Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Cell ; 185(8): 1373-1388.e20, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35381199

ABSTRACT

Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.


Subject(s)
Scleroderma, Systemic , Cells, Cultured , Fibroblasts/metabolism , Fibrosis , Humans , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/genetics , Skin/metabolism
2.
Cell ; 181(7): 1475-1488.e12, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32479746

ABSTRACT

Viruses are a constant threat to global health as highlighted by the current COVID-19 pandemic. Currently, lack of data underlying how the human host interacts with viruses, including the SARS-CoV-2 virus, limits effective therapeutic intervention. We introduce Viral-Track, a computational method that globally scans unmapped single-cell RNA sequencing (scRNA-seq) data for the presence of viral RNA, enabling transcriptional cell sorting of infected versus bystander cells. We demonstrate the sensitivity and specificity of Viral-Track to systematically detect viruses from multiple models of infection, including hepatitis B virus, in an unsupervised manner. Applying Viral-Track to bronchoalveloar-lavage samples from severe and mild COVID-19 patients reveals a dramatic impact of the virus on the immune system of severe patients compared to mild cases. Viral-Track detects an unexpected co-infection of the human metapneumovirus, present mainly in monocytes perturbed in type-I interferon (IFN)-signaling. Viral-Track provides a robust technology for dissecting the mechanisms of viral-infection and pathology.


Subject(s)
Coronavirus Infections/physiopathology , Host-Pathogen Interactions , Pneumonia, Viral/physiopathology , Software , Animals , Betacoronavirus/isolation & purification , COVID-19 , Coinfection/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Interferons/immunology , Lung/pathology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Sensitivity and Specificity , Sequence Analysis, RNA , Severity of Illness Index , Single-Cell Analysis
3.
Cell ; 179(7): 1609-1622.e16, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31835035

ABSTRACT

Microglia, the brain-resident immune cells, are critically involved in many physiological and pathological brain processes, including neurodegeneration. Here we characterize microglia morphology and transcriptional programs across ten species spanning more than 450 million years of evolution. We find that microglia express a conserved core gene program of orthologous genes from rodents to humans, including ligands and receptors associated with interactions between glia and neurons. In most species, microglia show a single dominant transcriptional state, whereas human microglia display significant heterogeneity. In addition, we observed notable differences in several gene modules of rodents compared with primate microglia, including complement, phagocytic, and susceptibility genes to neurodegeneration, such as Alzheimer's and Parkinson's disease. Our study provides an essential resource of conserved and divergent microglia pathways across evolution, with important implications for future development of microglia-based therapies in humans.


Subject(s)
Evolution, Molecular , Gene Regulatory Networks , Microglia/metabolism , Neurodegenerative Diseases/genetics , Single-Cell Analysis , Transcriptome , Animals , Chickens , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Primates , Reptiles , Rodentia , Sheep , Swine , Zebrafish
4.
Cell ; 172(1-2): 14-21, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328909

ABSTRACT

The immunology field has invested great efforts and ingenuity to characterize the various immune cell types and elucidate their functions. However, accumulating evidence indicates that current technologies and classification schemes are limited in their ability to account for the functional heterogeneity of immune processes. Single-cell genomics hold the potential to revolutionize the way we characterize complex immune cell assemblies and study their spatial organization, dynamics, clonal distribution, pathways, function, and crosstalks. In this Perspective, we consider recent and forthcoming technological and analytical advances in single-cell genomics and the potential impact of those advances on the future of immunology research and immunotherapy.


Subject(s)
Genomics/methods , Immunologic Techniques/methods , Single-Cell Analysis/methods , Animals , Humans , Immunologic Techniques/trends , Immunotherapy/methods , Immunotherapy/trends
5.
Cell ; 175(4): 1031-1044.e18, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30318149

ABSTRACT

Lung development and function arises from the interactions between diverse cell types and lineages. Using single-cell RNA sequencing (RNA-seq), we characterize the cellular composition of the lung during development and identify vast dynamics in cell composition and their molecular characteristics. Analyzing 818 ligand-receptor interaction pairs within and between cell lineages, we identify broadly interacting cells, including AT2, innate lymphocytes (ILCs), and basophils. Using interleukin (IL)-33 receptor knockout mice and in vitro experiments, we show that basophils establish a lung-specific function imprinted by IL-33 and granulocyte-macrophage colony-stimulating factor (GM-CSF), characterized by unique signaling of cytokines and growth factors important for stromal, epithelial, and myeloid cell fates. Antibody-depletion strategies, diphtheria toxin-mediated selective depletion of basophils, and co-culture studies show that lung resident basophils are important regulators of alveolar macrophage development and function. Together, our study demonstrates how whole-tissue signaling interaction map on the single-cell level can broaden our understanding of cellular networks in health and disease.


Subject(s)
Basophils/metabolism , Cell Communication , Genomic Imprinting , Macrophages, Alveolar/metabolism , Transcriptome , Animals , Cell Differentiation , Cell Line, Tumor , Cells, Cultured , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-33/metabolism , Macrophages, Alveolar/cytology , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Single-Cell Analysis
6.
Nat Immunol ; 21(5): 525-534, 2020 05.
Article in English | MEDLINE | ID: mdl-32313246

ABSTRACT

Multiple sclerosis (MS) is characterized by pathological inflammation that results from the recruitment of lymphoid and myeloid immune cells from the blood into the brain. Due to subset heterogeneity, defining the functional roles of the various cell subsets in acute and chronic stages of MS has been challenging. Here, we used index and transcriptional single-cell sorting to characterize the mononuclear phagocytes that infiltrate the central nervous system from the periphery in mice with experimentally induced autoimmune encephalomyelitis, a model of MS. We identified eight monocyte and three dendritic cell subsets at acute and chronic disease stages in which the defined transcriptional programs pointed toward distinct functions. Monocyte-specific cell ablation identified Cxcl10+ and Saa3+ monocytic subsets with a pathogenic potential. Transfer experiments with different monocyte and precursor subsets indicated that these Cxcl10+ and Saa3+ pathogenic cells were not derived from Ly6C+ monocytes but from early myeloid cell progenitors. These results suggest that blocking specific pathogenic monocytic subsets, including Cxcl10+ and Saa3+ monocytes, could be used for targeted therapeutic interventions.


Subject(s)
Dendritic Cells/physiology , Encephalomyelitis, Autoimmune, Experimental/immunology , Monocytes/physiology , Multiple Sclerosis/immunology , Phagocytes/physiology , Animals , Autoimmunity , Cell Differentiation , Cells, Cultured , Central Nervous System , Chemokine CXCL10/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenic Inflammation , Serum Amyloid A Protein/metabolism , Single-Cell Analysis , Transcription Factors/genetics
9.
Nat Immunol ; 21(3): 321-330, 2020 03.
Article in English | MEDLINE | ID: mdl-32066949

ABSTRACT

Differentiation of CD4+ T cells into either follicular helper T (TFH) or type 1 helper T (TH1) cells influences the balance between humoral and cellular adaptive immunity, but the mechanisms whereby pathogens elicit distinct effector cells are incompletely understood. Here we analyzed the spatiotemporal dynamics of CD4+ T cells during infection with recombinant vesicular stomatitis virus (VSV), which induces early, potent neutralizing antibodies, or recombinant lymphocytic choriomeningitis virus (LCMV), which induces a vigorous cellular response but inefficient neutralizing antibodies, expressing the same T cell epitope. Early exposure of dendritic cells to type I interferon (IFN), which occurred during infection with VSV, induced production of the cytokine IL-6 and drove TFH cell polarization, whereas late exposure to type I IFN, which occurred during infection with LCMV, did not induce IL-6 and allowed differentiation into TH1 cells. Thus, tight spatiotemporal regulation of type I IFN shapes antiviral CD4+ T cell differentiation and might instruct vaccine design strategies.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interferon Type I/metabolism , Adaptive Immunity , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes/classification , Cell Differentiation/immunology , Female , Interleukin-6/biosynthesis , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Spatio-Temporal Analysis , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , Vesicular stomatitis Indiana virus/immunology , Vesicular stomatitis Indiana virus/pathogenicity , Vesicular stomatitis New Jersey virus/immunology , Vesicular stomatitis New Jersey virus/pathogenicity
10.
Nat Immunol ; 20(7): 852-864, 2019 07.
Article in English | MEDLINE | ID: mdl-31213723

ABSTRACT

Dendritic cells (DC) are currently classified as conventional DCs (cDCs) and plasmacytoid DCs (pDCs). Through a combination of single-cell transcriptomic analysis, mass cytometry, in vivo fate mapping and in vitro clonal assays, here we show that, at the single-cell level, the priming of mouse hematopoietic progenitor cells toward the pDC lineage occurs at the common lymphoid progenitor stage, indicative of early divergence of the pDC and cDC lineages. We found the transcriptional signature of a pDC precursor stage, defined here, in the IL-7Rα+ common lymphoid progenitor population and identified Ly6D, IL-7Rα, CD81 and CD2 as key markers of pDC differentiation, which distinguish pDC precursors from cDC precursors. In conclusion, pDCs developed in the bone marrow from a Ly6DhiCD2hi lymphoid progenitor cell and differentiated independently of the myeloid cDC lineage.


Subject(s)
Antigens, Ly/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Flow Cytometry , GPI-Linked Proteins/metabolism , Gene Expression , Gene Expression Profiling , Mice , Transcriptome
11.
Cell ; 166(5): 1231-1246.e13, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27545347

ABSTRACT

Innate lymphoid cells (ILCs) are critical modulators of mucosal immunity, inflammation, and tissue homeostasis, but their full spectrum of cellular states and regulatory landscapes remains elusive. Here, we combine genome-wide RNA-seq, ChIP-seq, and ATAC-seq to compare the transcriptional and epigenetic identity of small intestinal ILCs, identifying thousands of distinct gene profiles and regulatory elements. Single-cell RNA-seq and flow and mass cytometry analyses reveal compartmentalization of cytokine expression and metabolic activity within the three classical ILC subtypes and highlight transcriptional states beyond the current canonical classification. In addition, using antibiotic intervention and germ-free mice, we characterize the effect of the microbiome on the ILC regulatory landscape and determine the response of ILCs to microbial colonization at the single-cell level. Together, our work characterizes the spectrum of transcriptional identities of small intestinal ILCs and describes how ILCs differentially integrate signals from the microbial microenvironment to generate phenotypic and functional plasticity.


Subject(s)
Gastrointestinal Microbiome , Immunity, Innate/genetics , Intestines/immunology , Intestines/microbiology , Lymphocytes/immunology , Lymphocytes/microbiology , Animals , Base Sequence , Chromatin/metabolism , Cytokines/immunology , Epigenesis, Genetic , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Single-Cell Analysis , Transcription, Genetic
13.
Cell ; 163(7): 1663-77, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26627738

ABSTRACT

Within the bone marrow, stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with in vivo differentiation potential or gene regulatory mechanisms. Here, we comprehensively map myeloid progenitor subpopulations by transcriptional sorting of single cells from the bone marrow. We describe multiple progenitor subgroups, showing unexpected transcriptional priming toward seven differentiation fates but no progenitors with a mixed state. Transcriptional differentiation is correlated with combinations of known and previously undefined transcription factors, suggesting that the process is tightly regulated. Histone maps and knockout assays are consistent with early transcriptional priming, while traditional transplantation experiments suggest that in vivo priming may still allow for plasticity given strong perturbations. These data establish a reference model and general framework for studying hematopoiesis at single-cell resolution.


Subject(s)
Hematopoiesis , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/metabolism , Single-Cell Analysis , Transcriptome , Animals , Bone Marrow Transplantation , CCAAT-Enhancer-Binding Proteins/genetics , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Transcription Factors/metabolism
14.
Blood ; 143(3): 243-257, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37922454

ABSTRACT

ABSTRACT: Regulation of lineage biases in hematopoietic stem and progenitor cells (HSPCs) is pivotal for balanced hematopoietic output. However, little is known about the mechanism behind lineage choice in HSPCs. Here, we show that messenger RNA (mRNA) decay factors regnase-1 (Reg1; Zc3h12a) and regnase-3 (Reg3; Zc3h12c) are essential for determining lymphoid fate and restricting myeloid differentiation in HSPCs. Loss of Reg1 and Reg3 resulted in severe impairment of lymphopoiesis and a mild increase in myelopoiesis in the bone marrow. Single-cell RNA sequencing analysis revealed that Reg1 and Reg3 regulate lineage directions in HSPCs via the control of a set of myeloid-related genes. Reg1- and Reg3-mediated control of mRNA encoding Nfkbiz, a transcriptional and epigenetic regulator, was essential for balancing lymphoid/myeloid lineage output in HSPCs in vivo. Furthermore, single-cell assay for transposase-accessible chromatin sequencing analysis revealed that Reg1 and Reg3 control the epigenetic landscape on myeloid-related gene loci in early stage HSPCs via Nfkbiz. Consistently, an antisense oligonucleotide designed to inhibit Reg1- and Reg3-mediated Nfkbiz mRNA degradation primed hematopoietic stem cells toward myeloid lineages by enhancing Nfkbiz expression. Collectively, the collaboration between posttranscriptional control and chromatin remodeling by the Reg1/Reg3-Nfkbiz axis governs HSPC lineage biases, ultimately dictating the fate of lymphoid vs myeloid differentiation.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Cell Lineage/genetics , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Hematopoiesis/genetics , RNA, Messenger/metabolism , Cell Differentiation/genetics
15.
Immunity ; 46(5): 849-862.e7, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28514690

ABSTRACT

Monocytes are circulating, short-lived mononuclear phagocytes, which in mice and man comprise two main subpopulations. Murine Ly6C+ monocytes display developmental plasticity and are recruited to complement tissue-resident macrophages and dendritic cells on demand. Murine vascular Ly6C- monocytes patrol the endothelium, act as scavengers, and support vessel wall repair. Here we characterized population and single cell transcriptomes, as well as enhancer and promoter landscapes of the murine monocyte compartment. Single cell RNA-seq and transplantation experiments confirmed homeostatic default differentiation of Ly6C+ into Ly6C- monocytes. The main two subsets were homogeneous, but linked by a more heterogeneous differentiation intermediate. We show that monocyte differentiation occurred through de novo enhancer establishment and activation of pre-established (poised) enhancers. Generation of Ly6C- monocytes involved induction of the transcription factor C/EBPß and C/EBPß-deficient mice lacked Ly6C- monocytes. Mechanistically, C/EBPß bound the Nr4a1 promoter and controlled expression of this established monocyte survival factor.


Subject(s)
Antigens, Ly/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Genomics , Monocytes/metabolism , Animals , Biomarkers , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cluster Analysis , Epigenesis, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation , Genomics/methods , High-Throughput Nucleotide Sequencing , Immunophenotyping , Male , Mice , Mice, Knockout , Monocyte-Macrophage Precursor Cells/classification , Monocyte-Macrophage Precursor Cells/metabolism , Monocytes/cytology , Monocytes/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phenotype , Promoter Regions, Genetic , Protein Binding
17.
Nature ; 559(7715): 622-626, 2018 07.
Article in English | MEDLINE | ID: mdl-30022162

ABSTRACT

T cell development and selection are coordinated in the thymus by a specialized niche of diverse stromal populations1-3. Although much progress has been made over the years in identifying the functions of the different cell types of the thymic stromal compartment, there is no comprehensive characterization of their diversity and heterogeneity. Here we combined massively parallel single-cell RNA-sequencing4,5, spatial mapping, chromatin profiling and gene targeting to characterize de novo the entire stromal compartment of the mouse thymus. We identified dozens of cell states, with thymic epithelial cells (TECs) showing the highest degree of heterogeneity. Our analysis highlights four major medullary TEC (mTEC I-IV) populations, with distinct molecular functions, epigenetic landscapes and lineage regulators. Specifically, mTEC IV constitutes a new and highly divergent TEC lineage with molecular characteristics of the gut chemosensory epithelial tuft cells. Mice deficient in Pou2f3, a master regulator of tuft cells, have complete and specific depletion of mTEC IV cells, which results in increased levels of thymus-resident type-2 innate lymphoid cells. Overall, our study provides a comprehensive characterization of the thymic stroma and identifies a new tuft-like TEC population, which is critical for shaping the immune niche in the thymus.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Interleukin-17/metabolism , Interleukins/metabolism , Single-Cell Analysis , Thymus Gland/cytology , Thymus Gland/immunology , Animals , Epigenesis, Genetic , Epithelial Cells/immunology , Female , Humans , Interleukin-17/biosynthesis , Interleukins/biosynthesis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Molecular , Transcription Factors/biosynthesis , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , AIRE Protein
18.
Haematologica ; 108(9): 2316-2330, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36475518

ABSTRACT

Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.


Subject(s)
GATA2 Deficiency , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Child , Humans , Mice , Animals , GATA2 Deficiency/genetics , Myelodysplastic Syndromes/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bone Marrow/pathology , Hematopoietic Stem Cells/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism
19.
Nature ; 542(7641): 352-356, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28166538

ABSTRACT

The mammalian liver consists of hexagon-shaped lobules that are radially polarized by blood flow and morphogens. Key liver genes have been shown to be differentially expressed along the lobule axis, a phenomenon termed zonation, but a detailed genome-wide reconstruction of this spatial division of labour has not been achieved. Here we measure the entire transcriptome of thousands of mouse liver cells and infer their lobule coordinates on the basis of a panel of zonated landmark genes, characterized with single-molecule fluorescence in situ hybridization. Using this approach, we obtain the zonation profiles of all liver genes with high spatial resolution. We find that around 50% of liver genes are significantly zonated and uncover abundant non-monotonic profiles that peak at the mid-lobule layers. These include a spatial order of bile acid biosynthesis enzymes that matches their position in the enzymatic cascade. Our approach can facilitate the reconstruction of similar spatial genomic blueprints for other mammalian organs.


Subject(s)
Gene Expression Profiling , Hepatocytes/metabolism , Liver/cytology , Liver/physiology , Single-Cell Analysis , Animals , Bile Acids and Salts/biosynthesis , Genome/genetics , In Situ Hybridization, Fluorescence , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single Molecule Imaging , Transcriptome/genetics
20.
Acta Haematol ; 145(3): 297-309, 2022.
Article in English | MEDLINE | ID: mdl-35235928

ABSTRACT

BACKGROUND: The clinical presentation of coronavirus disease 19 (COVID-19) is the result of intricate interactions between the novel coronavirus and the immune system. In patients with hematologic malignancies (HM), these interactions dramatically change the clinical course and outcomes of COVID-19. SUMMARY: Patients with HM and COVID-19 are at an increased risk for prolonged viral shedding, more protracted and severe presentation, and death, even when compared to other immunocompromised hosts. HM (e.g., multiple myeloma, chronic lymphocytic leukemia) and anticancer treatments (e.g., anti-CD20 agents) that impair humoral immunity markedly increase the risk of severe COVID-19 as well as protracted viral shedding and possibly longer infectivity. Cytokine release syndrome (CRS) is an important player in the pathophysiology of severe and fatal COVID-19. Treatments targeting specific cytokines involved in CRS such as interleukin-6 and Janus kinase have proven beneficial in COVID-19 patients but were not assessed specifically in HM patients. Although neutropenia (as well as neutrophilia) was associated with increased COVID-19 mortality, granulocyte colony-stimulating factors were not beneficial in patients with COVID-19 and may have been associated with worse outcomes. Decreased levels of T lymphocytes and especially decreased CD4+ counts, and depletion of CD8+ lymphocytes, are a hallmark of severe COVID-19, and even more so among patients with HM, underlying the important role of T-helper dysfunction in severe COVID-19. In HM patients with intact cellular immunity, robust T-cell responses may compensate for an impaired humoral immune system. Further prospective studies are needed to evaluate the mechanisms of severe COVID-19 among patients with HM and assess the efficacy of new immunomodulating COVID-19 treatments in this population. KEY MESSAGES: Understanding the immunopathology of COVID-19 has greatly benefited from the previous research in patients with HM. So far, no COVID-19 treatments were properly evaluated in patients with HM. Patients with HM should be included in future RCTs assessing treatments for COVID-19.


Subject(s)
COVID-19 , Hematologic Neoplasms , Multiple Myeloma , Neutropenia , COVID-19/complications , Hematologic Neoplasms/complications , Humans , Immunity , Multiple Myeloma/complications , Neutropenia/complications
SELECTION OF CITATIONS
SEARCH DETAIL