Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(18): 3968-3982.e15, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37586362

ABSTRACT

Ductal carcinoma in situ (DCIS) is a common precursor of invasive breast cancer. Our understanding of its genomic progression to recurrent disease remains poor, partly due to challenges associated with the genomic profiling of formalin-fixed paraffin-embedded (FFPE) materials. Here, we developed Arc-well, a high-throughput single-cell DNA-sequencing method that is compatible with FFPE materials. We validated our method by profiling 40,330 single cells from cell lines, a frozen tissue, and 27 FFPE samples from breast, lung, and prostate tumors stored for 3-31 years. Analysis of 10 patients with matched DCIS and cancers that recurred 2-16 years later show that many primary DCIS had already undergone whole-genome doubling and clonal diversification and that they shared genomic lineages with persistent subclones in the recurrences. Evolutionary analysis suggests that most DCIS cases in our cohort underwent an evolutionary bottleneck, and further identified chromosome aberrations in the persistent subclones that were associated with recurrence.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Female , Humans , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Disease Progression , Genomics/methods , Single-Cell Gene Expression Analysis , Cell Line, Tumor
2.
Genes Dev ; 36(9-10): 582-600, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35654454

ABSTRACT

One of the mechanisms by which cancer cells acquire hyperinvasive and migratory properties with progressive loss of epithelial markers is the epithelial-to-mesenchymal transition (EMT). We have previously reported that in different cancer types, including nonsmall cell lung cancer (NSCLC), the microRNA-183/96/182 cluster (m96cl) is highly repressed in cells that have undergone EMT. In the present study, we used a novel conditional m96cl mouse to establish that loss of m96cl accelerated the growth of Kras mutant autochthonous lung adenocarcinomas. In contrast, ectopic expression of the m96cl in NSCLC cells results in a robust suppression of migration and invasion in vitro, and tumor growth and metastasis in vivo. Detailed immune profiling of the tumors revealed a significant enrichment of activated CD8+ cytotoxic T lymphocytes (CD8+ CTLs) in m96cl-expressing tumors, and m96cl-mediated suppression of tumor growth and metastasis was CD8+ CTL-dependent. Using coculture assays with naïve immune cells, we show that m96cl expression drives paracrine stimulation of CD8+ CTL proliferation and function. Using tumor microenvironment-associated gene expression profiling, we identified that m96cl elevates the interleukin-2 (IL2) signaling pathway and results in increased IL2-mediated paracrine stimulation of CD8+ CTLs. Furthermore, we identified that the m96cl modulates the expression of IL2 in cancer cells by regulating the expression of transcriptional repressors Foxf2 and Zeb1, and thereby alters the levels of secreted IL2 in the tumor microenvironment. Last, we show that in vivo depletion of IL2 abrogates m96cl-mediated activation of CD8+ CTLs and results in loss of metastatic suppression. Therefore, we have identified a novel mechanistic role of the m96cl in the suppression of lung cancer growth and metastasis by inducing an IL2-mediated systemic CD8+ CTL immune response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Animals , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Interleukin-2/genetics , Interleukin-2/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , T-Lymphocytes, Cytotoxic , Tumor Microenvironment
3.
Proc Natl Acad Sci U S A ; 120(28): e2220276120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37406091

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) underlies immunosuppression, drug resistance, and metastasis in epithelial malignancies. However, the way in which EMT orchestrates disparate biological processes remains unclear. Here, we identify an EMT-activated vesicular trafficking network that coordinates promigratory focal adhesion dynamics with an immunosuppressive secretory program in lung adenocarcinoma (LUAD). The EMT-activating transcription factor ZEB1 drives exocytotic vesicular trafficking by relieving Rab6A, Rab8A, and guanine nucleotide exchange factors from miR-148a-dependent silencing, thereby facilitating MMP14-dependent focal adhesion turnover in LUAD cells and autotaxin-mediated CD8+ T cell exhaustion, indicating that cell-intrinsic and extrinsic processes are linked through a microRNA that coordinates vesicular trafficking networks. Blockade of ZEB1-dependent secretion reactivates antitumor immunity and negates resistance to PD-L1 immune checkpoint blockade, an important clinical problem in LUAD. Thus, EMT activates exocytotic Rabs to drive a secretory program that promotes invasion and immunosuppression in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Cell Line, Tumor , Zinc Finger E-box-Binding Homeobox 1/metabolism , Lung Neoplasms/genetics , Adenocarcinoma of Lung/genetics , MicroRNAs/genetics , Immunosuppression Therapy , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
4.
Oncologist ; 28(11): e1065-e1074, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37156009

ABSTRACT

INTRODUCTION: Immune checkpoint inhibitor (ICI) pneumonitis causes substantial morbidity and mortality. Estimates of real-world incidence and reported risk factors vary substantially. METHODS: We conducted a retrospective review of 419 patients with advanced non-small cell lung cancer (NSCLC) who were treated with anti-PD-(L)1 with or without anti-CTLA-4 therapy. Clinical, imaging, and microbiological data were evaluated by multidisciplinary adjudication teams. The primary outcome of interest was grade ≥2 (CTCAEv5) pneumonitis. Clinicopathologic variables, tobacco use, cancer therapies, and preexisting lung disease were assessed for univariate effects using Cox proportional hazards models. We created multivariate Cox proportional hazards models to assess risk factors for pneumonitis and mortality. Pneumonitis, pneumonia, and progression were modeled as time-dependent variables in mortality models. RESULTS: We evaluated 419 patients between 2013 and 2021. The cumulative incidence of pneumonitis was 9.5% (40/419). In a multivariate model, pneumonitis increased the risk for mortality (HR 1.6, 95% CI, 1.0-2.5), after adjustment for disease progression (HR 1.6, 95% CI, 1.4-1.8) and baseline shortness of breath (HR 1.5, 95% CI, 1.2-2.0). Incomplete resolution was more common with more severe pneumonitis. Interstitial lung disease was associated with higher risk for pneumonitis (HR 5.4, 95% CI, 1.1-26.6), particularly in never smokers (HR 26.9, 95% CI, 2.8-259.0). CONCLUSION: Pneumonitis occurred at a high rate and significantly increased mortality. Interstitial lung disease, particularly in never smokers, increased the risk for pneumonitis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Diseases, Interstitial , Lung Neoplasms , Pneumonia , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Incidence , Lung Neoplasms/drug therapy , Pneumonia/epidemiology , Risk Factors , Lung Diseases, Interstitial/complications , Retrospective Studies
5.
Mod Pathol ; 36(12): 100326, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678674

ABSTRACT

Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.


Subject(s)
Adenocarcinoma in Situ , Adenocarcinoma , Lung Neoplasms , Precancerous Conditions , Humans , Hyperplasia/pathology , Artificial Intelligence , Eosine Yellowish-(YS) , Hematoxylin , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma in Situ/genetics , Adenocarcinoma in Situ/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Evolution, Molecular , Carcinogenesis/pathology
6.
Br J Cancer ; 124(2): 383-390, 2021 01.
Article in English | MEDLINE | ID: mdl-33012782

ABSTRACT

BACKGROUND: EGFR tyrosine kinase inhibitors (TKIs) induce cytolysis and release of tumour proteins, which can stimulate antigen-specific T cells. The safety and efficacy of durvalumab and gefitinib in combination for TKI-naive patients with advanced EGFRm NSCLC was evaluated. METHODS: This Phase 1 open-label, multicentre trial (NCT02088112) was conducted in 56 patients with NSCLC. Dose expansion permitted TKI-naive patients, primarily with activating L858R or Ex19del EGFRm. Arms 1 + 1a received concurrent therapy; Arm 2 received 4 weeks of gefitinib induction followed by concurrent therapy. RESULTS: From dose escalation, the recommended dose of durvalumab was 10 mg/kg Q2W with 250 mg QD gefitinib. Pharmacokinetics were as expected, consistent with inhibition of soluble PD-L1 and no treatment-emergent immunogenicity. In dose expansion, 35% of patients had elevated liver enzymes leading to drug discontinuation. In Arms 1 + 1a, objective response rate was 63.3% (95% CI: 43.9-80.1), median progression-free survival (PFS) was 10.1 months (95% CI: 5.5-15.2) and median response duration was 9.2 months (95% CI: 3.7-14.0). CONCLUSIONS: Durvalumab and gefitinib in combination had higher toxicity than either agent alone. No significant increase in PFS was detected compared with historical controls. Therefore, concurrent PD-L1 inhibitors with gefitinib should be generally avoided in TKI-naive patients with EGFRm NSCLC.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Gefitinib/administration & dosage , Lung Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/adverse effects , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Female , Gefitinib/adverse effects , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Mutation , Progression-Free Survival
7.
Br J Cancer ; 125(2): 176-189, 2021 07.
Article in English | MEDLINE | ID: mdl-33795809

ABSTRACT

BACKGROUND: The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. METHODS: We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout (CD8 and CD4) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. RESULTS: We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8+ T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8+ T-cell function. TCGA pan-cancer data confirmed that CD8lowPlatelethigh patients have a significantly lower survival probability compared to CD8highPlateletlow. CONCLUSIONS: CD8+ T cells inhibit metastasis. When the balance between CD8+ T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8+ T-cell function.


Subject(s)
Breast Neoplasms/immunology , CD4 Antigens/genetics , CD8 Antigens/genetics , CD8-Positive T-Lymphocytes/transplantation , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Platelet Factor 4/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Female , Gene Knockout Techniques , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, Nude , Myeloid-Derived Suppressor Cells/immunology , Neoplastic Cells, Circulating/immunology , Platelet Factor 4/administration & dosage , Platelet Factor 4/pharmacology , Survival Analysis , Transplantation, Isogeneic , Xenograft Model Antitumor Assays
8.
Cancer Immunol Immunother ; 70(7): 1965-1976, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33416944

ABSTRACT

INTRODUCTION: CD73 is a membrane-bound enzyme crucial in adenosine generation. The adenosinergic pathway plays a critical role in immunosuppression and in anti-tumor effects of immune checkpoint inhibitors (ICI). Here, we interrogated CD73 expression in a richly annotated cohort of human lung adenocarcinoma (LUAD) and its association with clinicopathological, immune, and molecular features to better understand the role of this immune marker in LUAD pathobiology. MATERIALS AND METHODS: Protein expression of CD73 was evaluated by immunohistochemistry in 106 archived LUADs from patients that underwent surgical treatment without neoadjuvant therapy. Total CD73 (T +) was calculated as the average of luminal (L +) and basolateral (BL +) percentage membrane expression scores for each LUAD and was used to classify tumors into three groups based on the extent of T CD73 expression (high, low, and negative). RESULTS: CD73 expression was significantly and progressively increased across normal-appearing lung tissue, adenomatous atypical hyperplasia, adenocarcinoma in situ, minimally invasive adenocarcinoma, and LUAD. In LUAD, BL CD73 expression was associated with an increase in PD-L1 expression in tumor cells and increase of tumor-associated immune cells. Stratification of LUADs based on T CD73 extent also revealed that tumors with high expression of this enzyme overall exhibited significantly elevated immune infiltration and PD-L1 protein expression. Immune profiling demonstrated that T-cell inflammation and adenosine signatures were significantly higher in CD73-expressing lung adenocarcinomas relative to those lacking CD73. CONCLUSION: Our study suggests that higher CD73 expression is associated with an overall augmented host immune response, suggesting potential implications in the immune pathobiology of early stage lung adenocarcinoma. Our findings warrant further studies to explore the role of CD73 in immunotherapeutic response of LUAD.


Subject(s)
5'-Nucleotidase/metabolism , Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/pathology , Immunologic Factors/immunology , Lung Neoplasms/pathology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Follow-Up Studies , GPI-Linked Proteins/metabolism , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Male , Middle Aged , Prognosis , Retrospective Studies
9.
Oncologist ; 25(10): e1457-e1463, 2020 10.
Article in English | MEDLINE | ID: mdl-32608142

ABSTRACT

LESSONS LEARNED: Treatment with the Aurora kinase A inhibitor yields often durable disease control, but limited tumor regression, in heavily pretreated patients with unresectable malignant pleural or peritoneal mesothelioma. In a limited sample size, MYC copy-number gain or gene amplification, a candidate predictive biomarker for alisertib, did not correlate with improved response numbers or patient outcomes. BACKGROUND: Malignant mesothelioma is an aggressive disease for which few effective therapies are available. The Aurora family kinases are critical for mitotic fidelity and highly expressed in mesothelioma, wherein their inhibition leads to growth arrest in vitro. We evaluated the efficacy of alisertib, an Aurora A kinase inhibitor, in relapsed malignant mesothelioma. METHODS: Twenty-six patients with previously treated, unresectable pleural or peritoneal mesothelioma were enrolled on a single-arm, single-institution phase II trial of alisertib at a dosage of 50 mg twice daily for 7 of every 21 days. The primary endpoint was 4-month disease control rate. Secondary endpoints included overall response rate, progression free survival, overall survival, safety/toxicity, and correlation of endpoints with MYC copy number. RESULTS: Of the 25 evaluable patients treated on study, 8 (32%) experienced 4-month disease control, surpassing the futility endpoint. There were no confirmed partial or complete responses. Median progression-free and overall survival were 2.8 months and 6.3 months, respectively. No associations between MYC copy number and outcomes were observed. CONCLUSION: Alisertib has modest activity in this unselected malignant mesothelioma population. Several patients achieved durable disease control. Although the study did meet its prespecified futility endpoint, the sponsor elected to close the trial at the interim analysis.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Azepines/therapeutic use , Humans , Mesothelioma/drug therapy , Mesothelioma/genetics , Neoplasm Recurrence, Local , Pyrimidines/therapeutic use
10.
Cancer Immunol Immunother ; 69(8): 1519-1534, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32300858

ABSTRACT

Enhanced tumor glycolytic activity is a mechanism by which tumors induce an immunosuppressive environment to resist adoptive T cell therapy; therefore, methods of assessing intratumoral glycolytic activity are of considerable clinical interest. In this study, we characterized the relationships among tumor 18F-fluorodeoxyglucose (FDG) retention, tumor metabolic and immune phenotypes, and survival in patients with resected non-small cell lung cancer (NSCLC). We retrospectively analyzed tumor preoperative positron emission tomography (PET) 18F-FDG uptake in 59 resected NSCLCs and investigated correlations between PET parameters (SUVMax, SUVTotal, SUVMean, TLG), tumor expression of glycolysis- and immune-related genes, and tumor-associated immune cell densities that were quantified by immunohistochemistry. Tumor glycolysis-associated immune gene signatures were analyzed for associations with survival outcomes. We found that each 18F-FDG PET parameter was positively correlated with tumor expression of glycolysis-related genes. Elevated 18F-FDG SUVMax was more discriminatory of glycolysis-associated changes in tumor immune phenotypes than other 18F-FDG PET parameters. Increased SUVMax was associated with multiple immune factors characteristic of an immunosuppressive and poorly immune infiltrated tumor microenvironment, including elevated PD-L1 expression, reduced CD57+ cell density, and increased T cell exhaustion gene signature. Elevated SUVMax identified immune-related transcriptomic signatures that were associated with enhanced tumor glycolytic gene expression and poor clinical outcomes. Our results suggest that 18F-FDG SUVMax has potential value as a noninvasive, clinical indicator of tumor immunometabolic phenotypes in patients with resectable NSCLC and warrants investigation as a potential predictor of therapeutic response to immune-based treatment strategies.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Fluorodeoxyglucose F18/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Positron-Emission Tomography/methods , Tumor Microenvironment/immunology , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/surgery , Glycolysis , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/surgery , Prognosis , Radiopharmaceuticals/metabolism , Retrospective Studies , Survival Rate , Transcriptome
11.
Proc Natl Acad Sci U S A ; 113(25): 6955-60, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27274057

ABSTRACT

Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-ß receptor 1 (TGFßR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFßRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFßR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Claudins/antagonists & inhibitors , Lung Neoplasms/pathology , RNA-Binding Proteins/physiology , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Claudins/physiology , Humans , Mice , Neoplasm Metastasis
12.
Dev Dyn ; 247(3): 555-564, 2018 03.
Article in English | MEDLINE | ID: mdl-28073171

ABSTRACT

BACKGROUND: While epithelial-mesenchymal transition (EMT) can be readily induced experimentally in cancer cells, the EMT process as manifested in human tumors needs to be better understood. Pan-cancer genomic datasets from The Cancer Genome Atlas (TCGA), representing over 10,000 patients and 32 distinct cancer types, provide a rich resource for examining correlative patterns involving EMT mediators in the setting of human cancers. RESULTS: Here, we surveyed a 16-gene signature of canonical EMT markers in TCGA pan-cancer cohort. The histology or cell-of-origin of a tumor sample may align more with mesenchymal or epithelial phenotype, and noncancer as well as cancer cells can contribute to the overall molecular patterns observed within a tumor sample; correlation models involving EMT markers can factor in both of the above variables. EMT-associated genes appear coordinately expressed across all cancers and within each cancer type surveyed. Gene signatures of immune cells correlate highly with EMT marker expression in tumors. In pan-cancer analysis, several EMT-related genes can be significantly associated with worse patient outcome. CONCLUSIONS: Gene correlates of EMT phenotype in human tumors could include novel mediators of EMT that might be confirmed experimentally, by which TCGA datasets may serve as a platform for discovery in ongoing studies. Developmental Dynamics 247:555-564, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Neoplasms/genetics , Datasets as Topic , Genomics , Humans , Neoplasms/pathology , Transcriptome
13.
Proc Natl Acad Sci U S A ; 111(9): 3550-5, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24550512

ABSTRACT

The acquisition of mutations within the BCR-ABL1 kinase domain is frequently associated with tyrosine kinase inhibitor (TKI) failure in chronic myeloid leukemia. Sensitive sequencing techniques have revealed a high prevalence of compound BCR-ABL1 mutations (polymutants) in patients failing TKI therapy. To investigate the molecular consequences of such complex mutant proteins with regards to TKI resistance, we determined by cloning techniques the presence of polymutants in a cohort of chronic-phase patients receiving imatinib followed by dasatinib therapy. The analysis revealed a high frequency of polymutant BCR-ABL1 alleles even after failure of frontline imatinib, and also the progressive exhaustion of the pool of unmutated BCR-ABL1 alleles over the course of sequential TKI therapy. Molecular dynamics analyses of the most frequent polymutants in complex with TKIs revealed the basis of TKI resistance. Modeling of BCR-ABL1 in complex with the potent pan-BCR-ABL1 TKI ponatinib highlighted potentially effective therapeutic strategies for patients carrying these recalcitrant and complex BCR-ABL1 mutant proteins while unveiling unique mechanisms of escape to ponatinib therapy.


Subject(s)
Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/genetics , Imidazoles/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Models, Molecular , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridazines/pharmacology , Analysis of Variance , Benzamides , Cloning, Molecular , DNA Primers/genetics , Fusion Proteins, bcr-abl/chemistry , Humans , Imatinib Mesylate , Imidazoles/therapeutic use , Molecular Dynamics Simulation , Mutation/genetics , Piperazines , Polymerase Chain Reaction , Pyridazines/therapeutic use , Pyrimidines
14.
Genes Dev ; 23(18): 2140-51, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19759262

ABSTRACT

Metastatic disease is a primary cause of cancer-related death, and factors governing tumor cell metastasis have not been fully elucidated. Here, we address this question by using tumor cell lines derived from mice that develop metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. Despite having widespread somatic genetic alterations, the metastasis-prone tumor cells retained a marked plasticity. They transited reversibly between epithelial and mesenchymal states, forming highly polarized epithelial spheres in three-dimensional culture that underwent epithelial-to-mesenchymal transition (EMT) following treatment with transforming growth factor-beta or injection into syngeneic mice. This transition was entirely dependent on the microRNA (miR)-200 family, which decreased during EMT. Forced expression of miR-200 abrogated the capacity of these tumor cells to undergo EMT, invade, and metastasize, and conferred transcriptional features of metastasis-incompetent tumor cells. We conclude that tumor cell metastasis is regulated by miR-200 expression, which changes in response to contextual extracellular cues.


Subject(s)
Extracellular Space/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Metastasis/physiopathology , Adenocarcinoma/physiopathology , Animals , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Line, Tumor , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/drug effects , Gene Expression Profiling , Lung Neoplasms/physiopathology , Mice , Transforming Growth Factor beta/pharmacology
15.
Lancet Oncol ; 17(12): 1672-1682, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27789196

ABSTRACT

BACKGROUND: Evidence from retrospective studies suggests that disease progression after first-line chemotherapy for metastatic non-small-cell lung cancer (NSCLC) occurs most often at sites of disease known to exist at baseline. However, the potential effect of aggressive local consolidative therapy for patients with oligometastatic NSCLC is unknown. We aimed to assess the effect of local consolidative therapy on progression-free survival. METHODS: In this multicentre, randomised, controlled, phase 2 study, eligible patients from three hospitals had histological confirmation of stage IV NSCLC, three or fewer metastatic disease lesions after first-line systemic therapy, an Eastern Cooperative Oncology Group performance status score of 2 or less, had received standard first-line systemic therapy, and had no disease progression before randomisation. First-line therapy was four or more cycles of platinum doublet therapy or 3 or more months of EGFR or ALK inhibitors for patients with EGFR mutations or ALK rearrangements, respectively. Patients were randomly assigned (1:1) to either local consolidative therapy ([chemo]radiotherapy or resection of all lesions) with or without subsequent maintenance treatment or to maintenance treatment alone, which could be observation only. Maintenance treatment was recommended based on a list of approved regimens, and observation was defined as close surveillance without cytotoxic treatment. Randomisation was not masked and was balanced dynamically on five factors: number of metastases, response to initial therapy, CNS metastases, intrathoracic nodal status, and EGFR and ALK status. The primary endpoint was progression-free survival analysed in all patients who were treated and had at least one post-baseline imaging assessment. The study is ongoing but not recruiting participants. This study is registered with ClinicalTrials.gov, number NCT01725165. FINDINGS: Between Nov 28, 2012, and Jan 19, 2016, 74 patients were enrolled either during or at the completion of first-line systemic therapy. The study was terminated early after randomisation of 49 patients (25 in the local consolidative therapy group and 24 in the maintenance treatment group) as part of the annual analyses done by the Data Safety Monitoring Committee of all randomised trials at MD Anderson Cancer Center, and before a planned interim analysis of 44 events. At a median follow-up time for all randomised patients of 12·39 months (IQR 5·52-20·30), the median progression-free survival in the local consolidative therapy group was 11·9 months (90% CI 5·7-20·9) versus 3·9 months (2·3-6·6) in the maintenance treatment group (hazard ratio 0·35 [90% CI 0·18-0·66], log-rank p=0·0054). Adverse events were similar between groups, with no grade 4 adverse events or deaths due to treatment. Grade 3 adverse events in the maintenance therapy group were fatigue (n=1) and anaemia (n=1) and in the local consolidative therapy group were oesophagitis (n=2), anaemia (n=1), pneumothorax (n=1), and abdominal pain (n=1, unlikely related). INTERPRETATION: Local consolidative therapy with or without maintenance therapy for patients with three or fewer metastases from NSCLC that did not progress after initial systemic therapy improved progression-free survival compared with maintenance therapy alone. These findings suggest that aggressive local therapy should be further explored in phase 3 trials as a standard treatment option in this clinical scenario. FUNDING: MD Anderson Lung Cancer Priority Fund, MD Anderson Cancer Center Moon Shot Initiative, and Cancer Center Support (Core), National Cancer Institute, National Institutes of Health.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Metastasis
17.
BMC Med ; 14(1): 168, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27776519

ABSTRACT

BACKGROUND: While clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements. METHODS: We developed a method to accurately derive the predicted total mutation load (PTML) within individual tumors from a small set of genes that can be used in clinical next generation sequencing (NGS) panels. PTML was derived from the actual total mutation load (ATML) of 575 distinct melanoma and lung cancer samples and validated using independent melanoma (n = 312) and lung cancer (n = 217) cohorts. The correlation of PTML status with clinical outcome, following distinct immunotherapies, was assessed using the Kaplan-Meier method. RESULTS: PTML (derived from 170 genes) was highly correlated with ATML in cutaneous melanoma and lung adenocarcinoma validation cohorts (R2 = 0.73 and R2 = 0.82, respectively). PTML was strongly associated with clinical outcome to ipilimumab (anti-CTLA-4, three cohorts) and adoptive T-cell therapy (1 cohort) clinical outcome in melanoma. Clinical benefit from pembrolizumab (anti-PD-1) in lung cancer was also shown to significantly correlate with PTML status (log rank P value < 0.05 in all cohorts). CONCLUSIONS: The approach of using small NGS gene panels, already applied to guide employment of targeted therapies, may have utility in the personalized use of immunotherapy in cancer.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/therapy , Immunotherapy/methods , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Melanoma/genetics , Melanoma/therapy , Mutation , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Adenocarcinoma/immunology , Adenocarcinoma of Lung , Algorithms , Antibodies, Monoclonal/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cohort Studies , Exome , Female , Humans , Immunotherapy, Adoptive/methods , Ipilimumab , Lung Neoplasms/immunology , Male , Melanoma/immunology , Middle Aged , Skin Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tumor Burden/genetics , Melanoma, Cutaneous Malignant
18.
Int J Cancer ; 134(4): 789-98, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-23934967

ABSTRACT

The tumor microenvironment plays an important role in regulating cell growth and metastasis. Recently, we developed an ex vivo lung cancer model (four dimensional, 4D) that forms perfusable tumor nodules on a lung matrix that mimics human lung cancer histopathology and protease secretion pattern. We compared the gene expression profile (Human OneArray v5 chip) of A549 cells, a human lung cancer cell line, grown in a petri dish (two-dimensional, 2D), and of the same cells grown in the matrix of our ex vivo model (4D). Furthermore, we obtained gene expression data of A549 cells grown in a petri dish (2D) and matrigel (three-dimensional, 3D) from a previous study and compared the 3D expression profile with that of 4D. Expression array analysis showed 2,954 genes differentially expressed between 2D and 4D. Gene ontology (GO) analysis showed upregulation of several genes associated with extracellular matrix, polarity and cell fate and development. Moreover, expression array analysis of 2D vs. 3D showed 1,006 genes that were most differentially expressed, with only 36 genes (4%) having similar expression patterns as observed between 2D and 4D. Finally, the differential gene expression signature of 4D cells (vs. 2D) correlated significantly with poor survival in patients with lung cancer (n = 1,492), while the expression signature of 3D vs. 2D correlated with better survival in lung cancer patients with lung cancer. As patients with larger tumors have a worse rate of survival, the ex vivo 4D model may be a good mimic of natural progression of tumor growth in lung cancer patients.


Subject(s)
Adenocarcinoma/mortality , Biomarkers, Tumor/genetics , Carcinoma, Basal Cell/mortality , Cell Culture Techniques , Disease Models, Animal , Gene Expression Profiling , Lung Neoplasms/mortality , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , Animals, Newborn , Biomarkers, Tumor/metabolism , Blotting, Western , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Humans , Immunoenzyme Techniques , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Oligonucleotide Array Sequence Analysis , Prognosis , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate , Tumor Cells, Cultured
20.
Trends Pharmacol Sci ; 45(6): 520-536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744552

ABSTRACT

Immune checkpoint blockade (ICB) therapy works by inhibiting suppressive checkpoints that become upregulated after T cell activation, like PD-1/PD-L1 and CTLA-4. While the initial FDA approvals of ICB have revolutionized cancer therapies and fueled a burgeoning immuno-oncology field, more recent clinical development of new agents has been slow. Here, focusing on lung cancer, we review the latest research uncovering tumor cell intrinsic and extrinsic ICB resistance mechanisms as major hurdles to treatment efficacy and clinical progress. These include genomic and non-genomic tumor cell alterations, along with host and microenvironmental factors like the microbiome, metabolite accumulation, and hypoxia. Together, these factors can cooperate to promote immunosuppression and ICB resistance. Opportunities to prevent resistance are constantly evolving in this rapidly expanding field, with the goal of moving toward personalized immunotherapeutic regimens.


Subject(s)
Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Lung Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Animals , Tumor Microenvironment , Immunotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL