Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 24(7): e55338, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37166011

ABSTRACT

The bacterial toxin CcdB (Controller of Cell death or division B) targets DNA Gyrase, an essential bacterial topoisomerase, which is also the molecular target for fluoroquinolones. Here, we present a short cell-penetrating 24-mer peptide, CP1-WT, derived from the Gyrase-binding region of CcdB and examine its effect on growth of Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and a carbapenem- and tigecycline-resistant strain of Acinetobacter baumannii in both axenic cultures and mouse models of infection. The CP1-WT peptide shows significant improvement over ciprofloxacin in terms of its in vivo therapeutic efficacy in treating established infections of S. Typhimurium, S. aureus and A. baumannii. The molecular mechanism likely involves inhibition of Gyrase or Topoisomerase IV, depending on the strain used. The study validates the CcdB binding site on bacterial DNA Gyrase as a viable and alternative target to the fluoroquinolone binding site.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Animals , Mice , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , DNA Gyrase/chemistry , DNA Gyrase/genetics , DNA Gyrase/metabolism , DNA Topoisomerase IV/genetics , DNA Topoisomerase IV/metabolism , DNA Topoisomerase IV/pharmacology , Peptides/pharmacology
2.
Nat Chem Biol ; 18(10): 1046-1055, 2022 10.
Article in English | MEDLINE | ID: mdl-35654847

ABSTRACT

Protein tertiary structure mimetics are valuable tools to target large protein-protein interaction interfaces. Here, we demonstrate a strategy for designing dimeric helix-hairpin motifs from a previously reported three-helix-bundle miniprotein that targets the receptor-binding domain (RBD) of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Through truncation of the third helix and optimization of the interhelical loop residues of the miniprotein, we developed a thermostable dimeric helix-hairpin. The dimeric four-helix bundle competes with the human angiotensin-converting enzyme 2 (ACE2) in binding to RBD with 2:2 stoichiometry. Cryogenic-electron microscopy revealed the formation of dimeric spike ectodomain trimer by the four-helix bundle, where all the three RBDs from either spike protein are attached head-to-head in an open conformation, revealing a novel mechanism for virus neutralization. The proteomimetic protects hamsters from high dose viral challenge with replicative SARS-CoV-2 viruses, demonstrating the promise of this class of peptides that inhibit protein-protein interaction through target dimerization.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Dimerization , Humans , Peptides/metabolism , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
3.
Mol Syst Biol ; 18(2): e10673, 2022 02.
Article in English | MEDLINE | ID: mdl-35156767

ABSTRACT

The highly contagious Delta variant of SARS-CoV-2 has become a prevalent strain globally and poses a public health challenge around the world. While there has been extensive focus on understanding the amino acid mutations in the Delta variant's Spike protein, the mutational landscape of the rest of the SARS-CoV-2 proteome (25 proteins) remains poorly understood. To this end, we performed a systematic analysis of mutations in all the SARS-CoV-2 proteins from nearly 2 million SARS-CoV-2 genomes from 176 countries/territories. Six highly prevalent missense mutations in the viral life cycle-associated Membrane (I82T), Nucleocapsid (R203M, D377Y), NS3 (S26L), and NS7a (V82A, T120I) proteins are almost exclusive to the Delta variant compared to other variants of concern (mean prevalence across genomes: Delta = 99.74%, Alpha = 0.06%, Beta = 0.09%, and Gamma = 0.22%). Furthermore, we find that the Delta variant harbors a more diverse repertoire of mutations across countries compared to the previously dominant Alpha variant. Overall, our study underscores the high diversity of the Delta variant between countries and identifies a list of amino acid mutations in the Delta variant's proteome for probing the mechanistic basis of pathogenic features such as high viral loads, high transmissibility, and reduced susceptibility against neutralization by vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Mutation, Missense , Spike Glycoprotein, Coronavirus/genetics
4.
Nucleic Acids Res ; 48(22): 12436-12452, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33166999

ABSTRACT

SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome, whose outbreak caused the ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, only a handful of functionally-conserved coronavirus structural RNA elements have been identified to date. Here, we performed RNA structure probing to obtain single-base resolution secondary structure maps of the full SARS-CoV-2 coronavirus genome both in vitro and in living infected cells. Probing data recapitulate the previously described coronavirus RNA elements (5' UTR and s2m), and reveal new structures. Of these, ∼10.2% show significant covariation among SARS-CoV-2 and other coronaviruses, hinting at their functionally-conserved role. Secondary structure-restrained 3D modeling of these segments further allowed for the identification of putative druggable pockets. In addition, we identify a set of single-stranded segments in vivo, showing high sequence conservation, suitable for the development of antisense oligonucleotide therapeutics. Collectively, our work lays the foundation for the development of innovative RNA-targeted therapeutic strategies to fight SARS-related infections.


Subject(s)
COVID-19/prevention & control , Genome, Viral/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2/genetics , 5' Untranslated Regions/genetics , Algorithms , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Base Sequence , Binding Sites/genetics , COVID-19/epidemiology , COVID-19/virology , Conserved Sequence/genetics , Humans , Models, Molecular , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
5.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077037

ABSTRACT

RNA is a unique biomolecule that is involved in a variety of fundamental biological functions, all of which depend solely on its structure and dynamics. Since the experimental determination of crystal RNA structures is laborious, computational 3D structure prediction methods are experiencing an ongoing and thriving development. Such methods can lead to many models; thus, it is necessary to build comparisons and extract common structural motifs for further medical or biological studies. Here, we introduce a computational pipeline dedicated to reference-free high-throughput comparative analysis of 3D RNA structures. We show its application in the RNA-Puzzles challenge, in which five participating groups attempted to predict the three-dimensional structures of 5'- and 3'-untranslated regions (UTRs) of the SARS-CoV-2 genome. We report the results of this puzzle and discuss the structural motifs obtained from the analysis. All simulated models and tools incorporated into the pipeline are open to scientific and academic use.


Subject(s)
COVID-19 , RNA , 3' Untranslated Regions , Humans , Nucleic Acid Conformation , RNA/chemistry , SARS-CoV-2
6.
Genomics ; 112(1): 621-628, 2020 01.
Article in English | MEDLINE | ID: mdl-31048014

ABSTRACT

Moringa oleifera is a plant well-known for its nutrition value, drought resistance and medicinal properties. cDNA libraries from five different tissues (leaf, root, stem, seed and flower) of M. oleifera cultivar Bhagya were generated and sequenced. We developed a bioinformatics pipeline to assemble transcriptome, along with the previously published M. oleifera genome, to predict 17,148 gene models. Few candidate genes related to biosynthesis of secondary metabolites, vitamins and ion transporters were identified. Expressions were further confirmed by real-time quantitative PCR experiments for few promising leads. Quantitative estimation of metabolites, as well as elemental analysis, was also carried out to support our observations. Enzymes in the biosynthesis of vitamins and metabolites like quercetin and kaempferol are highly expressed in leaves, flowers and seeds. The expression of iron transporters and calcium storage proteins were observed in root and leaves. In general, leaves retain the highest amount of small molecules of interest.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant/physiology , Moringa oleifera , Secondary Metabolism/physiology , Transcriptome/physiology , Gene Library , Moringa oleifera/genetics , Moringa oleifera/metabolism
7.
BMC Genomics ; 20(1): 403, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31117939

ABSTRACT

The repertoire of RNA-binding proteins (RBPs) in bacteria play a crucial role in their survival, and interactions with the host machinery, but there is little information, record or characterisation in bacterial genomes. As a first step towards this, we have chosen the bacterial model system Escherichia coli, and organised all RBPs in this organism into a comprehensive database named EcRBPome. It contains RBPs recorded from 614 complete E. coli proteomes available in the RefSeq database (as of October 2018). The database provides various features related to the E. coli RBPs, like their domain architectures, PDB structures, GO and EC annotations etc. It provides the assembly, bioproject and biosample details of each strain, as well as cross-strain comparison of occurrences of various RNA-binding domains (RBDs). The percentage of RBPs, the abundance of the various RBDs harboured by each strain have been graphically represented in this database and available alongside other files for user download. To the best of our knowledge, this is the first database of its kind and we hope that it will be of great use to the biological community.


Subject(s)
Computational Biology/methods , Databases, Factual , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , RNA, Bacterial/metabolism , RNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Proteome , RNA, Bacterial/genetics , RNA-Binding Proteins/genetics
8.
Nucleic Acids Res ; 44(D1): D410-4, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26553811

ABSTRACT

Structure-based sequence alignment is an essential step in assessing and analysing the relationship of distantly related proteins. PASS2 is a database that records such alignments for protein domain superfamilies and has been constantly updated periodically. This update of the PASS2 version, named as PASS2.5, directly corresponds to the SCOPe 2.04 release. All SCOPe structural domains that share less than 40% sequence identity, as defined by the ASTRAL compendium of protein structures, are included. The current version includes 1977 superfamilies and has been assembled utilizing the structure-based sequence alignment protocol. Such an alignment is obtained initially through MATT, followed by a refinement through the COMPARER program. The JOY program has been used for structural annotations of such alignments. In this update, we have automated the protocol and focused on inclusion of new features such as mapping of GO terms, absolutely conserved residues among the domains in a superfamily and inclusion of PDBs, that are absent in SCOPe 2.04, using the HMM profiles from the alignments of the superfamily members and are provided as a separate list. We have also implemented a more user-friendly manner of data presentation and options for downloading more features. PASS2.5 version is available at http://caps.ncbs.res.in/pass2/.


Subject(s)
Databases, Protein , Protein Structure, Tertiary , Sequence Alignment , Gene Ontology , Proteins/chemistry , Proteins/classification , Proteins/genetics
9.
Zygote ; 26(1): 62-75, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29229010

ABSTRACT

Participation and relative importance of phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling, either alone or in combination, have been investigated during 17α,20ß-dihydroxy-4-pregnen-3-one (DHP)-induced meiotic G2-M1 transition in denuded zebrafish oocyte. Results demonstrate that concomitant with rapid phosphorylation (activation) of Akt (Ser473) and MAPK (ERK1/2) at as early as 15 min of incubation, DHP stimulation promotes enhanced an GVBD response and histone H1 kinase activation between 1 and 5 h in full-grown oocytes in vitro. While p-Akt reaches its peak at 60 to 90 min and undergoes downregulation to the basal level by 240 min, ERK1/2 phosphorylation (activation) increases gradually until 120 min and remains high thereafter. Although, priming with MEK1/2 inhibitor U0126 is without effect, PI3K inhibitors, wortmannin or LY294002, delay the GVBD response significantly (P < 0.001) until 3 h but not at 5 h of incubation. Interestingly, blocking PI3K and MEK function together could abrogate steroid-induced oocyte maturation at all time points tested. While DHP stimulation promotes phospho-PKA catalytic (p-PKAc) dephosphorylation (inactivation) between 30-120 min of incubation, simultaneous inhibition of PI3K and MEK1/2 kinases abrogates DHP action. Conversely, elevated intra-oocyte cAMP, through priming with either adenylyl cyclase (AC) activator forskolin (FK) or dibutyryl cAMP (db-cAMP), abrogates steroid-induced Akt and ERK1/2 phosphorylation. Taken together, these results suggest that DHP-induced Akt and ERK activation precedes the onset of meiosis (GVBD response) in a cAMP-sensitive manner and PI3K/Akt and MEK/MAPK pathways together have a pivotal influence in the downregulation of PKA and resumption of meiotic maturation in zebrafish oocytes in vitro.


Subject(s)
Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Oocytes/physiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cyclic AMP/metabolism , Enzyme Inhibitors/pharmacology , Female , G2 Phase/physiology , In Vitro Oocyte Maturation Techniques , MAP Kinase Kinase 1/metabolism , Meiosis/physiology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Pregnenes/pharmacology , Signal Transduction/drug effects , Zebrafish , Zebrafish Proteins/metabolism
10.
BMC Genomics ; 18(1): 658, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28836963

ABSTRACT

BACKGROUND: Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. RESULTS: Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. CONCLUSIONS: The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Proteomics , RNA-Binding Proteins/metabolism , Virulence Factors/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Models, Molecular , Protein Conformation , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Species Specificity , Virulence Factors/genetics
11.
BMC Bioinformatics ; 17(1): 411, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27717309

ABSTRACT

BACKGROUND: RNA-binding proteins (RBPs) interact with their cognate RNA(s) to form large biomolecular assemblies. They are versatile in their functionality and are involved in a myriad of processes inside the cell. RBPs with similar structural features and common biological functions are grouped together into families and superfamilies. It will be useful to obtain an early understanding and association of RNA-binding property of sequences of gene products. Here, we report a web server, RStrucFam, to predict the structure, type of cognate RNA(s) and function(s) of proteins, where possible, from mere sequence information. RESULTS: The web server employs Hidden Markov Model scan (hmmscan) to enable association to a back-end database of structural and sequence families. The database (HMMRBP) comprises of 437 HMMs of RBP families of known structure that have been generated using structure-based sequence alignments and 746 sequence-centric RBP family HMMs. The input protein sequence is associated with structural or sequence domain families, if structure or sequence signatures exist. In case of association of the protein with a family of known structures, output features like, multiple structure-based sequence alignment (MSSA) of the query with all others members of that family is provided. Further, cognate RNA partner(s) for that protein, Gene Ontology (GO) annotations, if any and a homology model of the protein can be obtained. The users can also browse through the database for details pertaining to each family, protein or RNA and their related information based on keyword search or RNA motif search. CONCLUSIONS: RStrucFam is a web server that exploits structurally conserved features of RBPs, derived from known family members and imprinted in mathematical profiles, to predict putative RBPs from sequence information. Proteins that fail to associate with such structure-centric families are further queried against the sequence-centric RBP family HMMs in the HMMRBP database. Further, all other essential information pertaining to an RBP, like overall function annotations, are provided. The web server can be accessed at the following link: http://caps.ncbs.res.in/rstrucfam .


Subject(s)
RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA/chemistry , RNA/genetics , Amino Acid Sequence , Humans , Protein Structure, Tertiary
12.
Nat Mater ; 14(5): 512-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25774952

ABSTRACT

Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy.

13.
Gen Comp Endocrinol ; 239: 21-31, 2016 12 01.
Article in English | MEDLINE | ID: mdl-26853486

ABSTRACT

Present study reports differential expression of the two insulin receptor (IR) subtypes in zebrafish ovary at various stages of follicular growth and potential involvement of IR in insulin-induced oocyte maturation. The results showed that mRNA expression for IR subtypes, insra and insrb, exhibited higher levels in mid-vitellogenic (MV) and full-grown (FG) rather than pre-vitellogenic (PV) oocytes. Interestingly, compared to the levels in denuded oocytes, mRNAs for both insra and insrb were expressed at much higher level in the follicle layer harvested from FG oocytes. Immunoprecipitation using IRß antibody could detect a protein band of desired size (∼95kDa) in FG oocyte lysates. Further, IRß immunoreactivity was detected in ovarian tissue sections, especially at the follicle layer and oocyte membrane of MV and FG, but not PV stage oocytes. While hCG (10IU/ml) stimulation was without effect, priming with insulin (5µM) could promote oocyte maturation of MV oocytes in a manner sensitive to de novo protein and steroid biosynthesis. Compared to hCG, in insulin pre-incubated MV oocytes, stimulation with maturation inducing steroid (MIS), 17α,20ß-dihydroxy-4-pregnen-3-one (DHP) elicited higher maturational response. Potential involvement of insulin-mediated action on acquisition of maturational competence and regulation of oocyte maturation was further manifested through up regulation of 20ß-hydroxysteroid dehydrogenase (20ß-hsd), MIS receptor (mPRα), insulin-like growth factor 3 (igf3) and IGF1 receptor (igf1rb), but not cyp19a expression in MV oocytes. Moreover, priming with anti-IRß attenuated insulin action on meiotic G2-M1 transition indicating the specificity of insulin action and physiological relevance of IR in zebrafish ovary.


Subject(s)
Insulin/pharmacology , Oogenesis/drug effects , Ovary/drug effects , Ovary/metabolism , Receptor, Insulin/genetics , Zebrafish/genetics , Animals , Female , Insulin/metabolism , Oocytes/drug effects , Oocytes/metabolism , Oogenesis/genetics , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Ovary/physiology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Insulin/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Somatomedins/metabolism , Zebrafish/physiology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
14.
Zygote ; 24(2): 181-94, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25707854

ABSTRACT

Regulation of insulin-mediated resumption of meiotic maturation in catfish oocytes was investigated. Insulin stimulation of post-vitellogenic oocytes promotes the synthesis of cyclin B, histone H1 kinase activation and a germinal vesicle breakdown (GVBD) response in a dose-dependent and duration-dependent manner. The PI3K inhibitor wortmannin abrogates recombinant human (rh)-insulin action on histone H1 kinase activation and meiotic G2-M1 transition in denuded and follicle-enclosed oocytes in vitro. While the translational inhibitor cycloheximide attenuates rh-insulin action, priming with transcriptional blocker actinomycin D prevents insulin-stimulated maturational response appreciably, albeit in low amounts. Compared with rh-insulin, human chorionic gonadotrophin (hCG) stimulation of follicle-enclosed oocytes in vitro triggers a sharp increase in 17α,20ß-dihydroxy-4-pregnen-3-one (17α,20ß-DHP) secreted in the incubation medium at 12 h. Interestingly, the insulin, but not the hCG-induced, maturational response shows less susceptibility to steroidogenesis inhibitors, trilostane or dl-aminoglutethimide. In addition, priming with phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) or cell-permeable dbcAMP or adenylyl cyclase activator forskolin reverses the action of insulin on meiotic G2-M1 transition. Conversely, the adenylyl cyclase inhibitor, SQ 22536, or PKA inhibitor H89 promotes the resumption of meiosis alone and further potentiates the GVBD response in the presence of rh-insulin. Furthermore, insulin-mediated meiotic maturation involves the down-regulation of endogenous protein kinase A (PKA) activity in a manner sensitive to PI3K activation, suggesting potential involvement of a cross-talk between cAMP/PKA and insulin-mediated signalling cascade in catfish oocytes in vitro. Taken together, these results suggest that rh-insulin regulation of the maturational response in C. batrachus oocytes involves down-regulation of PKA, synthesis of cyclin B, and histone H1 kinase activation and demonstrates reduced sensitivity to steroidogenesis and transcriptional inhibition.


Subject(s)
Cell Cycle/drug effects , Insulin/pharmacology , Meiosis/drug effects , Oocytes/drug effects , Animals , Catfishes , Cells, Cultured , Chorionic Gonadotropin/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin B/metabolism , Cycloheximide/pharmacology , Dactinomycin/pharmacology , Dose-Response Relationship, Drug , Female , Hydroxyprogesterones/metabolism , Immunoblotting , Insulin/genetics , Oocytes/cytology , Oocytes/physiology , Ovarian Follicle/cytology , Protein Kinases/metabolism , Protein Synthesis Inhibitors/pharmacology , Recombinant Proteins/pharmacology , Time Factors
15.
BMC Plant Biol ; 15: 212, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26315624

ABSTRACT

BACKGROUND: Krishna Tulsi, a member of Lamiaceae family, is a herb well known for its spiritual, religious and medicinal importance in India. The common name of this plant is 'Tulsi' (or 'Tulasi' or 'Thulasi') and is considered sacred by Hindus. We present the draft genome of Ocimum tenuiflurum L (subtype Krishna Tulsi) in this report. The paired-end and mate-pair sequence libraries were generated for the whole genome sequenced with the Illumina Hiseq 1000, resulting in an assembled genome of 374 Mb, with a genome coverage of 61 % (612 Mb estimated genome size). We have also studied transcriptomes (RNA-Seq) of two subtypes of O. tenuiflorum, Krishna and Rama Tulsi and report the relative expression of genes in both the varieties. RESULTS: The pathways leading to the production of medicinally-important specialized metabolites have been studied in detail, in relation to similar pathways in Arabidopsis thaliana and other plants. Expression levels of anthocyanin biosynthesis-related genes in leaf samples of Krishna Tulsi were observed to be relatively high, explaining the purple colouration of Krishna Tulsi leaves. The expression of six important genes identified from genome data were validated by performing q-RT-PCR in different tissues of five different species, which shows the high extent of urosolic acid-producing genes in young leaves of the Rama subtype. In addition, the presence of eugenol and ursolic acid, implied as potential drugs in the cure of many diseases including cancer was confirmed using mass spectrometry. CONCLUSIONS: The availability of the whole genome of O.tenuiflorum and our sequence analysis suggests that small amino acid changes at the functional sites of genes involved in metabolite synthesis pathways confer special medicinal properties to this herb.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Ocimum/genetics , India , Ocimum/metabolism , Plant Leaves/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism
16.
Chem Sci ; 15(7): 2300-2322, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362412

ABSTRACT

Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.

17.
J Neuroimmunol ; 388: 578294, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38306927

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) can cause HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Current treatment options for HAM/TSP are limited. We present a woman with rapidly-progressive HAM/TSP with significant, sustained clinical improvement following initiation of mycophenolate mofetil (MMA). Peripheral blood mononuclear cells from the patient, her asymptomatic carrier husband and eight healthy controls were isolated. Frequencies of T-cell populations upon exposure to low and high MMA concentrations and differences in proliferation were analyzed using flow cytometry and a CSFE-proliferation assay. Characterization of T-cell function and proliferation showed higher levels of GranzymeB in HTLV-1+ donors. The improvement and stability of symptoms in this patient with HAM/TSP following MMA initiation requires further study as a potential treatment for HAM/TSP.


Subject(s)
Human T-lymphotropic virus 1 , Paraparesis, Tropical Spastic , Humans , Female , Human T-lymphotropic virus 1/physiology , Mycophenolic Acid/therapeutic use , Leukocytes, Mononuclear , Paraparesis, Tropical Spastic/drug therapy , Paraparesis, Tropical Spastic/diagnosis
18.
J Am Chem Soc ; 135(45): 16801-4, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24175709

ABSTRACT

A new functionalization technique, solvent-assisted ligand incorporation (SALI), was developed to efficiently incorporate carboxylate-based functionalities in the Zr-based metal-organic framework, NU-1000. Unlike previous metal node functionalization strategies, which utilize dative bonding to coordinatively unsaturated metal sites, SALI introduces functional groups as charge compensating and strongly bound moieties to the Zr6 node. Utilizing SALI, we have efficiently attached perfluoroalkane carboxylates of various chain lengths (C1-C9) on the Zr6 nodes of NU-1000. These fluoroalkane-functionalized mesoporous MOFs, termed herein SALI-n, were studied experimentally and theoretically as potential CO2 capture materials.

19.
Cureus ; 15(8): e43271, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37692629

ABSTRACT

Artificial intelligence (AI) is anticipated to have a considerable impact on the routine practice of medicine, spanning from medical education to clinical practice across specialties and, ultimately, patient care. With the imminent widespread adoption of AI in medical practice, it is imperative that medical schools adapt to the use of these advanced technologies in their curriculum to produce future healthcare professionals who can seamlessly integrate these tools into practice. Chatbots, AI systems programmed to process and generate human language, are currently being evaluated for various tasks in medical education. This paper explores the potential applications and implications of chatbots in medical education, specifically in learning and research. With their capability to summarize, simplify complex concepts, automate the creation of memory aids, and serve as an interactive tutor and point-of-care medical reference, chatbots have the potential to enhance students' comprehension, retention, and application of medical knowledge in real-time. While the integration of AI-powered chatbots in medical education presents numerous advantages, it is crucial for students to use these tools as assistive tools rather than relying on them entirely. Chatbots should be programmed to reference evidence-based medical resources and produce precise and trustworthy content that adheres to medical science standards, scientific writing guidelines, and ethical considerations.

20.
Nat Commun ; 14(1): 6050, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770425

ABSTRACT

Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.


Subject(s)
Amides , Thioamides , Rats , Animals , Amides/chemistry , Thioamides/chemistry , Biological Availability , Peptides , Permeability , Amino Acids , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL