Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(36): e2302720120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37643212

ABSTRACT

Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aß42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.


Subject(s)
Alzheimer Disease , HLA-DRB1 Chains , Parkinson Disease , Humans , Alzheimer Disease/genetics , Histocompatibility Antigens , HLA Antigens , HLA-DRB1 Chains/genetics , Parkinson Disease/genetics
2.
JAMA ; 331(22): 1898-1909, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38739396

ABSTRACT

Importance: Identification of individuals at high risk for atherosclerotic cardiovascular disease within the population is important to inform primary prevention strategies. Objective: To evaluate the prognostic value of routinely available cardiovascular biomarkers when added to established risk factors. Design, Setting, and Participants: Individual-level analysis including data on cardiovascular biomarkers from 28 general population-based cohorts from 12 countries and 4 continents with assessments by participant age. The median follow-up was 11.8 years. Exposure: Measurement of high-sensitivity cardiac troponin I, high-sensitivity cardiac troponin T, N-terminal pro-B-type natriuretic peptide, B-type natriuretic peptide, or high-sensitivity C-reactive protein. Main Outcomes and Measures: The primary outcome was incident atherosclerotic cardiovascular disease, which included all fatal and nonfatal events. The secondary outcomes were all-cause mortality, heart failure, ischemic stroke, and myocardial infarction. Subdistribution hazard ratios (HRs) for the association of biomarkers and outcomes were calculated after adjustment for established risk factors. The additional predictive value of the biomarkers was assessed using the C statistic and reclassification analyses. Results: The analyses included 164 054 individuals (median age, 53.1 years [IQR, 42.7-62.9 years] and 52.4% were women). There were 17 211 incident atherosclerotic cardiovascular disease events. All biomarkers were significantly associated with incident atherosclerotic cardiovascular disease (subdistribution HR per 1-SD change, 1.13 [95% CI, 1.11-1.16] for high-sensitivity cardiac troponin I; 1.18 [95% CI, 1.12-1.23] for high-sensitivity cardiac troponin T; 1.21 [95% CI, 1.18-1.24] for N-terminal pro-B-type natriuretic peptide; 1.14 [95% CI, 1.08-1.22] for B-type natriuretic peptide; and 1.14 [95% CI, 1.12-1.16] for high-sensitivity C-reactive protein) and all secondary outcomes. The addition of each single biomarker to a model that included established risk factors improved the C statistic. For 10-year incident atherosclerotic cardiovascular disease in younger people (aged <65 years), the combination of high-sensitivity cardiac troponin I, N-terminal pro-B-type natriuretic peptide, and high-sensitivity C-reactive protein resulted in a C statistic improvement from 0.812 (95% CI, 0.8021-0.8208) to 0.8194 (95% CI, 0.8089-0.8277). The combination of these biomarkers also improved reclassification compared with the conventional model. Improvements in risk prediction were most pronounced for the secondary outcomes of heart failure and all-cause mortality. The incremental value of biomarkers was greater in people aged 65 years or older vs younger people. Conclusions and Relevance: Cardiovascular biomarkers were strongly associated with fatal and nonfatal cardiovascular events and mortality. The addition of biomarkers to established risk factors led to only a small improvement in risk prediction metrics for atherosclerotic cardiovascular disease, but was more favorable for heart failure and mortality.


Subject(s)
Biomarkers , Cardiovascular Diseases , Natriuretic Peptide, Brain , Peptide Fragments , Troponin I , Troponin T , Adult , Aged , Female , Humans , Male , Middle Aged , Atherosclerosis/blood , Biomarkers/blood , C-Reactive Protein/analysis , Cardiovascular Diseases/mortality , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Cohort Studies , Heart Failure/blood , Heart Failure/epidemiology , Heart Failure/mortality , Myocardial Infarction/epidemiology , Myocardial Infarction/blood , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Predictive Value of Tests , Prognosis , Risk Factors , Troponin I/blood , Troponin T/blood , Internationality
3.
BMC Geriatr ; 23(1): 535, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660032

ABSTRACT

BACKGROUND: While assessment tools can increase the detection of cognitive impairment, there is currently insufficient evidence regarding clinical outcomes based on screening for cognitive impairment in older adults. METHODS: The study purpose was to investigate whether Timed Up and Go dual-task test (TUGdt) results, based on TUG combined with two different verbal tasks (name different animals, TUGdt-NA, and recite months in reverse order, TUGdt-MB), predicted dementia incidence over a period of five years among patients (N = 186, mean = 70.7 years; 45.7% female) diagnosed with Subjective Cognitive Impairment (SCI) and Mild Cognitive Impairment (MCI) following assessment at two memory clinics. Associations between TUG parameters and dementia incidence were examined in Cox regression models. RESULTS: During follow-up time (median (range) 3.7 (0.1-6.1) years) 98 participants converted to dementia. Novel findings indicated that the TUGdt parameter words/time, after adjustment for age, gender, and education, can be used for the prediction of conversion to dementia in participants with SCI or MCI over a period of five years. Among the TUG-related parameters investigated, words/time showed the best predictive capacity, while time scores of TUG and TUGdt as well as TUGdt cost did not produce significant predictive results. Results further showed that the step parameter step length during TUGdt predicts conversion to dementia before adjustment for age, gender, and education. Optimal TUGdt cutoffs for predicting dementia at 2- and 4-year follow-up based on words/time were calculated. The sensitivity of the TUGdt cutoffs was high at 2-year follow-up: TUGdt-NA words/time, 0.79; TUGdt-MB words/time, 0.71; reducing respectively to 0.64 and 0.65 at 4-year follow-up. CONCLUSIONS: TUGdt words/time parameters have potential as cost-efficient tools for conversion-to-dementia risk assessment, useful for research and clinical purposes. These parameters may be able to bridge the gap of insufficient evidence for such clinical outcomes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05893524: https://www. CLINICALTRIALS: gov/study/NCT05893524?id=NCT05893524&rank=1 .


Subject(s)
Cognitive Dysfunction , Dementia , Memory, Episodic , Female , Humans , Animals , Male , Educational Status , Ambulatory Care Facilities , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/epidemiology , Dementia/diagnosis , Dementia/epidemiology
4.
J Aging Phys Act ; 31(5): 823-832, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37019438

ABSTRACT

The Timed Up-and-Go (TUG) test has been combined with different verbal/cognitive tasks (i.e., TUG dual task [TUGdt]) as a form of motor-cognitive testing. However, it is still unclear how different TUGdt conditions affect gait among older adults. Thirty community-dwelling older adults, with mean age of 73 years, participated in the study. Data were collected using marker-free video recordings. Gait parameters were extracted using a semiautomatic deep learning system. Comparisons of execution time and gait parameter outcomes were made under TUG and three types of TUGdt test conditions: TUGdt-naming animals, TUGdt-months backwards, and TUGdt-serial 7s. Statistical analyses were based on mean values of the gait parameters for each participant and TUG condition, including TUGdt gait cost, that is, the relative difference between TUGdt and TUG. All the investigated TUGdt conditions resulted in varying degrees of gait parameter changes. Under TUGdt conditions, participants took shorter and slower steps, with TUGdt-serial 7s causing the largest interference.


Subject(s)
Gait , Independent Living , Humans
5.
BMC Genomics ; 23(1): 99, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35120450

ABSTRACT

BACKGROUND: Most dementia disorders have a clear genetic background and a number of disease genes have been identified. Mutations in the tau gene (MAPT) lead to frontotemporal dementia (FTD), whereas mutations in the genes for the amyloid-ß precursor protein (APP) and the presenilins (PSEN1, PSEN2) cause early-onset, dominantly inherited forms of Alzheimer's disease (AD). Even if mutations causing Mendelian forms of these diseases are uncommon, elucidation of the pathogenic effects of such mutations have proven important for understanding the pathogenic processes. Here, we performed a screen to identify novel pathogenic mutations in known disease genes among patients undergoing dementia investigation. RESULTS: Using targeted exome sequencing we have screened all coding exons in eleven known dementia genes (PSEN1, PSEN2, APP, MAPT, APOE, GRN, TARDBP, CHMP2B, TREM2, VCP and FUS) in 102 patients with AD, FTD, other dementia diagnoses or mild cognitive impairment. We found three AD patients with two previously identified pathogenic mutations in PSEN1 (Pro264Leu and Met146Val). In this screen, we also identified the recently reported APP mutation in two siblings with AD. This mutation, named the Uppsala mutation, consists of a six amino acid intra-amyloid ß deletion. In addition, we found several potentially pathogenic mutations in PSEN2, FUS, MAPT, GRN and APOE. Finally, APOE ε4 was prevalent in this patient group with an allele frequency of 54%. CONCLUSIONS: Among the 102 screened patients, we found two disease causing mutations in PSEN1 and one in APP, as well as several potentially pathogenic mutations in other genes related to neurodegenerative disorders. Apart from giving important information to the clinical investigation, the identification of disease mutations can contribute to an increased understanding of disease mechanisms.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Alzheimer Disease/genetics , Amyloid beta-Peptides , Frontotemporal Dementia/genetics , Humans , Membrane Glycoproteins , Mutation , Presenilin-1/genetics , Presenilin-2/genetics , Receptors, Immunologic
6.
Cell Mol Life Sci ; 78(8): 4019-4033, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33837451

ABSTRACT

Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer's disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a "genetic wasteland", and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.


Subject(s)
Alzheimer Disease/genetics , Chromosomes, Human, Y , Mosaicism , Prostatic Neoplasms/genetics , CD4-Positive T-Lymphocytes/metabolism , Gene Expression Regulation , Humans , Killer Cells, Natural/metabolism , Leukocytes/metabolism , Male
7.
Nature ; 526(7573): 443-7, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26322584

ABSTRACT

Alzheimer disease (AD) is characterized by the accumulation of amyloid plaques, which are predominantly composed of amyloid-ß peptide. Two principal physiological pathways either prevent or promote amyloid-ß generation from its precursor, ß-amyloid precursor protein (APP), in a competitive manner. Although APP processing has been studied in great detail, unknown proteolytic events seem to hinder stoichiometric analyses of APP metabolism in vivo. Here we describe a new physiological APP processing pathway, which generates proteolytic fragments capable of inhibiting neuronal activity within the hippocampus. We identify higher molecular mass carboxy-terminal fragments (CTFs) of APP, termed CTF-η, in addition to the long-known CTF-α and CTF-ß fragments generated by the α- and ß-secretases ADAM10 (a disintegrin and metalloproteinase 10) and BACE1 (ß-site APP cleaving enzyme 1), respectively. CTF-η generation is mediated in part by membrane-bound matrix metalloproteinases such as MT5-MMP, referred to as η-secretase activity. η-Secretase cleavage occurs primarily at amino acids 504-505 of APP695, releasing a truncated ectodomain. After shedding of this ectodomain, CTF-η is further processed by ADAM10 and BACE1 to release long and short Aη peptides (termed Aη-α and Aη-ß). CTFs produced by η-secretase are enriched in dystrophic neurites in an AD mouse model and in human AD brains. Genetic and pharmacological inhibition of BACE1 activity results in robust accumulation of CTF-η and Aη-α. In mice treated with a potent BACE1 inhibitor, hippocampal long-term potentiation was reduced. Notably, when recombinant or synthetic Aη-α was applied on hippocampal slices ex vivo, long-term potentiation was lowered. Furthermore, in vivo single-cell two-photon calcium imaging showed that hippocampal neuronal activity was attenuated by Aη-α. These findings not only demonstrate a major functionally relevant APP processing pathway, but may also indicate potential translational relevance for therapeutic strategies targeting APP processing.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Hippocampus/cytology , Matrix Metalloproteinases, Membrane-Associated/metabolism , Neurons/physiology , Proteolysis , ADAM Proteins/metabolism , ADAM10 Protein , Alzheimer Disease/enzymology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/cerebrospinal fluid , Amyloid Precursor Protein Secretases/deficiency , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/cerebrospinal fluid , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/deficiency , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Calcium Signaling , Disease Models, Animal , Female , Hippocampus/enzymology , Hippocampus/physiology , Humans , In Vitro Techniques , Long-Term Potentiation , Male , Matrix Metalloproteinases, Membrane-Associated/deficiency , Membrane Proteins/metabolism , Mice , Molecular Weight , Neurites/enzymology , Neurites/metabolism , Neurons/enzymology , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Plaque, Amyloid , Protein Processing, Post-Translational , Single-Cell Analysis
8.
BMC Geriatr ; 20(1): 258, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32727472

ABSTRACT

BACKGROUND: Discrimination between early-stage dementia and other cognitive impairment diagnoses is central to enable appropriate interventions. Previous studies indicate that dual-task testing may be useful in such differentiation. The objective of this study was to investigate whether dual-task test outcomes discriminate between groups of individuals with dementia disorder, mild cognitive impairment, subjective cognitive impairment, and healthy controls. METHODS: A total of 464 individuals (mean age 71 years, 47% women) were included in the study, of which 298 were patients undergoing memory assessment and 166 were cognitively healthy controls. Patients were grouped according to the diagnosis received: dementia disorder, mild cognitive impairment, or subjective cognitive impairment. Data collection included participants' demographic characteristics. The patients' cognitive test results and diagnoses were collected from their medical records. Healthy controls underwent the same cognitive tests as the patients. The mobility test Timed Up-and-Go (TUG single-task) and two dual-task tests including TUG (TUGdt) were carried out: TUGdt naming animals and TUGdt months backwards. The outcomes registered were: time scores for TUG single-task and both TUGdt tests, TUGdt costs (relative time difference between TUG single-task and TUGdt), number of different animals named, number of months recited in correct order, number of animals per 10 s, and number of months per 10 s. Logistic regression models examined associations between TUG outcomes pairwise between groups. RESULTS: The TUGdt outcomes "animals/10 s" and "months/10 s" discriminated significantly (p < 0.001) between individuals with an early-stage dementia diagnosis, mild cognitive impairment, subjective cognitive impairment, and healthy controls. The TUGdt outcome "animals/10 s" showed an odds ratio of 3.3 (95% confidence interval 2.0-5.4) for the groups dementia disorders vs. mild cognitive impairment. TUGdt cost outcomes, however, did not discriminate between any of the groups. CONCLUSIONS: The novel TUGdt outcomes "words per time unit", i.e. "animals/10 s" and "months/10 s", demonstrate high levels of discrimination between all investigated groups. Thus, the TUGdt tests in the current study could be useful as complementary tools in diagnostic assessments. Future studies will be focused on the predictive value of TUGdt outcomes concerning dementia risk for individuals with mild cognitive impairment or subjective cognitive impairment.


Subject(s)
Cognitive Dysfunction , Dementia , Aged , Cognition , Cognitive Dysfunction/diagnosis , Cohort Studies , Cross-Sectional Studies , Dementia/diagnosis , Female , Humans , Male
10.
PLoS Genet ; 13(4): e1006706, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28369058

ABSTRACT

Recent advances in highly multiplexed immunoassays have allowed systematic large-scale measurement of hundreds of plasma proteins in large cohort studies. In combination with genotyping, such studies offer the prospect to 1) identify mechanisms involved with regulation of protein expression in plasma, and 2) determine whether the plasma proteins are likely to be causally implicated in disease. We report here the results of genome-wide association (GWA) studies of 83 proteins considered relevant to cardiovascular disease (CVD), measured in 3,394 individuals with multiple CVD risk factors. We identified 79 genome-wide significant (p<5e-8) association signals, 55 of which replicated at P<0.0007 in separate validation studies (n = 2,639 individuals). Using automated text mining, manual curation, and network-based methods incorporating information on expression quantitative trait loci (eQTL), we propose plausible causal mechanisms for 25 trans-acting loci, including a potential post-translational regulation of stem cell factor by matrix metalloproteinase 9 and receptor-ligand pairs such as RANK-RANK ligand. Using public GWA study data, we further evaluate all 79 loci for their causal effect on coronary artery disease, and highlight several potentially causal associations. Overall, a majority of the plasma proteins studied showed evidence of regulation at the genetic level. Our results enable future studies of the causal architecture of human disease, which in turn should aid discovery of new drug targets.


Subject(s)
Biomarkers/blood , Blood Proteins/genetics , Cardiovascular Diseases/blood , Cardiovascular Diseases/genetics , Quantitative Trait Loci , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male
11.
Am J Hum Genet ; 98(6): 1208-1219, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27231129

ABSTRACT

Men have a shorter life expectancy compared with women but the underlying factor(s) are not clear. Late-onset, sporadic Alzheimer disease (AD) is a common and lethal neurodegenerative disorder and many germline inherited variants have been found to influence the risk of developing AD. Our previous results show that a fundamentally different genetic variant, i.e., lifetime-acquired loss of chromosome Y (LOY) in blood cells, is associated with all-cause mortality and an increased risk of non-hematological tumors and that LOY could be induced by tobacco smoking. We tested here a hypothesis that men with LOY are more susceptible to AD and show that LOY is associated with AD in three independent studies of different types. In a case-control study, males with AD diagnosis had higher degree of LOY mosaicism (adjusted odds ratio = 2.80, p = 0.0184, AD events = 606). Furthermore, in two prospective studies, men with LOY at blood sampling had greater risk for incident AD diagnosis during follow-up time (hazard ratio [HR] = 6.80, 95% confidence interval [95% CI] = 2.16-21.43, AD events = 140, p = 0.0011). Thus, LOY in blood is associated with risks of both AD and cancer, suggesting a role of LOY in blood cells on disease processes in other tissues, possibly via defective immunosurveillance. As a male-specific risk factor, LOY might explain why males on average live shorter lives than females.


Subject(s)
Alzheimer Disease/genetics , Chromosomes, Human, Y/genetics , Mosaicism , Polymorphism, Single Nucleotide/genetics , Aged , Aged, 80 and over , Alzheimer Disease/blood , Case-Control Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prognosis , Prospective Studies , Risk Factors
12.
Am J Hum Genet ; 99(3): 636-646, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27588450

ABSTRACT

We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans.


Subject(s)
Ethnicity/genetics , Genome-Wide Association Study , Kidney/physiopathology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/physiopathology , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Stress, Physiological/genetics , Alleles , Animals , Deoxyribonuclease I/metabolism , Diabetes Mellitus/genetics , Disease Models, Animal , Drosophila melanogaster/genetics , Female , Glomerular Filtration Rate/genetics , Humans , Kidney/pathology , Linkage Disequilibrium , Male , NFATC Transcription Factors/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , RGS Proteins/genetics , Racial Groups/genetics , Salt Tolerance/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics
13.
Mol Cell Proteomics ; 16(7): 1286-1296, 2017 07.
Article in English | MEDLINE | ID: mdl-28501802

ABSTRACT

An important motivation for the construction of biobanks is to discover biomarkers that identify diseases at early, potentially curable stages. This will require biobanks from large numbers of individuals, preferably sampled repeatedly, where the samples are collected and stored under conditions that preserve potential biomarkers. Dried blood samples are attractive for biobanking because of the ease and low cost of collection and storage. Here we have investigated their suitability for protein measurements. Ninety-two proteins with relevance for oncology were analyzed using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either +4 °C or -24 °C.Our main findings were that (1) the act of drying only slightly influenced detection of blood proteins (average correlation of 0.970), and in a reproducible manner (correlation of 0.999), (2) detection of some proteins was not significantly affected by storage over the full range of three decades (34 and 76% of the analyzed proteins at +4 °C and -24 °C, respectively), whereas levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and (3) detectability of proteins was less affected in dried samples stored at -24 °C compared with at +4 °C, as the median protein abundance had decreased to 80 and 93% of starting levels after 10 years of storage at +4 °C or -24 °C, respectively. The results of our study are encouraging as they suggest an inexpensive means to collect large numbers of blood samples, even by the donors themselves, and to transport, and store biobanked samples as spots of whole blood dried on paper. Combined with emerging means to measure hundreds or thousands of protein, such biobanks could prove of great medical value by greatly enhancing discovery as well as routine analysis of blood biomarkers.


Subject(s)
Blood Specimen Collection/methods , Neoplasm Proteins/analysis , Neoplasm Proteins/chemistry , Blood Banks , Blood Specimen Collection/adverse effects , Dried Blood Spot Testing , Humans , Protein Stability , Temperature
14.
PLoS Genet ; 12(10): e1006379, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27768686

ABSTRACT

Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or ß-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining "gold standard" measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Fatty Acids, Monounsaturated/metabolism , Insulin Resistance/genetics , Insulin/genetics , Adult , Aged , Aged, 80 and over , Bile Acids and Salts/metabolism , Caffeine/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/pathology , Glucose/metabolism , Glucose Tolerance Test , Glycerophospholipids/metabolism , Humans , Insulin/blood , Insulin/metabolism , Insulin Secretion , Male , Metabolic Networks and Pathways/genetics , Metabolomics , Middle Aged , Tyrosine/blood
15.
Diabetologia ; 61(8): 1748-1757, 2018 08.
Article in English | MEDLINE | ID: mdl-29796748

ABSTRACT

AIMS/HYPOTHESIS: Multiplex proteomics could improve understanding and risk prediction of major adverse cardiovascular events (MACE) in type 2 diabetes. This study assessed 80 cardiovascular and inflammatory proteins for biomarker discovery and prediction of MACE in type 2 diabetes. METHODS: We combined data from six prospective epidemiological studies of 30-77-year-old individuals with type 2 diabetes in whom 80 circulating proteins were measured by proximity extension assay. Multivariable-adjusted Cox regression was used in a discovery/replication design to identify biomarkers for incident MACE. We used gradient-boosted machine learning and lasso regularised Cox regression in a random 75% training subsample to assess whether adding proteins to risk factors included in the Swedish National Diabetes Register risk model would improve the prediction of MACE in the separate 25% test subsample. RESULTS: Of 1211 adults with type 2 diabetes (32% women), 211 experienced a MACE over a mean (±SD) of 6.4 ± 2.3 years. We replicated associations (<5% false discovery rate) between risk of MACE and eight proteins: matrix metalloproteinase (MMP)-12, IL-27 subunit α (IL-27a), kidney injury molecule (KIM)-1, fibroblast growth factor (FGF)-23, protein S100-A12, TNF receptor (TNFR)-1, TNFR-2 and TNF-related apoptosis-inducing ligand receptor (TRAIL-R)2. Addition of the 80-protein assay to established risk factors improved discrimination in the separate test sample from 0.686 (95% CI 0.682, 0.689) to 0.748 (95% CI 0.746, 0.751). A sparse model of 20 added proteins achieved a C statistic of 0.747 (95% CI 0.653, 0.842) in the test sample. CONCLUSIONS/INTERPRETATION: We identified eight protein biomarkers, four of which are novel, for risk of MACE in community residents with type 2 diabetes, and found improved risk prediction by combining multiplex proteomics with an established risk model. Multiprotein arrays could be useful in identifying individuals with type 2 diabetes who are at highest risk of a cardiovascular event.


Subject(s)
Cardiovascular Diseases/complications , Cardiovascular Diseases/diagnosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Proteomics/methods , Adult , Aged , Atherosclerosis/metabolism , Biomarkers/metabolism , Female , Fibroblast Growth Factor-23 , Humans , Inflammation , Male , Middle Aged , Proportional Hazards Models , Risk Factors , Sweden
17.
Diabetologia ; 59(10): 2114-24, 2016 10.
Article in English | MEDLINE | ID: mdl-27406814

ABSTRACT

AIMS/HYPOTHESIS: Identification of novel biomarkers for type 2 diabetes and their genetic determinants could lead to improved understanding of causal pathways and improve risk prediction. METHODS: In this study, we used data from non-targeted metabolomics performed using liquid chromatography coupled with tandem mass spectrometry in three Swedish cohorts (Uppsala Longitudinal Study of Adult Men [ULSAM], n = 1138; Prospective Investigation of the Vasculature in Uppsala Seniors [PIVUS], n = 970; TwinGene, n = 1630). Metabolites associated with impaired fasting glucose (IFG) and/or prevalent type 2 diabetes were assessed for associations with incident type 2 diabetes in the three cohorts followed by replication attempts in the Cooperative Health Research in the Region of Augsburg (KORA) S4 cohort (n = 855). Assessment of the association of metabolite-regulating genetic variants with type 2 diabetes was done using data from a meta-analysis of genome-wide association studies. RESULTS: Out of 5961 investigated metabolic features, 1120 were associated with prevalent type 2 diabetes and IFG and 70 were annotated to metabolites and replicated in the three cohorts. Fifteen metabolites were associated with incident type 2 diabetes in the four cohorts combined (358 events) following adjustment for age, sex, BMI, waist circumference and fasting glucose. Novel findings included associations of higher values of the bile acid deoxycholic acid and monoacylglyceride 18:2 and lower concentrations of cortisol with type 2 diabetes risk. However, adding metabolites to an existing risk score improved model fit only marginally. A genetic variant within the CYP7A1 locus, encoding the rate-limiting enzyme in bile acid synthesis, was found to be associated with lower concentrations of deoxycholic acid, higher concentrations of LDL-cholesterol and lower type 2 diabetes risk. Variants in or near SGPP1, GCKR and FADS1/2 were associated with diabetes-associated phospholipids and type 2 diabetes. CONCLUSIONS/INTERPRETATION: We found evidence that the metabolism of bile acids and phospholipids shares some common genetic origin with type 2 diabetes. ACCESS TO RESEARCH MATERIALS: Metabolomics data have been deposited in the Metabolights database, with accession numbers MTBLS93 (TwinGene), MTBLS124 (ULSAM) and MTBLS90 (PIVUS).


Subject(s)
Bile Acids and Salts/metabolism , Diabetes Mellitus, Type 2/metabolism , Metabolomics/methods , Phospholipids/metabolism , Aged , Blood Glucose/metabolism , Delta-5 Fatty Acid Desaturase , Fasting/blood , Female , Genome-Wide Association Study , Humans , Lipid Metabolism , Longitudinal Studies , Male , Middle Aged
18.
Am J Hum Genet ; 90(2): 217-28, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22305530

ABSTRACT

Structural variations are among the most frequent interindividual genetic differences in the human genome. The frequency and distribution of de novo somatic structural variants in normal cells is, however, poorly explored. Using age-stratified cohorts of 318 monozygotic (MZ) twins and 296 single-born subjects, we describe age-related accumulation of copy-number variation in the nuclear genomes in vivo and frequency changes for both megabase- and kilobase-range variants. Megabase-range aberrations were found in 3.4% (9 of 264) of subjects ≥60 years old; these subjects included 78 MZ twin pairs and 108 single-born individuals. No such findings were observed in 81 MZ pairs or 180 single-born subjects who were ≤55 years old. Recurrent region- and gene-specific mutations, mostly deletions, were observed. Longitudinal analyses of 43 subjects whose data were collected 7-19 years apart suggest considerable variation in the rate of accumulation of clones carrying structural changes. Furthermore, the longitudinal analysis of individuals with structural aberrations suggests that there is a natural self-removal of aberrant cell clones from peripheral blood. In three healthy subjects, we detected somatic aberrations characteristic of patients with myelodysplastic syndrome. The recurrent rearrangements uncovered here are candidates for common age-related defects in human blood cells. We anticipate that extension of these results will allow determination of the genetic age of different somatic-cell lineages and estimation of possible individual differences between genetic and chronological age. Our work might also help to explain the cause of an age-related reduction in the number of cell clones in the blood; such a reduction is one of the hallmarks of immunosenescence.


Subject(s)
Blood Cells/physiology , DNA Copy Number Variations/genetics , Genome, Human , Adult , Age Factors , Aged , Aged, 80 and over , Child , Cohort Studies , Female , Humans , Individuality , Longitudinal Studies , Middle Aged , Mutation/genetics , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/genetics , Twins, Monozygotic/genetics , Young Adult
19.
Acta Neuropathol Commun ; 12(1): 22, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317196

ABSTRACT

Deposition of amyloid beta (Aß) into plaques is a major hallmark of Alzheimer's disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aß. We recently identified the Uppsala APP mutation (APPUpp), which causes Aß pathology by a triple mechanism: increased ß-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aß conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aß pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aß pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased ß-secretase cleavage and suppressed α-secretase cleavage, resulting in AßUpp42 dominated diffuse plaque pathology appearing from the age of 5-6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aß pathology in all models, whereas the Aß protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aß pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AßUpp42 aggregates were found to affect their interaction with anti-Aß antibodies and profoundly modify the Aß-mediated glial response, which may be important aspects to consider for further development of AD therapies.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Brain/pathology , Disease Models, Animal , Gliosis/pathology , Ligands , Mice, Transgenic
20.
Nat Genet ; 56(5): 778-791, 2024 May.
Article in English | MEDLINE | ID: mdl-38689001

ABSTRACT

Hypertension affects more than one billion people worldwide. Here we identify 113 novel loci, reporting a total of 2,103 independent genetic signals (P < 5 × 10-8) from the largest single-stage blood pressure (BP) genome-wide association study to date (n = 1,028,980 European individuals). These associations explain more than 60% of single nucleotide polymorphism-based BP heritability. Comparing top versus bottom deciles of polygenic risk scores (PRSs) reveals clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI, 15.5-18.2 mmHg, P = 2.22 × 10-126) and more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 95% CI, 5.54-9.70; P = 4.13 × 10-44) in an independent dataset. Adding PRS into hypertension-prediction models increased the area under the receiver operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781-0.801) to 0.826 (95% CI, 0.817-0.836, ∆AUROC, 0.035, P = 1.98 × 10-34). We compare the 2,103 loci results in non-European ancestries and show significant PRS associations in a large African-American sample. Secondary analyses implicate 500 genes previously unreported for BP. Our study highlights the role of increasingly large genomic studies for precision health research.


Subject(s)
Blood Pressure , Genetic Predisposition to Disease , Genome-Wide Association Study , Hypertension , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Female , Humans , Male , Blood Pressure/genetics , Genetic Risk Score , Hypertension/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL