAA measures and incident AF, suggesting that biological aging plays an important role independent of chronological age, though a potential underlying causal relationship remains unclear. These aging processes may be modifiable and not constrained by the immutable factor of time.


Subject(s)
Aging , DNA Methylation , Epigenesis, Genetic , Models, Cardiovascular , Models, Genetic , Aged , Aging/genetics , Aging/metabolism , Atrial Fibrillation/epidemiology , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Epigenomics , Female , Follow-Up Studies , Humans , Incidence , Male , Mendelian Randomization Analysis , Middle Aged
18.
Am J Hum Genet ; 104(1): 112-138, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30595373

ABSTRACT

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.


Subject(s)
DNA, Mitochondrial/genetics , Genes, Mitochondrial/genetics , Genetic Variation/genetics , Metabolism/genetics , Mitochondria/genetics , Mitochondria/metabolism , Adipocytes/metabolism , Body Mass Index , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cohort Studies , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Glucose/metabolism , Glycated Hemoglobin/metabolism , Humans , Insulin/metabolism , Quantitative Trait Loci , Waist-Hip Ratio
19.
Clin Gastroenterol Hepatol ; 20(3): e573-e582, 2022 03.
Article in English | MEDLINE | ID: mdl-33618024

ABSTRACT

BACKGROUND & AIMS: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a new terminology updated from non-alcoholic fatty liver disease (NAFLD). In this study, we aim to estimate the global prevalence of MAFLD specifically in overweight and obese adults from the general population by performing a systematic review and meta-analysis through mining the existing epidemiological data on fatty liver disease. METHODS: We searched Medline, Embase, Web of Science, Cochrane and google scholar database from inception to November, 2020. DerSimonian-Laird random-effects model with Logit transformation was performed for data analysis. Sensitivity analysis and meta-regression were used to explore predictors of MAFLD prevalence in pooled statistics with high heterogeneity. RESULTS: We identified 116 relevant studies comprised of 2,667,052 participants in general population with an estimated global MAFLD prevalence as 50.7% (95% CI 46.9-54.4) among overweight/obese adults regardless of diagnostic techniques. Ultrasound was the most commonly used diagnostic technique generating prevalence rate of 51.3% (95% CI, 49.1-53.4). Male (59.0%; 95% CI, 52.0-65.6) had a significantly higher MAFLD prevalence than female (47.5%; 95% CI, 40.7-54.5). Interestingly, MAFLD prevalence rates are comparable based on classical NAFLD and non-NAFLD studies in general population. The pooled estimate prevalence of comorbidities such as type 2 diabetes and metabolic syndrome was 19.7% (95% CI, 12.8-29.0) and 57.5% (95% CI, 49.9-64.8), respectively. CONCLUSIONS: MAFLD has an astonishingly high prevalence rate in overweight and obese adults. This calls for attention and dedicated action from primary care physicians, specialists, health policy makers and the general public alike.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Adult , Diabetes Mellitus, Type 2/complications , Female , Humans , Male , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Obesity/complications , Obesity/epidemiology , Overweight/complications , Overweight/epidemiology , Prevalence
20.
Anal Chem ; 94(14): 5493-5503, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35360896

ABSTRACT

Integration of multiple datasets can greatly enhance bioanalytical studies, for example, by increasing power to discover and validate biomarkers. In liquid chromatography-mass spectrometry (LC-MS) metabolomics, it is especially hard to combine untargeted datasets since the majority of metabolomic features are not annotated and thus cannot be matched by chemical identity. Typically, the information available for each feature is retention time (RT), mass-to-charge ratio (m/z), and feature intensity (FI). Pairs of features from the same metabolite in separate datasets can exhibit small but significant differences, making matching very challenging. Current methods to address this issue are too simple or rely on assumptions that cannot be met in all cases. We present a method to find feature correspondence between two similar LC-MS metabolomics experiments or batches using only the features' RT, m/z, and FI. We demonstrate the method on both real and synthetic datasets, using six orthogonal validation strategies to gauge the matching quality. In our main example, 4953 features were uniquely matched, of which 585 (96.8%) of 604 manually annotated features were correct. In a second example, 2324 features could be uniquely matched, with 79 (90.8%) out of 87 annotated features correctly matched. Most of the missed annotated matches are between features that behave very differently from modeled inter-dataset shifts of RT, MZ, and FI. In a third example with simulated data with 4755 features per dataset, 99.6% of the matches were correct. Finally, the results of matching three other dataset pairs using our method are compared with a published alternative method, metabCombiner, showing the advantages of our approach. The method can be applied using M2S (Match 2 Sets), a free, open-source MATLAB toolbox, available at https://github.com/rjdossan/M2S.


Subject(s)
Metabolomics , Biomarkers/analysis , Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL