Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
Add more filters

Publication year range
1.
Cell ; 187(14): 3531-3540.e13, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38942016

ABSTRACT

A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.


Subject(s)
Extinction, Biological , Genome , Mammoths , Mutation , Animals , Mammoths/genetics , Genome/genetics , Siberia , Phylogeny , Evolution, Molecular , Time Factors
2.
Cell ; 186(1): 32-46.e19, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608656

ABSTRACT

We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.


Subject(s)
Genome, Human , Humans , Europe , Genetic Variation , Scandinavian and Nordic Countries , United Kingdom , White People/genetics , White People/history , Human Migration
3.
Cell ; 184(19): 4874-4885.e16, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34433011

ABSTRACT

Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.


Subject(s)
Evolution, Molecular , Genome , Perissodactyla/genetics , Animals , Demography , Gene Flow , Genetic Variation , Geography , Heterozygote , Homozygote , Host Specificity , Markov Chains , Mutation/genetics , Phylogeny , Species Specificity , Time Factors
4.
5.
Nature ; 629(8013): 851-860, 2024 May.
Article in English | MEDLINE | ID: mdl-38560995

ABSTRACT

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Subject(s)
Birds , Evolution, Molecular , Genome , Phylogeny , Animals , Birds/genetics , Birds/classification , Birds/anatomy & histology , Brain/anatomy & histology , Extinction, Biological , Genome/genetics , Genomics , Population Density , Male , Female
6.
Nature ; 615(7951): 285-291, 2023 03.
Article in English | MEDLINE | ID: mdl-36859541

ABSTRACT

The germline mutation rate determines the pace of genome evolution and is an evolving parameter itself1. However, little is known about what determines its evolution, as most studies of mutation rates have focused on single species with different methodologies2. Here we quantify germline mutation rates across vertebrates by sequencing and comparing the high-coverage genomes of 151 parent-offspring trios from 68 species of mammals, fishes, birds and reptiles. We show that the per-generation mutation rate varies among species by a factor of 40, with mutation rates being higher for males than for females in mammals and birds, but not in reptiles and fishes. The generation time, age at maturity and species-level fecundity are the key life-history traits affecting this variation among species. Furthermore, species with higher long-term effective population sizes tend to have lower mutation rates per generation, providing support for the drift barrier hypothesis3. The exceptionally high yearly mutation rates of domesticated animals, which have been continually selected on fecundity traits including shorter generation times, further support the importance of generation time in the evolution of mutation rates. Overall, our comparative analysis of pedigree-based mutation rates provides ecological insights on the mutation rate evolution in vertebrates.


Subject(s)
Evolution, Molecular , Germ-Line Mutation , Mutation Rate , Vertebrates , Animals , Female , Male , Birds/genetics , Fishes/genetics , Germ-Line Mutation/genetics , Mammals/genetics , Reptiles/genetics , Vertebrates/genetics
7.
Nat Rev Genet ; 23(5): 281-297, 2022 05.
Article in English | MEDLINE | ID: mdl-34675394

ABSTRACT

Research on animal-microbiota interactions has become a central topic in biological sciences because of its relevance to basic eco-evolutionary processes and applied questions in agriculture and health. However, animal hosts and their associated microbial communities are still seldom studied in a systemic fashion. Hologenomics, the integrated study of the genetic features of a eukaryotic host alongside that of its associated microbes, is becoming a feasible - yet still underexploited - approach that overcomes this limitation. Acknowledging the biological and genetic properties of both hosts and microbes, along with the advantages and disadvantages of implemented techniques, is essential for designing optimal studies that enable some of the major questions in biology to be addressed.


Subject(s)
Microbiota , Animals , Biological Evolution , Microbiota/genetics
8.
Nature ; 591(7848): 87-91, 2021 03.
Article in English | MEDLINE | ID: mdl-33442059

ABSTRACT

Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently.


Subject(s)
Extinction, Biological , Phylogeny , Wolves/classification , Animals , Fossils , Gene Flow , Genome/genetics , Genomics , Geographic Mapping , North America , Paleontology , Phenotype , Wolves/genetics
9.
Am J Hum Genet ; 110(9): 1590-1599, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37683613

ABSTRACT

The island of St Helena played a crucial role in the suppression of the transatlantic slave trade. Strategically located in the middle of the South Atlantic, it served as a staging post for the Royal Navy and reception point for enslaved Africans who had been "liberated" from slave ships intercepted by the British. In total, St Helena received approximately 27,000 liberated Africans between 1840 and 1867. Written sources suggest that the majority of these individuals came from West Central Africa, but their precise origins are unknown. Here, we report the results of ancient DNA analyses that we conducted as part of a wider effort to commemorate St Helena's liberated Africans and to restore knowledge of their lives and experiences. We generated partial genomes (0.1-0.5×) for 20 individuals whose remains had been recovered during archaeological excavations on the island. We compared their genomes with genotype data for over 3,000 present-day individuals from 90 populations across sub-Saharan Africa and conclude that the individuals most likely originated from different source populations within the general area between northern Angola and Gabon. We also find that the majority (17/20) of the individuals were male, supporting a well-documented sex bias in the latter phase of the transatlantic slave trade. The study expands our understanding of St Helena's liberated African community and illustrates how ancient DNA analyses can be used to investigate the origins and identities of individuals whose lives were bound up in the story of slavery and its abolition.


Subject(s)
African People , Enslaved Persons , Humans , Female , Male , DNA, Ancient , Black People/genetics , Genotype
10.
Proc Natl Acad Sci U S A ; 120(7): e2201945119, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745783

ABSTRACT

Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.


Subject(s)
Biodiversity , Biota , Humans , Animals , Time Factors , Birds/genetics , Climate Change , Ecosystem
11.
Proc Natl Acad Sci U S A ; 120(17): e2213563120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068234

ABSTRACT

Recent excavations of Late Antiquity settlements in the Negev Highlands of southern Israel uncovered a society that established commercial-scale viticulture in an arid environment [D. Fuks et al., Proc. Natl. Acad. Sci. U.S.A. 117, 19780-19791 (2020)]. We applied target-enriched genome-wide sequencing and radiocarbon dating to examine grapevine pips that were excavated at three of these sites. Our analyses revealed centuries long and continuous grape cultivation in the Southern Levant. The genetically diverse pips also provided clues to ancient cultivation strategies aimed at improving agricultural productivity and ensuring food security. Applying genomic prediction analysis, a pip dated to the eighth century CE was determined to likely be from a white grape, to date the oldest to be identified. In a kinship analysis, another pip was found to be descendant from a modern Greek cultivar and was thus linked with several popular historic wines that were once traded across the Byzantine Empire. These findings shed light on historical Byzantine trading networks and on the genetic contribution of Levantine varieties to the classic Aegean landscape.


Subject(s)
Vitis , Wine , History, Ancient , Vitis/genetics , DNA, Ancient , Archaeology , Israel
12.
Nature ; 574(7776): 103-107, 2019 10.
Article in English | MEDLINE | ID: mdl-31511700

ABSTRACT

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.


Subject(s)
DNA, Ancient/analysis , Dental Enamel/metabolism , Fossils , Perissodactyla/classification , Perissodactyla/genetics , Phylogeny , Proteome/genetics , Proteomics , Amino Acid Motifs , Amino Acid Sequence , Animals , Bayes Theorem , History, Ancient , Humans , Male , Perissodactyla/metabolism , Phosphorylation/genetics , Proteome/analysis
13.
Mol Biol Evol ; 40(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37950889

ABSTRACT

The domestic pigeon's exceptional phenotypic diversity was key in developing Darwin's Theory of Evolution and establishing the concept of artificial selection. However, unlike its domestic counterpart, its wild progenitor, the rock dove Columba livia has received considerably less attention. Therefore, questions regarding its domestication, evolution, taxonomy, and conservation status remain unresolved. We generated whole-genome sequencing data from 65 historical rock doves that represent all currently recognized subspecies and span the species' original geographic distribution. Our dataset includes 3 specimens from Darwin's collection, and the type specimens of 5 different taxa. We characterized their population structure, genomic diversity, and gene-flow patterns. Our results show the West African subspecies C. l. gymnocyclus is basal to rock doves and domestic pigeons, and suggests gene-flow between the rock dove's sister species C. rupestris, and the ancestor of rock doves after its split from West African populations. These genomes allowed us to propose a model for the evolution of the rock dove in light of the refugia theory. We propose that rock dove genetic diversity and introgression patterns derive from a history of allopatric cycles and dispersion waves during the Quaternary glacial and interglacial periods. To explore the rock dove domestication history, we combined our new dataset with available genomes from domestic pigeons. Our results point to at least 1 domestication event in the Levant that gave rise to all domestic breeds analysed in this study. Finally, we propose a species-level taxonomic arrangement to reflect the evolutionary history of the West African rock dove populations.


Subject(s)
Columbidae , Genome , Animals , Columbidae/genetics
14.
Mol Biol Evol ; 40(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37561011

ABSTRACT

The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north-south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity.


Subject(s)
Biological Evolution , Perissodactyla , Animals , Africa, Eastern , Africa South of the Sahara , Perissodactyla/genetics , Endangered Species
15.
Food Microbiol ; 117: 104372, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37919016

ABSTRACT

Interest in fermented foods, especially plant-based ones, has increased considerably in the last decade. Miso-a Japanese paste traditionally fermented with soybeans, salt, and koji (Aspergillus oryzae grown on grains or beans)-has gained attention among chefs for its rich flavour and versatility. Some chefs have even been experimenting with making novel misos with untraditional substrates to create new flavours. Such novel fermented foods also offer new scientific opportunities. To explore the microbial diversity of these new traditional foods, we sampled six misos made by the team at a leading restaurant called Noma in Copenhagen (Denmark), using yellow peas (including a nixtamalised treatment), lupin seeds, Swedish Vreta peas, grey peas, and Gotland lentils as substrates. All misos were made with the same recipe and fermented for 3 months at 28 °C. Samples were collected at the end of fermentation for subsequent shotgun metagenomic sequencing and a genome-resolved metagenomic analysis. The taxonomic profile of the samples revealed the presence of koji mould (A. oryzae) and Bacillus amyloliquefaciens in all misos. Various species of the genera Latilactobacillus, Lactiplantibacillus, Pediococcus and Staphylococcus were also detected. The Metagenome-Assembled Genomes (MAGs) revealed genomic sequences belonging to 12 different species and functional analyses of these MAGs were performed. Notably, we detected the presence of Exiguobacterium-the first reported instance of the genus in miso-and Average Nucleotide Identity (ANI) analyses suggest a potentially new species. We hope these results will improve the scientific literature on misos and contribute to developing novel fermented plant-based foods.


Subject(s)
Fabaceae , Fermented Foods , Soy Foods , Glycine max , Metagenomics , Flavoring Agents/analysis , Fermentation
16.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34210795

ABSTRACT

Although today the forest cover is continuous in Central Africa, this may have not always been the case, as the scarce fossil record in this region suggests that arid conditions might have significantly reduced tree density during the ice ages. Our aim was to investigate whether the dry ice age periods left a genetic signature on tree species that can be used to infer the date of the past fragmentation of the rainforest. We sequenced reduced representation libraries of 182 samples representing five widespread legume trees and seven outgroups. Phylogenetic analyses identified an early divergent lineage for all species in West Africa (Upper Guinea) and two clades in Central Africa: Lower Guinea-North and Lower Guinea-South. As the structure separating the Northern and Southern clades-congruent across species-cannot be explained by geographic barriers, we tested other hypotheses with demographic model testing using δαδι. The best estimates indicate that the two clades split between the Upper Pliocene and the Pleistocene, a date compatible with forest fragmentation driven by ice age climatic oscillations. Furthermore, we found remarkably older split dates for the shade-tolerant tree species with nonassisted seed dispersal than for light-demanding species with long-distance wind-dispersed seeds. Different recolonization abilities after recurrent cycles of forest fragmentation seem to explain why species with long-distance dispersal show more recent genetic admixture between the two clades than species with limited seed dispersal. Despite their old history, our results depict the African rainforests as a dynamic biome where tree species have expanded relatively recently after the last glaciation.


Subject(s)
Rainforest , Seed Dispersal/genetics , Trees/genetics , Africa , Genetic Variation , Phylogeny
17.
PLoS Genet ; 17(2): e1009404, 2021 02.
Article in English | MEDLINE | ID: mdl-33621224

ABSTRACT

Birds exhibit striking variation in eye color that arises from interactions between specialized pigment cells named chromatophores. The types of chromatophores present in the avian iris are lacking from the integument of birds or mammals, but are remarkably similar to those found in the skin of ectothermic vertebrates. To investigate molecular mechanisms associated with eye coloration in birds, we took advantage of a Mendelian mutation found in domestic pigeons that alters the deposition of yellow pterin pigments in the iris. Using a combination of genome-wide association analysis and linkage information in pedigrees, we mapped variation in eye coloration in pigeons to a small genomic region of ~8.5kb. This interval contained a single gene, SLC2A11B, which has been previously implicated in skin pigmentation and chromatophore differentiation in fish. Loss of yellow pigmentation is likely caused by a point mutation that introduces a premature STOP codon and leads to lower expression of SLC2A11B through nonsense-mediated mRNA decay. There were no substantial changes in overall gene expression profiles between both iris types as well as in genes directly associated with pterin metabolism and/or chromatophore differentiation. Our findings demonstrate that SLC2A11B is required for the expression of pterin-based pigmentation in the avian iris. They further highlight common molecular mechanisms underlying the production of coloration in the iris of birds and skin of ectothermic vertebrates.


Subject(s)
Columbidae/genetics , Eye Color/genetics , Iris/metabolism , Pigmentation/genetics , Skin Pigmentation/genetics , Vertebrates/genetics , Animals , Chromatophores/metabolism , Columbidae/metabolism , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Genomics/methods , Glucose Transport Proteins, Facilitative/genetics , Mutation , RNA Stability/genetics , Vertebrates/metabolism , Whole Genome Sequencing/methods
18.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34544854

ABSTRACT

Dogs have been essential to life in the Siberian Arctic for over 9,500 y, and this tight link between people and dogs continues in Siberian communities. Although Arctic Siberian groups such as the Nenets received limited gene flow from neighboring groups, archaeological evidence suggests that metallurgy and new subsistence strategies emerged in Northwest Siberia around 2,000 y ago. It is unclear if the Siberian Arctic dog population was as continuous as the people of the region or if instead admixture occurred, possibly in relation to the influx of material culture from other parts of Eurasia. To address this question, we sequenced and analyzed the genomes of 20 ancient and historical Siberian and Eurasian Steppe dogs. Our analyses indicate that while Siberian dogs were genetically homogenous between 9,500 to 7,000 y ago, later introduction of dogs from the Eurasian Steppe and Europe led to substantial admixture. This is clearly the case in the Iamal-Nenets region (Northwestern Siberia) where dogs from the Iron Age period (∼2,000 y ago) possess substantially less ancestry related to European and Steppe dogs than dogs from the medieval period (∼1,000 y ago). Combined with findings of nonlocal materials recovered from these archaeological sites, including glass beads and metal items, these results indicate that Northwest Siberian communities were connected to a larger trade network through which they acquired genetically distinctive dogs from other regions. These exchanges were part of a series of major societal changes, including the rise of large-scale reindeer pastoralism ∼800 y ago.


Subject(s)
Animal Distribution , Biological Evolution , Dogs/genetics , Gene Flow , Genetics, Population , Genome , Human Migration , Animals , Archaeology , Humans , Siberia
19.
BMC Biol ; 21(1): 267, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993882

ABSTRACT

BACKGROUND: The red junglefowl, the wild outgroup of domestic chickens, has historically served as a reference for genomic studies of domestic chickens. These studies have provided insight into the etiology of traits of commercial importance. However, the use of a single reference genome does not capture diversity present among modern breeds, many of which have accumulated molecular changes due to drift and selection. While reference-based resequencing is well-suited to cataloging simple variants such as single-nucleotide changes and short insertions and deletions, it is mostly inadequate to discover more complex structural variation in the genome. METHODS: We present a pangenome for the domestic chicken consisting of thirty assemblies of chickens from different breeds and research lines. RESULTS: We demonstrate how this pangenome can be used to catalog structural variants present in modern breeds and untangle complex nested variation. We show that alignment of short reads from 100 diverse wild and domestic chickens to this pangenome reduces reference bias by 38%, which affects downstream genotyping results. This approach also allows for the accurate genotyping of a large and complex pair of structural variants at the K feathering locus using short reads, which would not be possible using a linear reference. CONCLUSIONS: We expect that this new paradigm of genomic reference will allow better pinpointing of exact mutations responsible for specific phenotypes, which will in turn be necessary for breeding chickens that meet new sustainability criteria and are resilient to quickly evolving pathogen threats.


Subject(s)
Chickens , Genome , Animals , Chickens/genetics , Genotype , Sequence Analysis, DNA , Genomics
20.
Genomics ; 115(3): 110629, 2023 05.
Article in English | MEDLINE | ID: mdl-37100093

ABSTRACT

It remains a challenge to obtain the desired phenotypic traits in aquacultural production of Atlantic salmon, and part of the challenge might come from the effect that host-associated microorganisms have on the fish phenotype. To manipulate the microbiota towards the desired host traits, it is critical to understand the factors that shape it. The bacterial gut microbiota composition can vary greatly among fish, even when reared in the same closed system. While such microbiota differences can be linked to diseases, the molecular effect of disease on host-microbiota interactions and the potential involvement of epigenetic factors remain largely unknown. The aim of this study was to investigate the DNA methylation differences associated with a tenacibaculosis outbreak and microbiota displacement in the gut of Atlantic salmon. Using Whole Genome Bisulfite Sequencing (WGBS) of distal gut tissue from 20 salmon, we compared the genome-wide DNA methylation levels between uninfected individuals and sick fish suffering from tenacibaculosis and microbiota displacement. We discovered >19,000 differentially methylated cytosine sites, often located in differentially methylated regions, and aggregated around genes. The 68 genes connected to the most significant regions had functions related to the ulcerous disease such as epor and slc48a1a but also included prkcda and LOC106590732 whose orthologs are linked to microbiota changes in other species. Although the expression level was not analysed, our epigenetic analysis suggests specific genes potentially involved in host-microbiota interactions and more broadly it highlights the value of considering epigenetic factors in efforts to manipulate the microbiota of farmed fish.


Subject(s)
Gastrointestinal Microbiome , Salmo salar , Epigenomics , Genotype , Salmo salar/genetics , Animals , Intestines/microbiology , DNA Methylation , Genome
SELECTION OF CITATIONS
SEARCH DETAIL