ABSTRACT
Transected axons typically fail to regenerate in the central nervous system (CNS), resulting in chronic neurological disability in individuals with traumatic brain or spinal cord injury, glaucoma and ischemia-reperfusion injury of the eye. Although neuroinflammation is often depicted as detrimental, there is growing evidence that alternatively activated, reparative leukocyte subsets and their products can be deployed to improve neurological outcomes. In the current study, we identify a unique granulocyte subset, with characteristics of an immature neutrophil, that had neuroprotective properties and drove CNS axon regeneration in vivo, in part via secretion of a cocktail of growth factors. This pro-regenerative neutrophil promoted repair in the optic nerve and spinal cord, demonstrating its relevance across CNS compartments and neuronal populations. Our findings could ultimately lead to the development of new immunotherapies that reverse CNS damage and restore lost neurological function across a spectrum of diseases.
Subject(s)
Axons/metabolism , Cell Communication , Central Nervous System/cytology , Central Nervous System/metabolism , Nerve Regeneration , Neurons/metabolism , Neutrophils/metabolism , Animals , Biomarkers , Cell Plasticity/immunology , Cell Survival/drug effects , Cell Survival/immunology , Central Nervous System/immunology , Intercellular Signaling Peptides and Proteins/biosynthesis , Mice , Neutrophil Infiltration/immunology , Neutrophils/immunology , Optic Nerve/immunology , Optic Nerve/metabolism , Receptors, Interleukin-8B/metabolism , Spinal Cord/cytology , Spinal Cord/metabolism , Transcriptome , Zymosan/metabolism , Zymosan/pharmacologyABSTRACT
Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1-/- OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding ß-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing ß-glucuronidase rescues Thap1-/- OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.
Subject(s)
DNA-Binding Proteins/metabolism , Extracellular Matrix/metabolism , Lysosomes/metabolism , Animals , DNA-Binding Proteins/genetics , Gene Expression Regulation , Mice , Mice, KnockoutABSTRACT
During mammalian neocortex development, nascent pyramidal neurons migrate along radial glial cells and overtake earlier-born neurons to terminate at the front of the developing cortical plate (CP), leading to the outward expansion of the CP border. While much has been learned about the cellular and molecular mechanisms that underlie the migration of pyramidal neurons, how migrating neurons bypass the preceding neurons at the end of migration to reach their final positions remains poorly understood. Here, we report that Down syndrome cell adhesion molecule (DSCAM) is required for migrating neurons to bypass their post-migratory predecessors during the expansion of the upper cortical layers. DSCAM is a type I transmembrane cell adhesion molecule. It has been linked to Down syndrome through its location in the Down syndrome critical region of Chromosome 21 trisomy and to autism spectrum disorders through loss-of-function mutations. Ex vivo time-lapse imaging demonstrates that DSCAM is required for migrating neurons to bypass their post-migratory predecessors, crossing the CP border to expand the upper cortical layers. In DSCAM-deficient cortices, migrating neurons stop prematurely under the CP border, leading to thinner and denser upper cortical layers. We further show that DSCAM weakens cell adhesion mediated by N-cadherin in the upper cortical plate, allowing migrating neurons to traverse the CP border and expand the CP. These findings suggest that DSCAM is required for proper migratory termination and final positioning of nascent pyramidal neurons, which may provide insight into brain disorders that exhibit thinner upper layers of the cerebral cortex without neuronal loss.SIGNIFICANCE STATEMENTNewly born neurons in the developing mammalian neocortex migrate outward towards the cortical surface, bypassing earlier born neurons to expand the developing cortex. How migrating neurons bypass the preceding neurons and terminate at the front of the expanding cortex remains poorly understood. We demonstrate that Down syndrome cell adhesion molecule (DSCAM), linked to Down syndrome and autism spectrum disorder, is required by migrating neurons to bypass their post-migratory predecessors and terminate migration in the outwardly expanding cortical layer. Migrating neurons deficient in DSCAM stop prematurely, failing to expand the cortex. We further show that DSCAM likely mediates migratory termination by weakening cell-adhesion mediated by N-cadherin.
ABSTRACT
OBJECTIVE: SCN8A encephalopathy is a developmental and epileptic encephalopathy (DEE) caused by de novo gain-of-function mutations of sodium channel Nav 1.6 that result in neuronal hyperactivity. Affected individuals exhibit early onset drug-resistant seizures, developmental delay, and cognitive impairment. This study was carried out to determine whether reducing the abundance of the Scn8a transcript with an antisense oligonucleotide (ASO) would delay seizure onset and prolong survival in a mouse model of SCN8A encephalopathy. METHODS: ASO treatment was tested in a conditional mouse model with Cre-dependent expression of the pathogenic patient SCN8A mutation p.Arg1872Trp (R1872W). This model exhibits early onset of seizures, rapid progression, and 100% penetrance. An Scn1a +/- haploinsufficient mouse model of Dravet syndrome was also treated. ASO was administered by intracerebroventricular injection at postnatal day 2, followed in some cases by stereotactic injection at postnatal day 30. RESULTS: We observed a dose-dependent increase in length of survival from 15 to 65 days in the Scn8a-R1872W/+ mice treated with ASO. Electroencephalographic recordings were normal prior to seizure onset. Weight gain and activity in an open field were unaffected, but treated mice were less active in a wheel running assay. A single treatment with Scn8a ASO extended survival of Dravet syndrome mice from 3 weeks to >5 months. INTERPRETATION: Reduction of Scn8a transcript by 25 to 50% delayed seizure onset and lethality in mouse models of SCN8A encephalopathy and Dravet syndrome. Reduction of SCN8A transcript is a promising approach to treatment of intractable childhood epilepsies. Ann Neurol 2020;87:339-346.
Subject(s)
Brain Diseases/prevention & control , Epilepsies, Myoclonic/prevention & control , NAV1.6 Voltage-Gated Sodium Channel/drug effects , Animals , Brain Diseases/complications , Brain Diseases/mortality , Dose-Response Relationship, Drug , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/mortality , Female , Infusions, Intraventricular , Male , Mice , Mice, Transgenic , Mutation , NAV1.6 Voltage-Gated Sodium Channel/administration & dosage , Oligonucleotides, Antisense/pharmacology , Seizures/complications , Seizures/prevention & controlABSTRACT
The signaling lipid phosphatidylinositol 3,5-bisphosphate, PI(3,5)P2, functions in vesicular trafficking through the endo-lysosomal compartment. Cellular levels of PI(3,5)P2 are regulated by an enzyme complex comprised of the kinase PIKFYVE, the phosphatase FIG4, and the scaffold protein VAC14. Mutations of human FIG4 cause inherited disorders including Charcot-Marie-Tooth disease type 4J, polymicrogyria with epilepsy, and Yunis-Varón syndrome. Constitutive Fig4-/- mice exhibit intention tremor, spongiform degeneration of neural tissue, hypomyelination, and juvenile lethality. To determine whether PI(3,5)P2 is required in the adult, we generated Fig4flox/-; CAG-creER mice and carried out tamoxifen-induced gene ablation. Global ablation in adulthood leads to wasting, tremor, and motor impairment. Death follows within 2 months of tamoxifen treatment, demonstrating a life-long requirement for Fig4. Histological examinations of the sciatic nerve revealed profound Wallerian degeneration of myelinated fibers, but not C-fiber axons in Remak bundles. In optic nerve sections, myelinated fibers appear morphologically intact and carry compound action potentials at normal velocity and amplitude. However, when iKO mice are challenged with a chemical white matter lesion, repair of damaged CNS myelin is significantly delayed, demonstrating a novel role for Fig4 in remyelination. Thus, in the adult PNS Fig4 is required to protect myelinated axons from Wallerian degeneration. In the adult CNS, Fig4 is dispensable for fiber stability and nerve conduction, but is required for the timely repair of damaged white matter. The greater vulnerability of the PNS to Fig4 deficiency in the mouse is consistent with clinical observations in patients with Charcot-Marie-Tooth disease.
Subject(s)
Charcot-Marie-Tooth Disease/genetics , Flavoproteins/genetics , Nervous System/metabolism , Phosphoinositide Phosphatases/genetics , Phosphoric Monoester Hydrolases/genetics , Animals , Axons/pathology , Central Nervous System/physiopathology , Charcot-Marie-Tooth Disease/physiopathology , Cleidocranial Dysplasia/genetics , Cleidocranial Dysplasia/physiopathology , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/physiopathology , Humans , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/physiopathology , Mice , Mice, Transgenic , Micrognathism/genetics , Micrognathism/physiopathology , Mutation , Nervous System/pathology , Neurons/pathology , Peripheral Nervous System/physiopathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol Phosphates/metabolism , Polymicrogyria/genetics , Polymicrogyria/physiopathology , Sciatic Nerve/physiopathologyABSTRACT
During development of the peripheral nervous system, excess neurons are generated, most of which will be lost by programmed cell death due to a limited supply of neurotrophic factors from their targets. Other environmental factors, such as 'competition factors' produced by neurons themselves, and axon guidance molecules have also been implicated in developmental cell death. Semaphorin 3A (Sema3A), in addition to its function as a chemorepulsive guidance cue, can also induce death of sensory neurons in vitro The extent to which Sema3A regulates developmental cell death in vivo, however, is debated. We show that in compartmentalized cultures of rat sympathetic neurons, a Sema3A-initiated apoptosis signal is retrogradely transported from axon terminals to cell bodies to induce cell death. Sema3A-mediated apoptosis utilizes the extrinsic pathway and requires both neuropilin 1 and plexin A3. Sema3A is not retrogradely transported in older, survival factor-independent sympathetic neurons, and is much less effective at inducing apoptosis in these neurons. Importantly, deletion of either neuropilin 1 or plexin A3 significantly reduces developmental cell death in the superior cervical ganglia. Taken together, a Sema3A-initiated apoptotic signaling complex regulates the apoptosis of sympathetic neurons during the period of naturally occurring cell death.
Subject(s)
Apoptosis/physiology , Nerve Tissue Proteins/metabolism , Neuropilin-1/metabolism , Receptors, Cell Surface/metabolism , Semaphorin-3A/metabolism , Superior Cervical Ganglion/embryology , Sympathetic Nervous System/embryology , Animals , Axons/metabolism , Caspase 3/metabolism , Cells, Cultured , Mice , Mice, Knockout , Microtubules/metabolism , Nerve Tissue Proteins/genetics , Neuropilin-1/genetics , RNA Interference , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/genetics , Signal Transduction , Superior Cervical Ganglion/cytology , Superior Cervical Ganglion/physiologyABSTRACT
White matter stroke is a distinct stroke subtype, accounting for up to 25% of stroke and constituting the second leading cause of dementia. The biology of possible tissue repair after white matter stroke has not been determined. In a mouse stroke model, white matter ischemia causes focal damage and adjacent areas of axonal myelin disruption and gliosis. In these areas of only partial damage, local white matter progenitors respond to injury, as oligodendrocyte progenitors (OPCs) proliferate. However, OPCs fail to mature into oligodendrocytes (OLs) even in regions of demyelination with intact axons and instead divert into an astrocytic fate. Local axonal sprouting occurs, producing an increase in unmyelinated fibers in the corpus callosum. The OPC maturation block after white matter stroke is in part mediated via Nogo receptor 1 (NgR1) signaling. In both aged and young adult mice, stroke induces NgR1 ligands and down-regulates NgR1 inhibitors during the peak OPC maturation block. Nogo ligands are also induced adjacent to human white matter stroke in humans. A Nogo signaling blockade with an NgR1 antagonist administered after stroke reduces the OPC astrocytic transformation and improves poststroke oligodendrogenesis in mice. Notably, increased white matter repair in aged mice is translated into significant poststroke motor recovery, even when NgR1 blockade is provided during the chronic time points of injury. These data provide a perspective on the role of NgR1 ligand function in OPC fate in the context of a specific and common type of stroke and show that it is amenable to systemic intervention to promote recovery.
Subject(s)
Aging , Myelin Sheath/chemistry , Nogo Receptor 1/metabolism , Stroke/physiopathology , White Matter/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Axons/metabolism , Brain/pathology , Cell Differentiation , Demyelinating Diseases , Disease Models, Animal , Humans , Ligands , Mice , Mice, Transgenic , Oligodendroglia/cytology , Remyelination , Stem Cells/cytology , Stroke Rehabilitation , White Matter/pathologyABSTRACT
Hedgehog (HH) signaling critically regulates embryonic and postnatal development as well as adult tissue homeostasis, and its perturbation can lead to developmental disorders, birth defects, and cancers. Neuropilins (NRPs), which have well-defined roles in Semaphorin and VEGF signaling, positively regulate HH pathway function, although their mechanism of action in HH signaling remains unclear. Here, using luciferase-based reporter assays, we provide evidence that NRP1 regulates HH signaling specifically at the level of GLI transcriptional activator function. Moreover, we show that NRP1 localization to the primary cilium, a key platform for HH signal transduction, does not correlate with HH signal promotion. Rather, a structure-function analysis suggests that the NRP1 cytoplasmic and transmembrane domains are necessary and sufficient to regulate HH pathway activity. Furthermore, we identify a previously uncharacterized, 12-amino acid region within the NRP1 cytoplasmic domain that mediates HH signal promotion. Overall, our results provide mechanistic insight into NRP1 function within and potentially beyond the HH signaling pathway. These insights have implications for the development of novel modulators of HH-driven developmental disorders and diseases.
Subject(s)
Hedgehog Proteins/metabolism , Kruppel-Like Transcription Factors/agonists , Models, Biological , Neuropilin-1/metabolism , Nuclear Proteins/agonists , Signal Transduction , Amino Acid Motifs , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Embryo, Mammalian/cytology , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/chemistry , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Mutant Strains , Mutation , NIH 3T3 Cells , Neuropilin-1/chemistry , Neuropilin-1/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Protein Transport , Recombinant Fusion Proteins/metabolism , Zinc Finger Protein Gli2ABSTRACT
The lipid phosphatase FIG4 is a subunit of the protein complex that regulates biosynthesis of the signaling lipid PI(3,5)P2. Mutations of FIG4 result in juvenile lethality and spongiform neurodegeneration in the mouse, and are responsible for the human disorders Charcot-Marie-Tooth disease, Yunis-Varon syndrome and polymicrogyria with seizures. We previously demonstrated that conditional expression of a wild-type FIG4 transgene in neurons is sufficient to rescue most of the abnormalities of Fig4 null mice, including juvenile lethality and extensive neurodegeneration. To evaluate the contribution of the phosphatase activity to the in vivo function of Fig4, we introduced the mutation p.Cys486Ser into the Sac phosphatase active-site motif CX5RT. Transfection of the Fig4(Cys486Ser) cDNA into cultured Fig4(-/-) fibroblasts was effective in preventing vacuolization. The neuronal expression of an NSE-Fig4(Cys486Ser) transgene in vivo prevented the neonatal neurodegeneration and juvenile lethality seen in Fig4 null mice. These observations demonstrate that the catalytically inactive FIG4 protein provides significant function, possibly by stabilization of the PI(3,5)P2 biosynthetic complex and/or localization of the complex to endolysosomal vesicles. Despite this partial rescue, later in life the NSE-Fig4(Cys486Ser) transgenic mice display significant abnormalities that include hydrocephalus, defective myelination and reduced lifespan. The late onset phenotype of the NSE-Fig4(Cys486Ser) transgenic mice demonstrates that the phosphatase activity of FIG4 has an essential role in vivo.
Subject(s)
Flavoproteins/genetics , Hydrocephalus/genetics , Mutation , Neurons/metabolism , Animals , Catalytic Domain/genetics , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Cleidocranial Dysplasia/genetics , Cleidocranial Dysplasia/metabolism , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/metabolism , Flavoproteins/metabolism , Hydrocephalus/metabolism , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/metabolism , Mice , Mice, Transgenic , Micrognathism/genetics , Micrognathism/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphoinositide Phosphatases , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Polymicrogyria/genetics , Polymicrogyria/metabolism , Schwann Cells/metabolismABSTRACT
Innate immunity can facilitate nervous system regeneration, yet the underlying cellular and molecular mechanisms are not well understood. Here we show that intraocular injection of lipopolysaccharide (LPS), a bacterial cell wall component, or the fungal cell wall extract zymosan both lead to rapid and comparable intravitreal accumulation of blood-derived myeloid cells. However, when combined with retro-orbital optic nerve crush injury, lengthy growth of severed retinal ganglion cell (RGC) axons occurs only in zymosan-injected mice, and not in LPS-injected mice. In mice deficient for the pattern recognition receptor dectin-1 but not Toll-like receptor-2 (TLR2), zymosan-mediated RGC regeneration is greatly reduced. The combined loss of dectin-1 and TLR2 completely blocks the proregenerative effects of zymosan. In the retina, dectin-1 is expressed by microglia and dendritic cells, but not by RGCs. Dectin-1 is also present on blood-derived myeloid cells that accumulate in the vitreous. Intraocular injection of the dectin-1 ligand curdlan [a particulate form of ß(1, 3)-glucan] promotes optic nerve regeneration comparable to zymosan in WT mice, but not in dectin-1(-/-) mice. Particulate ß(1, 3)-glucan leads to increased Erk1/2 MAP-kinase signaling and cAMP response element-binding protein (CREB) activation in myeloid cells in vivo. Loss of the dectin-1 downstream effector caspase recruitment domain 9 (CARD9) blocks CREB activation and attenuates the axon-regenerative effects of ß(1, 3)-glucan. Studies with dectin-1(-/-)/WT reciprocal bone marrow chimeric mice revealed a requirement for dectin-1 in both retina-resident immune cells and bone marrow-derived cells for ß(1, 3)-glucan-elicited optic nerve regeneration. Collectively, these studies identify a molecular framework of how innate immunity enables repair of injured central nervous system neurons.
Subject(s)
Axons/physiology , Central Nervous System/pathology , Inflammation/pathology , Lectins, C-Type/metabolism , Nerve Regeneration/drug effects , Signal Transduction/drug effects , beta-Glucans/adverse effects , Animals , CARD Signaling Adaptor Proteins/metabolism , Central Nervous System/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Myeloid Differentiation Factor 88/metabolism , Phagocytosis/drug effects , Radiation Tolerance/drug effects , Retina/drug effects , Retina/metabolism , Toll-Like Receptor 2/metabolism , Zymosan/pharmacologyABSTRACT
UNLABELLED: Action potential initiation and propagation in myelinated axons require ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Disruption of these domains after injury impairs nervous system function. Traditionally, injured CNS axons are considered refractory to regeneration, but some recent approaches challenge this view by showing robust long-distance regeneration. However, whether these approaches allow remyelination and promote the reestablishment of AIS and nodes of Ranvier is unknown. Using mouse optic nerve crush as a model for CNS traumatic injury, we performed a detailed analysis of AIS and node disruption after nerve crush. We found significant disruption of AIS and loss of nodes within days of the crush, and complete loss of nodes 1 week after injury. Genetic deletion of the tumor suppressor phosphatase and tensin homolog (Pten) in retinal ganglion cells (RGCs), coupled with stimulation of RGCs by inflammation and cAMP, dramatically enhanced regeneration. With this treatment, we found significant reestablishment of RGC AIS, remyelination, and even reassembly of nodes in regions proximal, within, and distal to the crush site. Remyelination began near the retina, progressed distally, and was confirmed by electron microscopy. Although axons grew rapidly, remyelination and nodal ion channel clustering was much slower. Finally, genetic deletion of ankyrinG from RGCs to block AIS reassembly did not affect axon regeneration, indicating that preservation of neuronal polarity is not required for axon regeneration. Together, our results demonstrate, for the first time, that regenerating CNS axons can be remyelinated and reassemble new AIS and nodes of Ranvier. SIGNIFICANCE STATEMENT: We show, for the first time, that regenerated CNS axons have the capacity to both remyelinate and reassemble the axon initial segments and nodes of Ranvier necessary for rapid and efficient action potential propagation.
Subject(s)
Axons/physiology , Nerve Regeneration/physiology , Optic Nerve Diseases/pathology , Optic Nerve Diseases/physiopathology , Animals , Ankyrins/genetics , Ankyrins/metabolism , Axons/ultrastructure , Cell Adhesion Molecules, Neuronal , Cholera Toxin/metabolism , Disease Models, Animal , Gene Expression Regulation/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Nerve Regeneration/genetics , Nerve Tissue Proteins/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Ranvier's Nodes/metabolism , Ranvier's Nodes/pathology , Ranvier's Nodes/ultrastructure , Spectrin/metabolism , Statistics, Nonparametric , Time FactorsABSTRACT
Mutations of FIG4 are responsible for Yunis-Varón syndrome, familial epilepsy with polymicrogyria, and Charcot-Marie-Tooth type 4J neuropathy (CMT4J). Although loss of the FIG4 phospholipid phosphatase consistently causes decreased PtdIns(3,5)P2 levels, cell-specific sensitivity to partial loss of FIG4 function may differentiate FIG4-associated disorders. CMT4J is an autosomal recessive neuropathy characterized by severe demyelination and axonal loss in human, with both motor and sensory involvement. However, it is unclear whether FIG4 has cell autonomous roles in both motor neurons and Schwann cells, and how loss of FIG4/PtdIns(3,5)P2-mediated functions contribute to the pathogenesis of CMT4J. Here, we report that mice with conditional inactivation of Fig4 in motor neurons display neuronal and axonal degeneration. In contrast, conditional inactivation of Fig4 in Schwann cells causes demyelination and defects in autophagy-mediated degradation. Moreover, Fig4-regulated endolysosomal trafficking in Schwann cells is essential for myelin biogenesis during development and for proper regeneration/remyelination after injury. Our data suggest that impaired endolysosomal trafficking in both motor neurons and Schwann cells contributes to CMT4J neuropathy.
Subject(s)
Charcot-Marie-Tooth Disease/metabolism , Flavoproteins/metabolism , Motor Neurons/metabolism , Schwann Cells/metabolism , Animals , Charcot-Marie-Tooth Disease/genetics , Endosomes/metabolism , Flavoproteins/genetics , Gene Silencing , Humans , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Phosphatidylinositols/metabolism , Phosphoinositide Phosphatases , Protein TransportABSTRACT
Multiple sclerosis (MS) is believed to be initiated by myelin-reactive CD4(+) Th cells. IL-12-polarized Th1 cells, IL-23-polarized Th17 cells, and Th17 cells that acquire Th1 characteristics were each implicated in autoimmune pathogenesis. It is debated whether Th cells that can drive the development of demyelinating lesions are phenotypically diverse or arise from a single lineage. In the current study, we assessed the requirement of IL-12 or IL-23 stimulation, as well as Th plasticity, for the differentiation of T cells capable of inducing CNS axon damage. We found that stable murine Th1 and Th17 cells independently transfer experimental autoimmune encephalomyelitis (widely used as an animal model of MS) in the absence of IL-23 and IL-12, respectively. Plastic Th17 cells are particularly potent mediators of demyelination and axonopathy. In parallel studies, we identified MS patients who consistently mount either IFN-γ- or IL-17-skewed responses to myelin basic protein over the course of a year. Brain magnetic resonance imaging revealed that patients with mixed IFN-γ and IL-17 responses have relatively high T1 lesion burden, a measure of permanent axon damage. Our data challenge the dogma that IL-23 and Th17 plasticity are universally required for the development of experimental autoimmune encephalomyelitis. This study definitively demonstrates that autoimmune demyelinating disease can be driven by distinct Th-polarizing factors and effector subsets, underscoring the importance of a customized approach to the pharmaceutical management of MS.
Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Adoptive Transfer , Animals , Autoimmunity/immunology , Brain/diagnostic imaging , Cell Differentiation/immunology , Demyelinating Diseases/immunology , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-12/immunology , Interleukin-17/immunology , Interleukin-23/immunology , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin Basic Protein/immunology , Optic Nerve/immunology , Optic Nerve/pathology , Radiography , Th1 Cells/cytology , Th1 Cells/transplantation , Th17 Cells/cytology , Th17 Cells/transplantationABSTRACT
In the injured adult mammalian central nervous system (CNS), products are generated that inhibit neuronal sprouting and regeneration. In recent years, most attention has focused on the myelin-associated inhibitory proteins (MAIs) Nogo-A, OMgp, and myelin-associated glycoprotein (MAG). Binding of MAIs to neuronal cell-surface receptors leads to activation of RhoA, growth cone collapse, and neurite outgrowth inhibition. In the present study, we identify low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) as a high-affinity, endocytic receptor for MAG. In contrast with previously identified MAG receptors, binding of MAG to LRP1 occurs independently of terminal sialic acids. In primary neurons, functional inactivation of LRP1 with receptor-associated protein, depletion by RNA interference (RNAi) knock-down, or LRP1 gene deletion is sufficient to significantly reverse MAG and myelin-mediated inhibition of neurite outgrowth. Similar results are observed when LRP1 is antagonized in PC12 and N2a cells. By contrast, inhibiting LRP1 does not attenuate inhibition of neurite outgrowth caused by chondroitin sulfate proteoglycans. Mechanistic studies in N2a cells showed that LRP1 and p75NTR associate in a MAG-dependent manner and that MAG-mediated activation of RhoA may involve both LRP1 and p75NTR. LRP1 derivatives that include the complement-like repeat clusters CII and CIV bind MAG and other MAIs. When CII and CIV were expressed as Fc-fusion proteins, these proteins, purified full-length LRP1 and shed LRP1 all attenuated the inhibition of neurite outgrowth caused by MAG and CNS myelin in primary neurons. Collectively, our studies identify LRP1 as a novel MAG receptor that functions in neurite outgrowth inhibition.
Subject(s)
Central Nervous System/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Myelin Sheath/metabolism , Myelin-Associated Glycoprotein/metabolism , N-Acetylneuraminic Acid/metabolism , Neurites/metabolism , Animals , CHO Cells , COS Cells , Cell Line , Cricetinae , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Mass Spectrometry , Myelin Sheath/genetics , Myelin-Associated Glycoprotein/genetics , Nerve Tissue Proteins , PC12 Cells , Protein Binding , Rats , Receptors, Growth Factor , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolismSubject(s)
Brain/cytology , Membrane Proteins/analysis , Microglia/chemistry , Nerve Tissue Proteins/analysis , Animals , HumansABSTRACT
CMT4J is a severe form of Charcot-Marie-Tooth neuropathy caused by mutation of the phosphoinositide phosphatase FIG4/SAC3. Affected individuals are compound heterozygotes carrying the missense allele FIG4-I41T in combination with a null allele. Analysis using the yeast two-hybrid system demonstrated that the I41T mutation impairs interaction of FIG4 with the scaffold protein VAC14. The critical role of this interaction was confirmed by the demonstration of loss of FIG4 protein in VAC14 null mice. We developed a mouse model of CMT4J by expressing a Fig4-I41T cDNA transgene on the Fig4 null background. Expression of the mutant transcript at a level 5 × higher than endogenous Fig4 completely rescued lethality, whereas 2 × expression gave only partial rescue, providing a model of the human disease. The level of FIG4-I41T protein in transgenic tissues is only 2% of that predicted by the transcript level, as a consequence of the protein instability caused by impaired interaction of the mutant protein with VAC14. Analysis of patient fibroblasts demonstrated a comparably low level of mutant I41T protein. The abundance of FIG4-I41T protein in cultured cells is increased by treatment with the proteasome inhibitor MG-132. The data demonstrate that FIG4-I41T is a hypomorphic allele encoding a protein that is unstable in vivo. Expression of FIG4-I41T protein at 10% of normal level is sufficient for long-term survival, suggesting that patients with CMT4J could be treated by increased production or stabilization of the mutant protein. The transgenic model will be useful for testing in vivo interventions to increase the abundance of the mutant protein.
Subject(s)
Charcot-Marie-Tooth Disease/genetics , Flavoproteins/genetics , Mutation , Alleles , Animals , Autophagy/genetics , Charcot-Marie-Tooth Disease/metabolism , Fibroblasts/metabolism , Flavoproteins/metabolism , Gliosis/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins , Mice , Mice, Transgenic , Models, Animal , Phosphoinositide Phosphatases , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors , TransfectionABSTRACT
Precise control of morphogen signaling levels is essential for proper development. An outstanding question is: what mechanisms ensure proper morphogen activity and correct cellular responses? Previous work has identified Semaphorin (SEMA) receptors, Neuropilins (NRPs) and Plexins (PLXNs), as positive regulators of the Hedgehog (HH) signaling pathway. Here, we provide evidence that NRPs and PLXNs antagonize Wnt signaling in both fibroblasts and epithelial cells. Further, Nrp1/2 deletion in fibroblasts results in elevated baseline Wnt pathway activity and increased maximal responses to Wnt stimulation. Notably, and in contrast to HH signaling, SEMA receptor-mediated Wnt antagonism is independent of primary cilia. Mechanistically, PLXNs and NRPs act downstream of Dishevelled (DVL) to destabilize ß-catenin (CTNNB1) in a proteosome-dependent manner. Further, NRPs, but not PLXNs, act in a GSK3ß/CK1-dependent fashion to antagonize Wnt signaling, suggesting distinct repressive mechanisms for these SEMA receptors. Overall, this study identifies SEMA receptors as novel Wnt pathway antagonists that may also play larger roles integrating signals from multiple inputs.
ABSTRACT
Axotomized spinal motoneurons (MNs) lose presynaptic inputs following peripheral nerve injury; however, the cellular mechanisms that lead to this form of synapse loss are currently unknown. Here, we delineate a critical role for neuronal kinase dual leucine zipper kinase (DLK)/MAP3K12, which becomes activated in axotomized neurons. Studies with conditional knockout mice indicate that DLK signaling activation in injured MNs triggers the induction of phagocytic microglia and synapse loss. Aspects of the DLK-regulated response include expression of C1q first from the axotomized MN and then later in surrounding microglia, which subsequently phagocytose presynaptic components of upstream synapses. Pharmacological ablation of microglia inhibits the loss of cholinergic C boutons from axotomized MNs. Together, the observations implicate a neuronal mechanism, governed by the DLK, in the induction of inflammation and the removal of synapses.
Subject(s)
Motor Neurons , Synapses , Animals , Mice , Signal Transduction , Complement Activation , Presynaptic Terminals , Mice, KnockoutABSTRACT
Integration of extracellular signals by neurons is pivotal for brain development, plasticity, and repair. Axon guidance relies on receptor-ligand interactions crosstalking with extracellular matrix components. Semaphorin-5A (Sema5A) is a bifunctional guidance cue exerting attractive and inhibitory effects on neuronal growth through the interaction with heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAGs), respectively. Sema5A harbors seven thrombospondin type-1 repeats (TSR1-7) important for GAG binding, however the underlying molecular basis and functions in vivo remain enigmatic. Here we dissect the structural basis for Sema5A:GAG specificity and demonstrate the functional significance of this interaction in vivo. Using x-ray crystallography, we reveal a dimeric fold variation for TSR4 that accommodates GAG interactions. TSR4 co-crystal structures identify binding residues validated by site-directed mutagenesis. In vitro and cell-based assays uncover specific GAG epitopes necessary for TSR association. We demonstrate that HS-GAG binding is preferred over CS-GAG and mediates Sema5A oligomerization. In vivo, Sema5A:GAG interactions are necessary for Sema5A function and regulate Plexin-A2 dependent dentate progenitor cell migration. Our study rationalizes Sema5A associated developmental and neurological disorders and provides mechanistic insights into how multifaceted guidance functions of a single transmembrane cue are regulated by proteoglycans.
Subject(s)
Glycosaminoglycans , Semaphorins , Glycosaminoglycans/metabolism , Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Cell Movement , Semaphorins/genetics , Semaphorins/metabolismABSTRACT
In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate ß-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to ß-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.