Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
Add more filters

Publication year range
1.
Clin Genet ; 105(3): 335-339, 2024 03.
Article in English | MEDLINE | ID: mdl-38041579

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease, although 10%-30% of cases are sporadic. However, this percentage may include truly de novo patients (carrying a reduced D4Z4 allele that is not present in either of the parents) and patients with apparently sporadic disease resulting from mosaicism, non-penetrance, or complex genetic situations in either patients or parents. In this study, we characterized the D4Z4 Reduced Alleles (DRA) and evaluated the frequency of truly de novo cases in FSHD1 in a cohort of DNA samples received consecutively for FSHD-diagnostic from 100 Italian families. The D4Z4 testing revealed that 60 families reported a DRA compatible with FSHD1 (1-10 RU). The DRA co-segregated with the disease in most cases. Five families with truly de novo cases were identified, suggesting that this condition may be slightly lower (8%) than previously reported. In addition, D4Z4 characterization in the investigated families showed 4% of mosaic cases and 2% with translocations. This study further highlighted the importance of performing family studies for clarifying apparently sporadic FSHD cases, with significant implications for genetic counseling, diagnosis, clinical management, and procreative choices for patients and families.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/genetics , Alleles , Mosaicism , Italy/epidemiology , Chromosomes, Human, Pair 4/genetics
2.
Clin Genet ; 106(1): 13-26, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685133

ABSTRACT

The gold standard for facioscapulohumeral muscular dystrophy (FSHD) genetic diagnostic procedures was published in 2012. With the increasing complexity of the genetics of FSHD1 and 2, the increase of genetic testing centers, and the start of clinical trials for FSHD, it is crucial to provide an update on our knowledge of the genetic features of the FSHD loci and renew the international consensus on the molecular testing recommendations. To this end, members of the FSHD European Trial Network summarized the evidence presented during the 2022 ENMC meeting on Genetic diagnosis, clinical outcome measures, and biomarkers. The working group additionally invited genetic and clinical experts from the USA, India, Japan, Australia, South-Africa, and Brazil to provide a global perspective. Six virtual meetings were organized to reach consensus on the minimal requirements for genetic confirmation of FSHD1 and FSHD2. Here, we present the clinical and genetic features of FSHD, specific features of FSHD1 and FSHD2, pros and cons of established and new technologies (Southern blot in combination with either linear or pulsed-field gel electrophoresis, molecular combing, optical genome mapping, FSHD2 methylation analysis and FSHD2 genotyping), the possibilities and challenges of prenatal testing, including pre-implantation genetic testing, and the minimal requirements and recommendations for genetic confirmation of FSHD1 and FSHD2. This consensus is expected to contribute to current clinical management and trial-readiness for FSHD.


Subject(s)
Genetic Testing , Muscular Dystrophy, Facioscapulohumeral , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Humans , Genetic Testing/standards , Genetic Testing/methods , Practice Guidelines as Topic
3.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791290

ABSTRACT

MiR-142-3p has recently emerged as key factor in tailoring personalized treatments for multiple sclerosis (MS), a chronic autoimmune demyelinating disease of the central nervous system (CNS) with heterogeneous pathophysiology and an unpredictable course. With its involvement in a detrimental regulatory axis with interleukin-1beta (IL1ß), miR-142-3p orchestrates excitotoxic synaptic alterations that significantly impact both MS progression and therapeutic outcomes. In this study, we investigated for the first time the influence of individual genetic variability on the miR-142-3p excitotoxic effect in MS. We specifically focused on the single-nucleotide polymorphism Val66Met (rs6265) of the brain-derived neurotrophic factor (BDNF) gene, known for its crucial role in CNS functioning. We assessed the levels of miR-142-3p and IL1ß in cerebrospinal fluid (CSF) obtained from a cohort of 114 patients with MS upon diagnosis. By stratifying patients according to their genetic background, statistical correlations with clinical parameters were performed. Notably, in Met-carrier patients, we observed a decoupling of miR-142-3p levels from IL1ß levels in the CSF, as well as from of disease severity (Expanded Disability Status Score, EDSS; Multiple Sclerosis Severity Score, MSSS; Age-Related Multiple Sclerosis Severity Score, ARMSS) and progression (Progression Index, PI). Our discovery of the interference between BDNF Val66Met polymorphism and the synaptotoxic IL1ß-miR-142-3p axis, therefore hampering miR-142-3p action on MS course, provides valuable insights for further development of personalized medicine in the field.


Subject(s)
Brain-Derived Neurotrophic Factor , Interleukin-1beta , MicroRNAs , Multiple Sclerosis , Polymorphism, Single Nucleotide , Humans , Brain-Derived Neurotrophic Factor/genetics , MicroRNAs/genetics , Female , Male , Adult , Multiple Sclerosis/genetics , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/pathology , Middle Aged , Interleukin-1beta/genetics , Interleukin-1beta/cerebrospinal fluid , Severity of Illness Index , Genetic Predisposition to Disease
4.
Electrophoresis ; 44(19-20): 1588-1594, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37565369

ABSTRACT

The alteration of epigenetic modifications, including DNA methylation, can contribute to the etiopathogenesis and progression of many diseases. Among them, facioscapulohumeral dystrophy (FSHD) is a muscular disorder characterized by the loss of repressive epigenetic features affecting the D4Z4 locus (4q35). As a consequence, these alterations are responsible for DNA hypomethylation and a transcriptional-active chromatin conformation change that, in turn, lead to the aberrant expression of DUX4 in muscle cells. In the present study, methylation levels of 29 CpG sites of the DR1 region (within each repeat unit of the D4Z4 macrosatellite) were assessed on 335 subjects by employing primers designed for enhancing the performance of the assay. First, the DR1 original primers were optimized by adding M13 oligonucleotide tails. Moreover, the DR1 reverse primer was replaced with a degenerate one. As a result, the protocol optimization allowed a better sequencing resolution and a more accurate evaluation of DR1 methylation levels. Moreover, the assessment of the repeatability of measurements proved the reliability and robustness of the assay. The optimized protocol emerges as an excellent method to detect methylation levels compatible with FSHD.

5.
Mov Disord ; 38(12): 2241-2248, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37750340

ABSTRACT

BACKGROUND AND OBJECTIVE: Early-onset Parkinson's disease (EOPD) commonly recognizes a genetic basis; thus, patients with EOPD are often addressed to diagnostic testing based on next-generation sequencing (NGS) of PD-associated multigene panels. However, NGS interpretation can be challenging in a diagnostic setting, and few studies have addressed this issue so far. METHODS: We retrospectively collected data from 648 patients with PD with age at onset younger than 55 years who underwent NGS of a minimal shared panel of 15 PD-related genes, as well as PD-multiplex ligation-dependent probe amplification in eight Italian diagnostic laboratories. Data included a minimal clinical dataset, the complete list of variants included in the diagnostic report, and final interpretation (positive/negative/inconclusive). Patients were further stratified based on age at onset ≤40 years (very EOPD, n = 157). All variants were reclassified according to the latest American College of Medical Genetics and Genomics criteria. For classification purposes, PD-associated GBA1 variants were considered diagnostic. RESULTS: In 186 of 648 (29%) patients, the diagnostic report listed at least one variant, and the outcome was considered diagnostic (positive) in 105 (16%). After reanalysis, diagnosis changed in 18 of 186 (10%) patients, with 5 shifting from inconclusive to positive and 13 former positive being reclassified as inconclusive. A definite diagnosis was eventually reached in 97 (15%) patients, of whom the majority carried GBA1 variants or, less frequently, biallelic PRKN variants. In 89 (14%) cases, the genetic report was inconclusive. CONCLUSIONS: This study attempts to harmonize reporting of PD genetic testing across several diagnostic labs and highlights current difficulties in interpreting genetic variants emerging from NGS-multigene panels, with relevant implications for counseling. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Middle Aged , Adult , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Retrospective Studies , Mutation , Genetic Testing , Age of Onset
7.
J Assist Reprod Genet ; 39(11): 2581-2593, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36370240

ABSTRACT

PURPOSE: Carrier screening (CS) is a term used to describe a genetic test performed on individuals without family history of genetic disorders, to investigate the carrier status for pathogenic variants associated with multiple recessive conditions. The advent of next-generation sequencing enabled simultaneous CS for an increasing number of conditions; however, a consensus on which diseases to include in gene panels and how to best develop the provision of CS is far to be reached. Therefore, the provision of CS is jeopardized and inconsistent and requires solving several important issues. METHODS: In 2020, the Italian Society of Human Genetics (SIGU) established a working group composed of clinical and laboratory geneticists from public and private fields to elaborate a document to define indications and best practice of CS provision for couples planning a pregnancy. RESULTS: Hereby, we present the outcome of the Italian working group's activity and compare it with previously published international recommendations (American College of Medical Genetics and Genomics (ACMG), American College of Obstetricians and Gynecologists (ACOG), and Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG)). We determine a core message on genetic counseling and nine main subject categories to explore, spanning from goals and execution to technical scientific, ethical, and socio-economic topics. Moreover, a level of agreement on the most critical points is discussed using a 5-point agreement scale, demonstrating a high level of consensus among the four societies. CONCLUSIONS: This document is intended to provide genetic and healthcare professionals involved in human reproduction with guidance regarding the clinical implementation of CS.


Subject(s)
Genetic Counseling , Genetic Testing , Pregnancy , Female , Humans , Australia , Health Personnel , Reproduction
8.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269707

ABSTRACT

Precision medicine emphasizes fine-grained diagnostics, taking individual variability into account to enhance treatment effectiveness. Parkinson's disease (PD) heterogeneity among individuals proves the existence of disease subtypes, so subgrouping patients is vital for better understanding disease mechanisms and designing precise treatment. The purpose of this study was to identify PD subtypes using RNA-Seq data in a combined pipeline including unsupervised machine learning, bioinformatics, and network analysis. Two hundred and ten post mortem brain RNA-Seq samples from PD (n = 115) and normal controls (NCs, n = 95) were obtained with systematic data retrieval following PRISMA statements and a fully data-driven clustering pipeline was performed to identify PD subtypes. Bioinformatics and network analyses were performed to characterize the disease mechanisms of the identified PD subtypes and to identify target genes for drug repurposing. Two PD clusters were identified and 42 DEGs were found (p adjusted ≤ 0.01). PD clusters had significantly different gene network structures (p < 0.0001) and phenotype-specific disease mechanisms, highlighting the differential involvement of the Wnt/ß-catenin pathway regulating adult neurogenesis. NEUROD1 was identified as a key regulator of gene networks and ISX9 and PD98059 were identified as NEUROD1-interacting compounds with disease-modifying potential, reducing the effects of dopaminergic neurodegeneration. This hybrid data analysis approach could enable precision medicine applications by providing insights for the identification and characterization of pathological subtypes. This workflow has proven useful on PD brain RNA-Seq, but its application to other neurodegenerative diseases is encouraged.


Subject(s)
Parkinson Disease , Brain/metabolism , Gene Regulatory Networks , Humans , Machine Learning , Parkinson Disease/metabolism , RNA-Seq
9.
Hum Mol Genet ; 28(23): 3912-3920, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31600781

ABSTRACT

In this study, we investigated the sequence of (Structural Maintenance of Chromosomes flexible Hinge Domain containing 1) SMCHD1 gene in a cohort of clinically defined FSHD (facioscapulohumeral muscular dystrophy) patients in order to assess the distribution of SMCHD1 variants, considering the D4Z4 fragment size in terms of repeated units (RUs; short fragment: 1-7 RU, borderline: 8-10RU and normal fragment: >11RU). The analysis of SMCHD1 revealed the presence of 82 variants scattered throughout the introns, exons and 3'untranslated region (3'UTR) of the gene. Among them, 64 were classified as benign polymorphisms and 6 as VUS (variants of uncertain significance). Interestingly, seven pathogenic/likely pathogenic variants were identified in patients carrying a borderline or normal D4Z4 fragment size, namely c.182_183dupGT (p.Q62Vfs*48), c.2129dupC (p.A711Cfs*11), c.3469G>T (p.G1157*), c.5150_5151delAA (p.K1717Rfs*16) and c.1131+2_1131+5delTAAG, c.3010A>T (p.K1004*), c.853G>C (p.G285R). All of them were predicted to disrupt the structure and conformation of SMCHD1, resulting in the loss of GHKL-ATPase and SMC hinge essential domains. These results are consistent with the FSHD symptomatology and the Clinical Severity Score (CSS) of patients. In addition, five variants (c.*1376A>C, rs7238459; c.*1579G>A, rs559994; c.*1397A>G, rs150573037; c.*1631C>T, rs193227855; c.*1889G>C, rs149259359) were identified in the 3'UTR region of SMCHD1, suggesting a possible miRNA-dependent regulatory effect on FSHD-related pathways. The present study highlights the clinical utility of next-generation sequencing (NGS) platforms for the molecular diagnosis of FSHD and the importance of integrating molecular findings and clinical data in order to improve the accuracy of genotype-phenotype correlations.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , High-Throughput Nucleotide Sequencing/methods , Muscular Dystrophy, Facioscapulohumeral/genetics , Mutation , 3' Untranslated Regions , Adult , Aged , Chromosomal Proteins, Non-Histone/chemistry , Exons , Female , Humans , Introns , Italy , Male , Middle Aged , Phenotype , Sequence Analysis, DNA
10.
J Cell Mol Med ; 24(23): 13554-13563, 2020 12.
Article in English | MEDLINE | ID: mdl-33128843

ABSTRACT

Psoriasis and psoriatic arthritis are multifactorial chronic disorders whose etiopathogenesis essentially derives from the alteration of several signalling pathways and the co-occurrence of genetic, epigenetic and non-genetic susceptibility factors that altogether affect the functional and structural property of the skin. Although shared and differential susceptibility genes and molecular pathways are known to contribute to the onset of pathological phenotypes, further research is needed to dissect the molecular causes of psoriatic disease and its progression towards Psoriatic Arthritis. This review will therefore be addressed to explore differences and similarities in the etiopathogenesis and progression of both disorders, with a particular focus on genes involved in the maintenance of the skin structure and integrity (keratins and collagens), modulation of patterns of recognition (through Toll-like receptors and dectin-1) and immuno-inflammatory response (by NLRP3-dependent inflammasome) to microbial pathogens. In addition, special emphasis will be given to the contribution of epigenetic elements (methylation pattern, non-coding RNAs, chromatin modifiers and 3D genome organization) to the etiopathogenesis and progression of psoriasis and psoriatic arthritis. The evidence discussed in this review highlights how the knowledge of patients' clinical and (epi)genomic make-up could be helpful for improving the available therapeutic strategies for psoriasis and psoriatic arthritis treatment.


Subject(s)
Arthritis, Psoriatic/diagnosis , Arthritis, Psoriatic/etiology , Disease Susceptibility , Phenotype , Psoriasis/diagnosis , Psoriasis/etiology , Collagen/genetics , Collagen/metabolism , Epigenesis, Genetic , Epigenomics/methods , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Skin/metabolism , Skin/pathology , Transcriptome
11.
BMC Neurol ; 20(1): 258, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600288

ABSTRACT

BACKGROUND: Leukodystrophies are familial heterogeneous disorders primarily affecting the white matter, which are defined as hypomyelinating or demyelinating based on disease severity as assessed at MRI. Recently, a group of clinically overlapping hypomyelinating leukodystrophies (HL) has been associated with mutations in RNA polymerase III enzymes (Pol III) subunits. CASE PRESENTATION: In this manuscript, we describe two Italian siblings carrying a novel POLR3A genotype. MRI imaging, genetic analysis, and clinical data led to diagnosing HL type 7. The female sibling, at the age of 34, is tetra-paretic and suffers from severe cognitive regression. She had a disease onset at the age of 19, characterized by slow and progressive cognitive impairment associated with gait disturbances and amenorrhea. The male sibling was diagnosed during an MRI carried out for cephalalgia at the age of 41. After 5 years, he developed mild cognitive impairment, dystonia with 4-limb hypotonia, and moderate dysmetria with balance and gait impairment. CONCLUSIONS: The present study provides the first evidence of unusually late age of onset in HL, describing two siblings with a novel POLR3A genotype which showed the first symptoms at the age of 41 and 19, respectively. This provides a powerful insight into clinical heterogeneity and genotype-phenotype correlation in POLR3A related HL.


Subject(s)
Hereditary Central Nervous System Demyelinating Diseases/genetics , RNA Polymerase III/genetics , Adult , Age of Onset , Brain/pathology , Female , Genotype , Hereditary Central Nervous System Demyelinating Diseases/pathology , Humans , Magnetic Resonance Imaging , Male , Mutation , Siblings , White Matter/pathology
12.
Int J Mol Sci ; 21(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326527

ABSTRACT

Psoriasis (Ps) and Psoriatic Arthritis (PsA) are characterized by a multifactorial etiology, involving genetic and environmental factors. The present study aimed to investigate polymorphisms (SNPs) within genes involved in extracellular matrix and cell homeostasis and microRNA genes as susceptibility biomarkers for Ps and PsA. Bioinformatic analysis on public RNA-seq data allowed for selection of rs12488457 (A/C, COL6A5), rs13081855 (G/T, COL8A1), rs3812111 (A/T, COL10A1) and rs2910164 (C/G, MIR146A) as candidate biomarkers. These polymorphisms were analyzed by Real-Time PCR in a cohort of 1417 Italian patients (393 Ps, 424 PsA, 600 controls). Statistical and bioinformatic tools were utilized for assessing the genetic association and predicting the effects of the selected SNPs. rs12488457, rs13081855 and rs2910164 were significantly associated with both Ps (p = 1.39 × 10-8, p = 4.52 × 10-4, p = 0.04, respectively) and PsA (p = 5.12 × 10-5, p = 1.19 × 10-6, p = 0.01, respectively). rs3812111, instead, was associated only with PsA (p = 0.005). Bioinformatic analysis revealed common and differential biological pathways involved in Ps and PsA. COL6A5 and COL8A1 take part in the proliferation and angiogenic pathways which are altered in Ps/PsA and contribute to inflammation together with MIR146A. On the other hand, the exclusive association of COL10A1 with PsA highlighted the specific involvement of bone metabolism in PsA.


Subject(s)
Collagen Type VIII/metabolism , Collagen Type VI/metabolism , Collagen Type X/metabolism , Genetic Predisposition to Disease/genetics , MicroRNAs/metabolism , Psoriasis/metabolism , Adult , Aged , Arthritis, Psoriatic/genetics , Arthritis, Psoriatic/metabolism , Biomarkers/blood , Cohort Studies , Collagen Type VI/genetics , Collagen Type VIII/genetics , Collagen Type X/genetics , Databases, Genetic , Female , Genotype , Humans , Italy , Male , MicroRNAs/genetics , Middle Aged , Polymorphism, Single Nucleotide , Psoriasis/genetics , RNA-Seq
13.
Neurogenetics ; 20(2): 57-64, 2019 05.
Article in English | MEDLINE | ID: mdl-30911870

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is a genetic neuromuscular disorder which mainly affects the muscles of the face, shoulder, and upper arms. FSHD is generally associated with the contraction of D4Z4 macrosatellite repeats on 4q35 chromosome or mutations in SMCHD1, which are responsible of the toxic expression of DUX4 in muscle tissue. Despite the recent application of NGS techniques in the clinical practice, the molecular diagnosis of FSHD is still performed with dated techniques such as Southern blotting. The diagnosis of FSHD requires therefore specific skills on both modern and less modern analytical protocols. Considering that clinical and molecular diagnosis of FSHD is challenging, it is not surprising that only few laboratories offer a comprehensive characterization of FSHD, which requires the education of professionals on traditional techniques even in the era of NGS. In conclusion, the study of FSHD provides an excellent example of using classical and modern molecular technologies which are equally necessary for the analysis of DNA repetitive traits associated with specific disorders.


Subject(s)
DNA Methylation , Muscles/metabolism , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/genetics , Alleles , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Human, Pair 4 , Genetic Counseling , Genetic Testing , High-Throughput Nucleotide Sequencing , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mutation , Phenotype , Prognosis , Repetitive Sequences, Nucleic Acid
14.
Headache ; 59(2): 253-258, 2019 02.
Article in English | MEDLINE | ID: mdl-30620050

ABSTRACT

Genetic mutations of sporadic hemiplegic migraine (SHM) are mostly unknown. SHM pathophysiology relies on cortical spreading depression (CSD), which might be responsible for ischemic brain infarction. Cystic fibrosis (CF) is caused by a monogenic mutation of the chlorine transmembrane conductance regulator (CFTR), possibly altering brain excitability. We describe the case of a patient with CF, who had a migrainous stroke during an SHM attack. A 32-year-old Caucasian male was diagnosed with CF, with heterozygotic delta F508/unknown CFTR mutation. The patient experiences bouts of coughing sometimes triggering SHM attacks with visual phosphenes, aphasia, right-sided paresthesia, and hemiparesis. He had a 48-hour hemiparesis triggered by a bout of coughing with hemoptysis, loss of consciousness, and severe hypoxia-hypercapnia. MRI demonstrated transient diffusion hyperintensity in the left frontal-parietal-occipital regions resulting in a permanent infarction in the primary motor area. Later, a brain perfusion SPECT showed persistent diffuse hypoperfusion in the territories involved in diffusion-weighted imaging alteration. Migrainous infarction, depending on the co-occurrence of 2 strictly related phenomena, CSD and hypoxia, appears to be the most plausible explanation. Brain SPECT hypoperfusion suggests a more extensive permanent neuronal loss in territories affected by aura. CF may be then a risk factor for hemiplegic migraine and stroke since bouts of coughing can facilitate brain hypoxia, triggering auras.


Subject(s)
Brain Infarction/diagnostic imaging , Brain/diagnostic imaging , Cystic Fibrosis/diagnostic imaging , Hemiplegia/diagnostic imaging , Migraine Disorders/diagnostic imaging , Adult , Brain Infarction/complications , Cystic Fibrosis/complications , Hemiplegia/complications , Humans , Male , Migraine Disorders/complications , Tomography, Emission-Computed, Single-Photon
15.
Int J Mol Sci ; 20(7)2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30934838

ABSTRACT

The complex interplay among genetic, epigenetic, and environmental variables is the basis for the multifactorial origin of age-related macular degeneration (AMD). Previous results highlighted that single nucleotide polymorphisms (SNPs) of CFH, ARMS2, IL-8, TIMP3, SLC16A8, RAD51B, VEGFA, and COL8A1 were significantly associated with the risk of AMD in the Italian population. Given these data, this study aimed to investigate the impact of SNPs in genes coding for MIR146A, MIR31, MIR23A, MIR27A, MIR20A, and MIR150 on their susceptibility to AMD. Nine-hundred and seventy-six patients with exudative AMD and 1000 controls were subjected to an epigenotyping analysis through real-time PCR and direct sequencing. Biostatistical and bioinformatic analysis was performed to evaluate the association with susceptibility to AMD. These analyses reported that the SNPs rs11671784 (MIR27A, G/A) and rs2910164 (MIR146A, C/G) were significantly associated with AMD risk. Interestingly, the bioinformatic analysis showed that MIR27A and MIR146A take part in the angiogenic and inflammatory pathways underlying AMD etiopathogenesis. Thus, polymorphisms within the pre-miRNA sequences are likely to affect their functional activity, especially the interaction with specific targets. Therefore, our study represents a step forward in the comprehension of the mechanisms leading to AMD onset and progression, which certainly include the involvement of epigenetic modifications.


Subject(s)
Genetic Predisposition to Disease , Macular Degeneration/genetics , MicroRNAs/genetics , Aged , Alleles , Female , Humans , Male , MicroRNAs/chemistry , MicroRNAs/metabolism , Nucleic Acid Conformation , Polymorphism, Single Nucleotide/genetics , Risk Factors
16.
Mol Genet Metab ; 123(1): 43-49, 2018 01.
Article in English | MEDLINE | ID: mdl-29198592

ABSTRACT

Tangier disease is an autosomal recessive disorder caused by mutations in the ABCA1 gene and characterized by the accumulation of cholesteryl ester in various tissues and a near absence of high-density lipoprotein. The subject in this investigation was a 36-year-old Italian man with Tangier disease. He and his wife had come to the In Vitro Fertilization Unit, Pesaro Hospital (Azienda Ospedaliera Ospedali Riuniti Marche Nord) seeking help regarding fertility issues. The man was diagnosed with severe oligoasthenoteratozoospermia. Testosterone is the sex hormone necessary for spermatogenesis and cholesterol is its precursor; hence, we hypothesized that the characteristic cholesterol deficiency in Tangier disease patients could compromise their fertility. The aim of the study was to therefore to determine if there is an association between Tangier disease and male infertility. After excluding viral, infectious, genetic and anatomical causes of the subject's oligoasthenoteratozoospermia, we performed a hormonal analysis to verify our hypothesis. The patient was found to be negative for frequent bacteria and viruses. The subject showed a normal male karyotype and tested negative for Yq microdeletions and Cystic Fibrosis Transmembrane Conductance Regulator gene mutations. A complete urological examination was performed, and primary hypogonadism was also excluded. Conversely, hormonal analyses showed that the subject had a high level of follicle stimulating hormone and luteinizing hormone, low total testosterone and a significant decline in inhibin B. We believe that the abnormally low cholesterol levels typically found in subjects with Tangier disease may result in a reduced testosterone production which in turn could affect the hormonal axis responsible for spermatogenesis leading to a defective maturation of spermatozoa.


Subject(s)
Cholesterol/genetics , Infertility, Male/genetics , Tangier Disease/genetics , Testosterone/biosynthesis , ATP Binding Cassette Transporter 1/genetics , Adult , Cholesterol/deficiency , Cholesterol Esters/genetics , Cholesterol Esters/metabolism , Humans , Infertility, Male/complications , Infertility, Male/physiopathology , Male , Mutation , Oligospermia/complications , Oligospermia/genetics , Oligospermia/physiopathology , Spermatogenesis/genetics , Tangier Disease/complications , Tangier Disease/physiopathology
17.
Prenat Diagn ; 38(13): 1096-1102, 2018 12.
Article in English | MEDLINE | ID: mdl-30303263

ABSTRACT

OBJECTIVE: The Duchenne/Becker muscular dystrophy (DMD) carrier screening includes the evaluation of mutations in DMD gene, and the most widely used analysis is the multiplex ligation-dependent probe amplification (MLPA) for the DMD deletions/duplications detection. The high frequency of de novo mutations permits to estimate a risk up to 20% of mosaicisms for mothers of sporadic DMD children. The purpose of this study is to evaluate alternative analytical strategy for the detection of mosaics carrier women, in order to improve the recurrence risk estimation. METHOD: Different DNA and RNA analyses were conducted on samples from a woman that conceived a DMD fetus without previous family history of dystrophynopathy. RESULTS: Standard MLPA analysis failed to identify mosaicism, even if MLPA doses suggested it. Electrophoresis and direct sequencing conducted on RNA permitted to detect two different amplicons of cDNAs, demonstrating the presence of somatic mosaicism. Subsequent detection of a second affected fetus confirmed the mosaic status on the mother. CONCLUSION: The implementation of RNA analysis in diagnostic algorithm can increase the sensitivity of carrier test for mothers of sporadic affected patients, permitting detection of mosaic status. A revision of analytical guidelines is needed in order to improve the recurrence risk estimation and support prenatal genetic counseling.


Subject(s)
DNA, Complementary/analysis , DNA/analysis , Dystrophin/genetics , Genetic Carrier Screening/methods , Mosaicism , Muscular Dystrophy, Duchenne/genetics , RNA/analysis , Abortion, Induced , Adult , Chorionic Villi Sampling , Electrophoresis/methods , Female , Humans , Multiplex Polymerase Chain Reaction , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA/methods
18.
Hum Genomics ; 10: 9, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27044517

ABSTRACT

BACKGROUND: The knowledge of the individual genetic "status" in the prenatal era is particularly relevant in the case of positive family history for genetic diseases, in advanced maternal age and in the general screening for foetal abnormalities. In this context, here, we report an innovative molecular assay which utilizes the cell-free foetal DNA (cffDNA) as a source for the early and fast detection of the foetal sex. The study involved 132 pregnant women in their first 3 months of pregnancy, who agreed to give a blood sample. All the collected samples were immediately subjected to the separation of the plasma, which was utilized for the extraction of the cffDNA. Successively, the extracted cffDNA was analysed by a quantitative PCR (qPCR) method based on Plexor-HY chemistry, which is able to simultaneously identify, quantify and discriminate the autosomal DNA from the sex-linked DNA. RESULTS: Overall, the Plexor-HY assay demonstrated to be sensitive and specific for the determination of low-template DNA, such as the cffDNA. In fact, the Plexor-HY assay has been successfully performed in all the samples, identifying 70 males and 62 females. As the foetal sex can be provided in 120 min just by utilizing a maternal blood sample as cffDNA source, the assay represents a very fast, safe and non-invasive prenatal method. CONCLUSIONS: The possibility of determining the foetal sex in the early prenatal life consents the application of our assay as a helpful screening test for subjects and families at risk of sex-linked disorders. Moreover, the early knowledge of the foetal sex may be of great help even for the specialist, who might promptly advise the patients concerning the foetal risk of inheriting sex-linked disorders and the clinical utility of performing an invasive prenatal diagnosis.


Subject(s)
DNA/genetics , Prenatal Diagnosis/methods , Sex Determination Analysis/methods , Sex Determination Processes , Adult , Female , Fetus , Genes, sry/genetics , Humans , Male , Pregnancy
19.
Exp Cell Res ; 342(1): 39-51, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26905645

ABSTRACT

Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro.


Subject(s)
Myoblasts/physiology , Myotonic Dystrophy/pathology , Alternative Splicing , Cell Differentiation , Cells, Cultured , Humans , Muscle Fibers, Skeletal/physiology , Primary Cell Culture , Sarcomeres/metabolism , Trinucleotide Repeat Expansion
20.
Arch Ital Biol ; 155(4): 110-117, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29405028

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disease clinically characterized by upper and lower motor neuron dysfunction resulting in rapidly progressive paralysis and death from respiratory failure. Most cases appear to be sporadic, but 5-10 % of cases have a family history of the disease, and over the last decade, identification of mutations in about 20 genes predisposing to these disorders has provided the means to better understand their pathogenesis. Next Generation sequencing (NGS) is an advanced high-throughput DNA sequencing technology which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic neurological and neurodegenerative diseases. These strategies allowed to rapidly identify disease-associated variants and genetic risk factors for both familial (fALS) and sporadic ALS (sALS), strongly contributing to the knowledge of the genetic architecture of ALS. Moreover, as the number of ALS genes grows, many of the proteins they encode are in intracellular processes shared with other known diseases, suggesting an overlapping of clinical and phatological features between different diseases. To emphasize this concept, the review focuses on genes coding for Valosin-containing protein (VPC) and two Heterogeneous nuclear RNA-binding proteins (HNRNPA1 and hnRNPA2B1), recently idefied through NGS, where different mutations have been associated in both ALS and other neurological and neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , High-Throughput Nucleotide Sequencing/methods , Genotype , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL