Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Phys Rev Lett ; 132(6): 066004, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38394564

ABSTRACT

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of the orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. Finally, we show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.

2.
Nat Mater ; 23(4): 443-444, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570633
3.
Phys Rev Lett ; 125(12): 126401, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016714

ABSTRACT

Despite its simple structure and low degree of electronic correlation, SrTiO_{3} (STO) features collective phenomena linked to charge transport and, ultimately, superconductivity, that are not yet fully explained. Thus, a better insight into the nature of the quasiparticles shaping the electronic and conduction properties of STO is needed. We studied the low-energy excitations of bulk STO and of the LaAlO_{3}/SrTiO_{3} two-dimensional electron gas (2DEG) by Ti L_{3} edge resonant inelastic x-ray scattering. In all samples, we find the hallmark of polarons in the form of intense dd+phonon excitations, and a decrease of the LO3-mode electron-phonon coupling when going from insulating to highly conducting STO single crystals and heterostructures. Both results are attributed to the dynamic screening of the large polaron self-induced polarization, showing that the low-temperature physics of STO and STO-based 2DEGs is dominated by large polaron quasiparticles.

4.
Phys Rev Lett ; 123(2): 027001, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31386544

ABSTRACT

We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa_{2}Cu_{3}O_{6} and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.

5.
J Nanosci Nanotechnol ; 19(8): 4980-4986, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30913810

ABSTRACT

Cobalt ferrite nanoparticles have been attracting considerable interest in the recent years because of the large number of potential applications, including magnetic storage, magnetic fluid hyperthermia and as contrast agents for magnetic resonance imaging. Physical properties of this class of materials depend critically on a number of parameters, including crystallinity, stoichiometry and cation distribution. In this work we have performed a Resonant Inelastic soft X-ray Scattering (RIXS) study on a series of 5 nm cobalt-doped maghemite nanoparticles to obtain direct quantitative information on cation distribution as a function of cobalt doping. We found that the distribution of divalent cobalt is stable in the investigated doping range and slightly different from that of bulk, stoichiometric cobalt ferrite. These results confirm that cobalt doping can be used to finely tune the magnetic properties of nanostructured ferrites without modifying their structural integrity.

6.
Nat Commun ; 14(1): 7198, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938250

ABSTRACT

The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.

7.
Science ; 373(6562): 1506-1510, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34554788

ABSTRACT

The normal state of optimally doped cuprates is dominated by the "strange metal" phase that shows a linear temperature (T) dependence of the resistivity persisting down to the lowest T. For underdoped cuprates, this behavior is lost below the pseudogap temperature T*, where charge density waves (CDWs), together with other intertwined local orders, characterize the ground state. We found that the T-linear resistivity of highly strained, ultrathin, underdoped YBa2Cu3O7­Î´ films is restored when the CDW amplitude, detected by resonant inelastic x-ray scattering, is suppressed. This observation suggests an intimate connection between the onset of CDWs and the departure from T-linear resistivity in underdoped cuprates. Our results illustrate the potential of using strain control to manipulate the ground state of quantum materials.

8.
Nat Commun ; 12(1): 3122, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035254

ABSTRACT

In ultrathin films of FeSe grown on SrTiO3 (FeSe/STO), the superconducting transition temperature Tc is increased by almost an order of magnitude, raising questions on the pairing mechanism. As in other superconductors, antiferromagnetic spin fluctuations have been proposed to mediate SC making it essential to study the evolution of the spin dynamics of FeSe from the bulk to the ultrathin limit. Here, we investigate the spin excitations in bulk and monolayer FeSe/STO using resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to its bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems revealing a remarkable reconfiguration of spin excitations in FeSe/STO, essential to understand the role of spin fluctuations in the pairing mechanism.

9.
Nanomaterials (Basel) ; 10(4)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344792

ABSTRACT

Epitaxial films of high critical temperature ( T c ) cuprate superconductors preserve their transport properties even when their thickness is reduced to a few nanometers. However, when approaching the single crystalline unit cell (u.c.) of thickness, T c decreases and eventually, superconductivity is lost. Strain originating from the mismatch with the substrate, electronic reconstruction at the interface and alteration of the chemical composition and of doping can be the cause of such changes. Here, we use resonant inelastic x-ray scattering at the Cu L 3 edge to study the crystal field and spin excitations of NdBa 2 Cu 3 O 7 - x ultrathin films grown on SrTiO 3 , comparing 1, 2 and 80 u.c.-thick samples. We find that even at extremely low thicknesses, the strength of the in-plane superexchange interaction is mostly preserved, with just a slight decrease in the 1 u.c. with respect to the 80 u.c.-thick sample. We also observe spectroscopic signatures for a decrease of the hole-doping at low thickness, consistent with the expansion of the c-axis lattice parameter and oxygen deficiency in the chains of the first unit cell, determined by high-resolution transmission microscopy and x-ray diffraction.

10.
Phys Rev Lett ; 103(11): 117003, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19792395

ABSTRACT

We show that in resonant inelastic x-ray scattering (RIXS) at the copper L and M edge direct spin-flip scattering is in principle allowed. We demonstrate how this possibility can be exploited to probe the dispersion of magnetic excitations, for instance magnons, of cuprates such as the high T(c) superconductors. We compute the relevant local and momentum dependent magnetic scattering amplitudes, which we compare to the elastic and dd-excitation scattering intensities. For cuprates these theoretical results put RIXS as a technique on the same footing as neutron scattering.

SELECTION OF CITATIONS
SEARCH DETAIL