Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Proteomics ; 20(1): 28, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37501157

ABSTRACT

BACKGROUND: Non-muscle-invasive bladder cancer (NMIBC) has a high recurrence rate and muscle-invasive bladder cancer (MIBC) has unfavorable outcomes in urothelial bladder cancer (UBC) patients. Complex UBC-related protein biomarkers for outcome prediction may provide a more efficient management approach with an improved clinical outcome. The aim of this study is to recognize tumor-associated proteins, which are differentially expressed in different stages of UBC patients compared non-cancerous tissues. METHODS: The proteome of tissue samples of 42 UBC patients (NMIBC n = 25 and MIBC n = 17) was subjected to two-dimensional electrophoresis (2-DE) combined with Liquid chromatography-mass spectrometry (LC-MS) system to identify differentially expressed proteins. The intensity of protein spots was quantified and compared with Prodigy SameSpots software. Functional, pathway, and interaction analyses of identified proteins were performed using geneontology (GO), PANTHER, Reactome, Gene MANIA, and STRING databases. RESULTS: Twelve proteins identified by LC-MS showed differential expression (over 1.5-fold, p < 0.05) by LC-MS, including 9 up-regulated in NMIBC and 3 up-regulated in MIBC patients. Proteins involved in the detoxification of reactive oxygen species and cellular responses to oxidative stress showed the most significant changes in UBC patients. Additionally, the most potential functions related to these detected proteins were associated with peroxidase, oxidoreductase, and antioxidant activity. CONCLUSION: We identified several alterations in protein expression involved in canonical pathways which were correlated with the clinical outcomes suggested might be useful as promising biomarkers for early detection, monitoring, and prognosis of UBC.

2.
Adv Exp Med Biol ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37923882

ABSTRACT

Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.

3.
Cell Tissue Bank ; 23(4): 653-668, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34545506

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent cells which are popular in human regenerative medicine. These cells can renew themselves and differentiate into several specialized cell types including osteoblasts, adipocytes, and chondrocytes under physiological and experimental conditions. MSCs can secret a lot of components including proteins and metabolites. These components have significant effects on their surrounding cells and also can be used to characterize them. This characterization of multipotent MSCs plays a critical role in their therapeutic potential. The metabolic profile of culture media verified by applying matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) techniques. Also, the differentiation and development of MSCs have monitored through culture media metabolome or secretome (secreted metabolites). Totally, 24 potential metabolites were identified. Between them 12 metabolites are unique to BM-MSCs and 5 metabolites are unique to AD-MSCs. Trilineage differentiation including chondrocytes, osteoblasts, and adipocytes, as well as metabolites that are being differentiated, have been shown in different weeks. In the present study, the therapeutic effects of MSCs analyzed by decoding the metabolome for MSCs secretome via metabolic profiling using MALDI-TOF-MS techniques.


Subject(s)
Mesenchymal Stem Cells , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Culture Media/metabolism , Cell Differentiation , Adipocytes
4.
Mol Pharmacol ; 99(5): 308-318, 2021 05.
Article in English | MEDLINE | ID: mdl-33632781

ABSTRACT

Celecoxib, or Celebrex, a nonsteroidal anti-inflammatory drug, is one of the most common medicines for treating inflammatory diseases. Recently, it has been shown that celecoxib is associated with implications in complex diseases, such as Alzheimer disease and cancer as well as with cardiovascular risk assessment and toxicity, suggesting that celecoxib may affect multiple unknown targets. In this project, we detected targets of celecoxib within the nervous system using a label-free thermal proteome profiling method. First, proteins of the rat hippocampus were treated with multiple drug concentrations and temperatures. Next, we separated the soluble proteins from the denatured and sedimented total protein load by ultracentrifugation. Subsequently, the soluble proteins were analyzed by nano-liquid chromatography tandem mass spectrometry to determine the identity of the celecoxib-targeted proteins based on structural changes by thermal stability variation of targeted proteins toward higher solubility in the higher temperatures. In the analysis of the soluble protein extract at 67°C, 44 proteins were uniquely detected in drug-treated samples out of all 478 identified proteins at this temperature. Ras-associated binding protein 4a, 1 out of these 44 proteins, has previously been reported as one of the celecoxib off targets in the rat central nervous system. Furthermore, we provide more molecular details through biomedical enrichment analysis to explore the potential role of all detected proteins in the biologic systems. We show that the determined proteins play a role in the signaling pathways related to neurodegenerative disease-and cancer pathways. Finally, we fill out molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets. SIGNIFICANCE STATEMENT: This study determined 44 off-target proteins of celecoxib, a nonsteroidal anti-inflammatory and one of the most common medicines for treating inflammatory diseases. It shows that these proteins play a role in the signaling pathways related to neurodegenerative disease and cancer pathways. Finally, the study provides molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Celecoxib/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Proteins/metabolism , Proteome/metabolism , Animals , Chromatography, Liquid/methods , Gene Expression Profiling/methods , Humans , Male , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Rats , Solubility/drug effects , Tandem Mass Spectrometry/methods , Temperature
5.
Clin Proteomics ; 18(1): 18, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34372761

ABSTRACT

INTRODUCTION: Placenta is a complex organ that plays a significant role in the maintenance of pregnancy health. It is a dynamic organ that undergoes dramatic changes in growth and development at different stages of gestation. In the first-trimester, the conceptus develops in a low oxygen environment that favors organogenesis in the embryo and cell proliferation and angiogenesis in the placenta; later in pregnancy, higher oxygen concentration is required to support the rapid growth of the fetus. This oxygen transition, which appears unique to the human placenta, must be finely tuned through successive rounds of protein signature alterations. This study compares placental proteome in normal first-trimester (FT) and term human placentas (TP). METHODS: Normal human first-trimester and term placental samples were collected and differentially expressed proteins were identified using two-dimensional liquid chromatography-tandem mass spectrometry. RESULTS: Despite the overall similarities, 120 proteins were differently expressed in first and term placentas. Out of these, 72 were up-regulated and 48 were down-regulated in the first when compared with the full term placentas. Twenty out of 120 differently expressed proteins were sequenced, among them seven showed increased (GRP78, PDIA3, ENOA, ECH1, PRDX4, ERP29, ECHM), eleven decreased (TRFE, ALBU, K2C1, ACTG, CSH2, PRDX2, FABP5, HBG1, FABP4, K2C8, K1C9) expression in first-trimester compared to the full-term placentas and two proteins exclusively expressed in first-trimester placentas (MESD, MYDGF). CONCLUSION: According to Reactome and PANTHER softwares, these proteins were mostly involved in response to chemical stimulus and stress, regulation of biological quality, programmed cell death, hemostatic and catabolic processes, protein folding, cellular oxidant detoxification, coagulation and retina homeostasis. Elucidation of alteration in protein signature during placental development would provide researchers with a better understanding of the critical biological processes of placentogenesis and delineate proteins involved in regulation of placental function during development.

6.
Adv Exp Med Biol ; 1341: 89-105, 2021.
Article in English | MEDLINE | ID: mdl-31485993

ABSTRACT

OBJECTIVES: Aging as an inevitable and complex physiological process occurs through a progressive decrease in the potential of tissue regeneration. Given the increasing global outbreak of aging and age-related disorders, it is important to control this phenomenon. Parkinson's disease (one of the age-related neurodegenerative and progressive disorders) resulted from predominant dopaminergic neurons deficiency. Usual Parkinson's disease treatments just can lead to symptomatically relieving. Recently, cell therapy and regenerative medicine a great promise in the treatment of several types of disorders including Parkinson's disease. Herein, before starting clinical trials, preclinical studies should be performed to answer some fundamental questions about the safety and efficacy of various treatments. Additionally, developing a well-designed and approved study is required to provide an appropriate animal model with strongly reliable validation methods. Hereupon, this review will discuss about the design and application of an appropriate Parkinson's disease animal model in regenerative medicine. EVIDENCE ACQUISITION: In order to conduct the present review, numbers of Parkinson's disease preclinical studies, as well as literatures related to the animal modeling, were considered. RESULTS: Appropriate animal models which approved by related authorize committees should have a high similarity to humans from anatomical, physiological, behavioral, and genetic characteristics view of point. CONCLUSION: It is concluded that animal studies before starting clinical trials have an important role in answering the crucial questions about the various treatments safety and efficacy. Therein, it is recommended that all of animal modeling stages be assessed by animal ethics and welfare guidelines and also evaluated by different validation tests. However, it is better to find some alternatives to replacement, refinement, and, reduction of animals. Nowadays, some novel technologies such as using imaging methods have been introduced.


Subject(s)
Parkinson Disease , Aging , Animals , Disease Models, Animal , Dopaminergic Neurons , Humans , Parkinson Disease/genetics , Parkinson Disease/therapy , Regenerative Medicine
7.
Adv Exp Med Biol ; 1288: 139-160, 2020.
Article in English | MEDLINE | ID: mdl-32424491

ABSTRACT

Although stem cells have the most therapeutic potential, the advantages of regenerative medicine may be best provided using extracellular vesicles which also known in the past as "cellular dust." These microparticles are substances released by cells and play a pivotal role in pathophysiology of tumor progression and metastasis, thrombosis, and inflammation. Extracellular vesicles including exosomes and cell-derived microparticles supporting many physiological and disease processes which are relevant to immunology, hemostasis, thrombosis, neurobiology, cell signaling, angiogenesis, and cancer. While they have not any value for many years, this cellular dust has been studied and shows therapeutic properties similar to their mother cells (stem cells) but without their disadvantages. These vesicles do not divide, limiting the risk of cancer, and do not differentiate either. Therefore, they prevent tumor progression and development of poor function. Furthermore, it appears that they can be produced by a single donor for several patients, and have already confirmed their therapeutic potential in animals in repairing heart, liver and kidney lesions. The present study was aimed to introduce cellular dust as a new horizon for regenerative cancer medicine and also new hope for potential therapeutic applications of cancer and associated diseases.


Subject(s)
Extracellular Vesicles , Medical Oncology/methods , Neoplasms/therapy , Regenerative Medicine/methods , Animals , Cell-Derived Microparticles , Exosomes , Humans
8.
Adv Exp Med Biol ; 1247: 33-64, 2020.
Article in English | MEDLINE | ID: mdl-31845133

ABSTRACT

Gene therapy as a novel study in molecular medicine will have a significant impact on human health in the near future. In recent years, the scope of gene therapy has been developed and is now beginning to revolutionize therapeutic approaches. Accordingly, many types of diseases are now being studied and treated in clinical trials through various gene delivery vectors. The emergence of recombinant DNA technology which provides the possibility of fetal genetic screening and genetic counseling is a good case in point. Therefore, gene therapy advances are being applied to correct inherited genetic disorders such as hemophilia, cystic fibrosis, and familial hypercholesterolemia as well as acquired diseases like cancer, AIDS, Alzheimer's disease, Parkinson's disease, and infectious diseases like HIV. As a result, gene therapy approaches have the ability to help the vast majority of newborns with different diseases. Since these ongoing treatments and clinical trials are being developed, many more barriers and challenges have been created. In order to continue this positive growth, these challenges need to be recognized and addressed. Accordingly, safety, efficiency and also risks and benefits of gene therapy trials for each disease should be considered. As a result, sustained manufacturing of the therapeutic gene product without any harmful side effects is the least requirement for gene therapy. Herein, different aspects of gene therapy, an overview of the progress, and also the prospects for the future have been discussed for the successful practice of gene therapy.


Subject(s)
Disease , Genetic Therapy/methods , Gene Transfer Techniques , Genetic Vectors , Humans
9.
J Assist Reprod Genet ; 36(2): 241-253, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30382470

ABSTRACT

PURPOSE: This study was conducted in order to investigate the effects of reactive oxygen species (ROS) levels on the seminal plasma (SP) metabolite milieu and sperm dysfunction. METHODS: Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS < 20), group 2 (n = 38): mild (20 ≤ ROS < 40), group 3 (n = 31): moderate (40 ≤ ROS < 60), and group 4 (n = 43): high (ROS ≥ 60). A comprehensive analysis of SP and semen parameters, including conventional semen characteristics, measurement of total antioxidant capacity (TAC), sperm DNA fragmentation index (DFI), chromatin maturation index (CMI), H19-Igf2 methylation status, and untargeted seminal metabolic profiling using nuclear magnetic resonance spectroscopy (1H-NMR), was carried out. RESULT(S): The methylation status of H19 and Igf2 was significantly different in specimens with high ROS (P < 0.005). Metabolic fingerprinting of these SP samples showed upregulation of trimethylamine N-oxide (P < 0.001) and downregulations of tryptophan (P < 0.05) and tyrosine/tyrosol (P < 0.01). High ROS significantly reduced total sperm motility (P < 0.05), sperm concentration (P < 0.001), and seminal TAC (P < 0.001) but increased CMI and DFI (P < 0.005). ROS levels have a positive correlation with Igf2 methylation (r = 0.19, P < 0.05), DFI (r = 0.40, P < 0.001), CMI (r = 0.39, P < 0.001), and trimethylamine N-oxide (r = 0.45, P < 0.05) and a negative correlation with H19 methylation (r = - 0.20, P < 0.05), tryptophan (r = - 0.45, P < 0.05), sperm motility (r = - 0.20, P < 0.05), sperm viability (r = - 0.23, P < 0.01), and sperm concentration (r = - 0.30, P < 0.001). CONCLUSION(S): Results showed significant correlation between ROS levels and H19-Igf2 gene methylation as well as semen parameters. These findings are critical to identify idiopathic male infertility and its management through assisted reproduction technology (ART).


Subject(s)
Antioxidants/isolation & purification , Infertility, Male/genetics , Insulin-Like Growth Factor II/genetics , RNA, Long Noncoding/genetics , Reactive Oxygen Species/isolation & purification , Antioxidants/metabolism , DNA Fragmentation , DNA Methylation/genetics , Humans , Infertility, Male/metabolism , Infertility, Male/pathology , Male , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Reproductive Techniques, Assisted , Semen/metabolism , Semen Analysis , Sperm Count , Sperm Motility/genetics , Spermatozoa/growth & development , Spermatozoa/metabolism , Spermatozoa/pathology
10.
Cell Tissue Bank ; 20(1): 11-24, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30535614

ABSTRACT

Regenerative medicine as a background of stem cell research and therapy has a long history. A wide variety of diseases including Parkinson's disease, heart diseases, multiple sclerosis, spinal cord injury, diabetes mellitus and etc. are candidate to be treated using different types of stem cells. There are several sources of stem cells such as bone marrow, umbilical cord, peripheral blood, germ cells and the embryo/fetus tissues. Fetal stem cells (FSCs) and embryonic stem cells (ESCs) have been described as the most potent stem cell source. Although their pluri- or multipotent properties leads to promising reports for their clinical applications, owning to some ethical and legal obstacles in different communities such as Muslim countries, care should be taken for therapeutic applications of FSCs and ESCs. Derivation of these cell types needs termination of pregnancy and embryo or fetus life that is prohibited according to almost all rules and teaches in Muslim communities. Abortion and termination of pregnancy under a normal condition for the procurement of stem cell materials is forbidden by nearly all the major world religions such as Islam. Legislated laws in the most of Muslim countries permit termination of pregnancy and abortion only when the life of the mother is severely threatened or when continuing pregnancy may lead to the birth of a mentally retarded, genetically or anatomically malformed child. Based on the rules and conditions in Islamic countries, finding an alternative and biologically normal source for embryonic or fetal stem cell isolation will be too difficult. On the one hand, Muslim scientists have the feasibility for finding of genetically and anatomically normal embryonic or fetal stem cell sources for research or therapy, but on the other hand they should adhere to the law and related regional and local rules in all parts of their investigation. The authors suggest that the utilization of ectopic pregnancy (EP) conceptus, extra-embryonic tissues, and therapeutic abortion materials as a valuable source of stem cells for research and medical purposes can overcome limitations associated with finding the appropriate stem cell source. Pregnancy termination because of the mentioned subjects is accepted by almost all Islamic laws because of maternal lifesaving. Also, there are no ethical or legal obstacles in the use of extra-embryonic or EP derived tissues which lead to candidate FSCs as a valuable source for stem cell researches and therapeutic applications.


Subject(s)
Abortion, Therapeutic , Fetal Stem Cells/transplantation , Pregnancy, Ectopic/therapy , Stem Cell Research , Cell Differentiation , Clinical Trials as Topic , Female , Humans , Iran , Pregnancy , Stem Cell Research/ethics , Stem Cell Research/legislation & jurisprudence
11.
Adv Exp Med Biol ; 1119: 133-149, 2018.
Article in English | MEDLINE | ID: mdl-29858972

ABSTRACT

Skin as the outer layer covers the body. Wounds can affect this vital organ negatively and disrupt its functions. Wound healing as a biological process is initiated immediately after an injury. This process consists of three stages: inflammation, proliferation, remodeling. Generally, these three stages occur continuously and timely. However, some factors such as infection, obesity and diabetes mellitus can interfere with these stages and impede the normal healing process which results in chronic wounds. Financial burden on both patients and health care systems, negative biologic effect on the patient's general health status and reduction in quality of life are a number of issues which make chronic wounds as a considerable challenge. During recent years, along with advances in the biomedical sciences, various surgical and non-surgical therapeutic methods have been suggested. All of these suggested treatments have their own advantages and disadvantages. Recently, cell-based therapies and regenerative medicine represent promising approaches to wound healing. Accordingly, several types of mesenchymal stem cells have been used in both preclinical and clinical settings for the treatment of wounds. Adipose-derived stromal cells are a cost-effective source of mesenchymal stem cells in wound management which can be easily harvest from adipose tissues through the less invasive processes with high yield rates. In addition, their ability to secrete multiple cytokines and growth factors, and differentiation into skin cells make them an ideal cell type to use in wound treatment. This is a concise overview on the application of adipose-derived stromal cells in wound healing and their role in the treatment of chronic wounds.


Subject(s)
Mesenchymal Stem Cells , Quality of Life , Adipose Tissue , Cell Differentiation , Humans , Wound Healing
12.
Biomed Chromatogr ; 31(8)2017 Aug.
Article in English | MEDLINE | ID: mdl-28058728

ABSTRACT

Male factor infertility is involved in almost half of all infertile couples. Lack of the ejaculated sperm owing to testicular malfunction has been reported in 6-10% of infertile men, a condition named nonobstructive azoospermia (NOA). In this study, we investigated untargeted metabolomic profiling of the seminal plasma in NOA men using gas chromatography-mass spectrometry and advance chemometrics. In this regard, the seminal plasma fluids of 11 NOA men with TESE-negative, nine NOA men with TESE-positive and 10 fertile healthy men (as a control group) were collected. Quadratic discriminate analysis (QDA) technique was implemented on total ion chromatograms (TICs) for identification of discriminatory retention times. We developed multivariate classification models using the QDA technique. Our results revealed that the developed QDA models could predict the classes of samples using their TIC data. The receiver operating characteristic curves for these models were >0.88. After recognition of discriminatory retention time's asymmetric penalized least square, evolving factor analysis, correlation optimized warping and alternating least squares strategies were applied for preprocessing and deconvolution of the overlapped chromatographic peaks. We could identify 36 discriminatory metabolites. These metabolites may be considered discriminatory biomarkers for different groups in NOA.


Subject(s)
Azoospermia/metabolism , Metabolome , Semen/metabolism , Spermatogenesis , Azoospermia/diagnosis , Azoospermia/physiopathology , Discriminant Analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Male , Metabolomics/methods
13.
Mol Reprod Dev ; 81(1): 84-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24254375

ABSTRACT

It is estimated that 20% of couples are infertile, and half of these infertility cases are linked to men. One of conditions that can affect male fertility is asthenozoospermia. We applied Raman spectroscopy to the analysis of the metabolome of the human seminal plasma, and used chemometrics on the patterns of Raman spectra obtained. Significant changes were observed in the metabolome of the human seminal plasma of asthenozoospermic patients.


Subject(s)
Asthenozoospermia/metabolism , Metabolome , Metabolomics/methods , Semen/metabolism , Humans , Male , Spectrum Analysis, Raman
14.
J Reprod Infertil ; 25(1): 3-11, 2024.
Article in English | MEDLINE | ID: mdl-39157284

ABSTRACT

Background: Testicular cancer (TC) is a relatively rare type of cancer in men. Early diagnosis of TC remains challenging. Metabolomics holds promise in offering valuable insights in this regard. In this study, a metabolic fingerprinting approach was employed to identify potential biomarkers in both serum and seminal plasma of TC patients. Methods: A total of 9 patients with testicular cancer and 10 controls were included in the study. The metabolic fingerprinting approach was utilized as a rapid diagnostic tool to analyze the metabolome in serum and seminal plasma of TC patients in comparison to fertile men. Raman spectroscopy was applied for the analysis of metabolites in these biological samples. Results: Principal component analysis (PCA) and functional group analysis showed that the differentiation between serum samples from healthy men and TC patients was not possible. However, when analyzing seminal plasma, a significant difference was found between the two groups (p<0.05). Functional group analysis of serum only showed an increase in tryptophan concentration ratio in TC patients as compared to healthy men (p=0.03). In contrast, in seminal plasma of TC patients, this increase was observed in all analyzed compounds, including phenylalanine, tyrosine, lipids, proteins, phenols (p<0.001). Conclusion: Our study highlights the potential of metabolic fingerprinting as a fast diagnostic tool for screening TC patients, with seminal plasma serving as a valuable biological sample. Furthermore, several potential biomarkers, particularly phenylalanine, were identified in seminal plasma. This research contributes to our understanding of TC pathogenesis and has the potential to pave the way for early detection and personalized treatment approaches.

15.
Reprod Sci ; 30(11): 3285-3295, 2023 11.
Article in English | MEDLINE | ID: mdl-37264261

ABSTRACT

Identifying the metabolome of human seminal plasma (HSP) is a new research area to screen putative biomarkers of infertility. This case-control study was performed on HSP specimens of 15 infertile patients with teratozoospermia (defined as normal sperm morphology < 4%) and 12 confirmed fertile normozoospermic men as the control group to investigate the seminal metabolic signature and whether there are differences in the metabolome between two groups. HSPs were subjected to LC-MS-MS analysis. MetaboAnalyst5.0 software was utilized for statistical analysis. Different univariate and multivariate analyses were used, including T-tests, fold change analysis, random forest (RF), and metabolite set enrichment analysis (MSEA). Teratozoospermic samples contained seventeen significantly different amino acids. Upregulated metabolites include glutamine, asparagine, and glycylproline, whereas downregulated metabolites include cysteine, γ-aminobutyric acid, histidine, hydroxylysine, hydroxyproline, glycine, proline, methionine, ornithine, tryptophan, aspartic acid, argininosuccinic acid, α-aminoadipic acid, and ß-aminoisobutyric acid. RF algorithm defined a set of 15 metabolites that constitute the significant features of teratozoospermia. In particular, increased glutamine, asparagine, and decreased cysteine, tryptophan, glycine, and valine were strong predictors of teratozoospemia. The most affected metabolic pathways in teratozoospermic men are the aminoacyl-tRNA, arginine, valine-leucine, and isoleucine biosynthesis. Altered metabolites detected in teratozoospermia were responsible for various roles in sperm functions that classified into four subgroups as follows: related metabolites to antioxidant function, energy production, sperm function, and spermatogenesis. The altered amino acid metabolome identified in this study may be related to the etiology of teratozoospermia, and may provide novel insight into potential biomarkers of male infertility for therapeutic targets.


Subject(s)
Amino Acids , Teratozoospermia , Humans , Male , Amino Acids/analysis , Amino Acids/metabolism , Semen/metabolism , Teratozoospermia/metabolism , Tryptophan/analysis , Tryptophan/metabolism , Asparagine/analysis , Asparagine/metabolism , Chromatography, Liquid , Cysteine/metabolism , Glutamine/analysis , Glutamine/metabolism , Case-Control Studies , Tandem Mass Spectrometry , Glycine/analysis , Glycine/metabolism , Valine/analysis , Valine/metabolism , Biomarkers/metabolism
16.
Avicenna J Med Biotechnol ; 15(1): 21-27, 2023.
Article in English | MEDLINE | ID: mdl-36789118

ABSTRACT

Background: Despite the significant progress in the treatment of Acute Lymphoblastic Leukemia (ALL) in children, it still remains as one of the most challenging malignancies in adults. Identification of new biomarkers may improve the management of adult ALL. Proteins expressed on the cell surface can be considered as disease-associated biomarkers with potential for diagnosis and targeted therapies. Thus, membrane proteome studies give essential information about the disease-related biomarkers. Methods: We applied 2-dimensional blue-native SDS-PAGE technique followed by MALDI-TOF/TOF-mass spectrometry to study the cell membrane proteome of peripheral blood mononuclear cells of adult B-ALL patients in comparison to that of the healthy controls. Results: Sixty seven differentially expressed protein spots were detected, among them 52 proteins were found to be up-regulated but the other 15 proteins were down-regulated in B-ALL. Five differentially expressed proteins, involved in energy metabolism pathways, were detected in B-ALL patients compared to the healthy control group. Conclusion: Differentially expressed proteins provide an insight into the molecular biology of B-ALL. Further studies must be done to confirm our data to be considered as potential targets for detection and treatment of B-ALL.

17.
Methods Mol Biol ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37801257

ABSTRACT

Melanoma, a severe type of skin cancer, poses significant management challenges due to its resistance to available treatments. Despite this obstacle, the high immunogenicity of melanoma renders it amenable to immune therapy, and NK cells have been identified as possessing anti-tumor properties in immunotherapy. The development of chimeric antigen receptor (CAR)-modified NK cells, or CAR-NK cells, has shown potential in enhancing immunotherapeutic regimens. To achieve this, researchers have explored various sources of NK cells, including those derived from the placenta, which offers benefits compared to other sources due to their limited ex vivo expansion potential. Recent studies have indicated the capacity to expand functional NK cells from placenta-derived cells in vitro that possess anti-tumor cytolytic properties. This chapter discusses the isolation of full-term human placenta-derived NK cells using Good Manufacturing Practice-based methods for CAR-NK cell therapy in melanoma.

18.
J Reprod Infertil ; 24(4): 257-268, 2023.
Article in English | MEDLINE | ID: mdl-38164434

ABSTRACT

Background: Male infertility is usually determined by the manual evaluation of the semen, namely the standard semen analysis. It is currently impossible to predict sperm fertilizing ability based on the semen analysis alone. Therefore, a more sensitive and selective diagnosis tool is required. Methods: Twelve fresh semen samples were collected from fertile volunteers attending the Avicenna Fertility Center (Tehran, Iran). The seminal plasma (SP) was prepared and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the total antioxidant capacity (TAC) was analysis. Thirty-four amino acids including essential amino acids (EAA), non-essential amino acids (NEAA), and non-proteinogenic amino acids (NPAA) relative concentration were determined, and the correlation between their concentration with spermiogram parameters and TAC of the SP was analyzed. Results: Significant positive correlations have been found between selected amino acids with the motility (Met and Gln, rs=0.92; Cys, rs=0.72; and Asn, rs=0.82), normal sperm morphology (Met, rs=0.92; Cys, rs=0.72; Glu, rs=0.92; and Asn, rs=0.82), and sperm concentration (Trp, Phe, and Ala). In contrast, several AAs, including Gly, Ser, and Ile showed negative correlations with sperm concentration (rs=-0.93, r=-0.92, and r=-0.89, respectively). Furthermore, TAC showed a positive association only with Tyr (rs=0.79). Conclusion: The strong positive/negative correlations between the seminal metabolic signature and spermiogram demonstrate the significance of determining metabolite levels under normal conditions for normal sperm functions. Combining the metabolome with the clinical characteristics of semen would enable clinicians to look beyond biomarkers toward the clinical interpretation of seminal parameters to explain the biological basis of sperm pathology.

19.
Biomedicines ; 11(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36830854

ABSTRACT

Placenta-specific antigens are minimally expressed or unexpressed in normal adult tissues, while they are widely expressed in cancer. In the course of carcinogenesis, a vast array of autoantibodies (AAbs) is produced. Here, we used a quantitative approach to determine the reactivity of AAbs in the sera of patients with breast (BrC: N = 100, 100% female, median age: 51 years), gastric (GC: N = 30, 46.6% female, median age: 57 years), bladder (BC: N = 29, 34.4% female, median age: 57 years), and colorectal (CRC: N = 34, 41.1% female, median age: 51 years) cancers against first-trimester (FTP) and full-term placental proteome (TP) in comparison with age- and sex-matched non-cancer individuals. Human-on-human immunohistochemistry was used to determine reactive target cells in FTP. The effect of pregnancy on the emergence of placenta-reactive autoantibodies was tested using sera from pregnant women at different trimesters of pregnancy. Except for BC, patients with BrC (p < 0.0284), GC (p < 0.0002), and CRC (p < 0.0007) had significantly higher levels of placenta-reactive AAbs. BrC (p < 0.0001) and BC (p < 0.0409) in the early stages triggered higher autoantibody reactivity against FTP. The reactivities of BrC sera with FTP did not show an association with ER, PR, or HER2 expression. Pregnancy in the third trimester was associated with the induction of TP- and not FTP-reactive autoantibodies (=0.018). The reactivity of BrC sera with placental proteins was found to be independent of gravidity or abortion. BrC sera showed a very strong and specific pattern of reactivity with scattered cells beneath the syncytiotrophoblast layer. Our results reinforce the concept of the coevolution of placentation and cancer and shed light on the future clinical application of the placental proteome for the non-invasive early detection and treatment of cancer.

SELECTION OF CITATIONS
SEARCH DETAIL