Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Cell Sci ; 137(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38345101

ABSTRACT

Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.


Subject(s)
Extracellular Matrix , Nuclear Envelope , Humans , Ki-67 Antigen/metabolism , Extracellular Matrix/metabolism , Myoblasts/metabolism , Cell Proliferation
2.
Cell Tissue Res ; 396(1): 57-69, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326636

ABSTRACT

3D bioengineered skeletal muscle macrotissues are increasingly important for studies of cell biology and development of therapeutics. Tissues derived from immortalized cells obtained from patient samples, or from pluripotent stem cells, can be co-cultured with motor-neurons to create models of human neuromuscular junctions in culture. In this study, we present foundational work on 3D cultured muscle ultrastructure, with and without motor neurons, which is enabled by the development of a new co-culture platform. Our results show that tissues from Duchenne muscular dystrophy patients are poorly organized compared to tissues grown from healthy donor and that the presence of motor neurons invariably improves sarcomere organization. Electron micrographs show that in the presence of motor neurons, filament directionality, banding patterns, z-disc continuity, and the appearance of presumptive SSR and T-tubule profiles all improve in healthy, DMD-, and iPSC-derived muscle tissue. Further work to identify the underlying defects of DMD tissue disorganization and the mechanisms by which motor neurons support muscle are likely to yield potential new therapeutic approaches for treating patients suffering from Duchenne muscular dystrophy.


Subject(s)
Induced Pluripotent Stem Cells , Muscular Dystrophy, Duchenne , Humans , Electrons , Muscle, Skeletal , Motor Neurons , Microscopy, Electron , Dystrophin
3.
Mol Syst Biol ; 18(11): e10886, 2022 11.
Article in English | MEDLINE | ID: mdl-36366891

ABSTRACT

During development, cell state transitions are coordinated through changes in the identity of molecular regulators in a cell type- and dose-specific manner. The ability to rationally engineer such transitions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein, we report the generation of synthetic gene circuits that can detect a desired cell state using AND-like logic integration of endogenous miRNAs (classifiers) and, upon detection, produce fine-tuned levels of output proteins using an miRNA-mediated output fine-tuning technology (miSFITs). Specifically, we created an "hPSC ON" circuit using a model-guided miRNA selection and circuit optimization approach. The circuit demonstrates robust PSC-specific detection and graded output protein production. Next, we used an empirical approach to create an "hPSC-Off" circuit. This circuit was applied to regulate the secretion of endogenous BMP4 in a state-specific and fine-tuned manner to control the composition of differentiating hPSCs. Our work provides a platform for customized cell state-specific control of desired physiological factors in hPSC, laying the foundation for programming cell compositions in hPSC-derived tissues and beyond.


Subject(s)
MicroRNAs , Pluripotent Stem Cells , Humans , Genes, Synthetic , Cell Differentiation/genetics , Pluripotent Stem Cells/metabolism , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , Proteins/metabolism
4.
Exp Cell Res ; 411(1): 112966, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34906582

ABSTRACT

Endogenous skeletal muscle development, regeneration, and pathology are extremely complex processes, influenced by local and systemic factors. Unpinning how these mechanisms function is crucial for fundamental biology and to develop therapeutic interventions for genetic disorders, but also conditions like sarcopenia and volumetric muscle loss. Ex vivo skeletal muscle models range from two- and three-dimensional primary cultures of satellite stem cell-derived myoblasts grown alone or in co-culture, to single muscle myofibers, myobundles, and whole tissues. Together, these systems provide the opportunity to gain mechanistic insights of stem cell behavior, cell-cell interactions, and mature muscle function in simplified systems, without confounding variables. Here, we highlight recent advances (published in the last 5 years) using in vitro primary cells and ex vivo skeletal muscle models, and summarize the new insights, tools, datasets, and screening methods they have provided. Finally, we highlight the opportunity for exponential advance of skeletal muscle knowledge, with spatiotemporal resolution, that is offered by guiding the study of muscle biology and physiology with in silico modelling and implementing high-content cell biology systems and ex vivo physiology platforms.


Subject(s)
Cell Culture Techniques/methods , Muscle Development , Muscle, Skeletal/cytology , Animals , Cell Differentiation , Humans
5.
Am J Physiol Cell Physiol ; 321(4): C749-C759, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34406904

ABSTRACT

Recently, methods for creating three-dimensional (3-D) human skeletal muscle tissues from myogenic cell lines have been reported. Bioengineered muscle tissues are contractile and respond to electrical and chemical stimulation. In this study, we provide an electrophysiological analysis of healthy and dystrophic 3-D bioengineered skeletal muscle tissues, focusing on Duchenne muscular dystrophy (DMD). We enlist the 3-D in vitro model of DMD muscle tissue to evaluate muscle cell electrical properties uncoupled from presynaptic neural inputs, an understudied aspect of DMD. Our data show that previously reported electrophysiological aspects of DMD, including effects on membrane potential and membrane resistance, are replicated in the 3-D muscle tissue model. Furthermore, we test a potential therapeutic compound, poloxamer 188, and demonstrate capacity for improving the membrane potential in DMD muscle. Therefore, this study serves as a baseline for a new in vitro method to examine potential therapies for muscular disorders.


Subject(s)
Dystrophin/metabolism , Membrane Potentials , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Myoblasts, Skeletal/metabolism , Tissue Engineering , Adolescent , Case-Control Studies , Cell Culture Techniques , Cell Line , Child , Dystrophin/genetics , Electric Impedance , Humans , Male , Membrane Potentials/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/ultrastructure , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Mutation , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/ultrastructure , Poloxamer/pharmacology , Sodium/metabolism
6.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105809

ABSTRACT

Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.


Subject(s)
Coronavirus Infections/complications , Critical Care , Muscle Weakness/etiology , Muscular Atrophy/etiology , Pneumonia, Viral/complications , Animals , COVID-19 , Coronavirus Infections/therapy , Humans , Iatrogenic Disease , Muscle Weakness/physiopathology , Muscle Weakness/prevention & control , Muscular Atrophy/physiopathology , Muscular Atrophy/prevention & control , Pandemics , Pneumonia, Viral/therapy
7.
Semin Cell Dev Biol ; 67: 141-152, 2017 07.
Article in English | MEDLINE | ID: mdl-27641825

ABSTRACT

Human tissues are remarkably adaptable and robust, harboring the collective ability to detect and respond to external stresses while maintaining tissue integrity. Following injury, many tissues have the capacity to repair the damage - and restore form and function - by deploying cellular and molecular mechanisms reminiscent of developmental programs. Indeed, it is increasingly clear that cancer and chronic conditions that develop with age arise as a result of cells and tissues re-implementing and deregulating a selection of developmental programs. Therefore, understanding the fundamental molecular mechanisms that drive cell and tissue responses is a necessity when designing therapies to treat human conditions. Extracellular matrix stiffness synergizes with chemical cues to drive single cell and collective cell behavior in culture and acts to establish and maintain tissue homeostasis in the body. This review will highlight recent advances that elucidate the impact of matrix mechanics on cell behavior and fate across these length scales during times of homeostasis and in disease states.


Subject(s)
Breast Neoplasms/genetics , Cadherins/genetics , Contractile Proteins/genetics , Epithelial Cells/metabolism , Mammary Glands, Human/metabolism , Mechanotransduction, Cellular , Adaptation, Physiological , Animals , Biomechanical Phenomena , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Contractile Proteins/metabolism , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Epithelial Cells/cytology , Epithelial-Mesenchymal Transition , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Focal Adhesions/metabolism , Focal Adhesions/ultrastructure , Gene Expression Regulation , Homeostasis , Humans , Mammary Glands, Human/cytology , Stress, Mechanical
8.
Nature ; 462(7272): 433-41, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19940913

ABSTRACT

Proper tissue function and regeneration rely on robust spatial and temporal control of biophysical and biochemical microenvironmental cues through mechanisms that remain poorly understood. Biomaterials are rapidly being developed to display and deliver stem-cell-regulatory signals in a precise and near-physiological fashion, and serve as powerful artificial microenvironments in which to study and instruct stem-cell fate both in culture and in vivo. Further synergism of cell biological and biomaterials technologies promises to have a profound impact on stem-cell biology and provide insights that will advance stem-cell-based clinical approaches to tissue regeneration.


Subject(s)
Biocompatible Materials/therapeutic use , Cell Lineage , Regenerative Medicine/methods , Stem Cells/cytology , Animals , Cell Communication , Cell Lineage/physiology , Humans , Stem Cell Niche , Stem Cells/physiology
9.
Curr Top Dev Biol ; 158: 279-306, 2024.
Article in English | MEDLINE | ID: mdl-38670710

ABSTRACT

Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.


Subject(s)
Muscle, Skeletal , Stem Cells , Humans , Animals , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Stem Cells/cytology , Stem Cells/physiology , Stem Cells/metabolism , Biomechanical Phenomena
10.
BMC Methods ; 1(1): 5, 2024.
Article in English | MEDLINE | ID: mdl-38872952

ABSTRACT

Background: Functional evaluation of molecules that are predicted to promote stem cell mediated endogenous repair often requires in vivo transplant studies that are low throughput and hinder the rate of discovery. To offer greater throughput for functional validation studies, we miniaturized, simplified and expanded the functionality of a previously developed muscle endogenous repair (MEndR) in vitro assay that was shown to capture significant events of in vivo muscle endogenous repair. Methods: The mini-MEndR assay consists of miniaturized cellulose scaffolds designed to fit in 96-well plates, the pores of which are infiltrated with human myoblasts encapsulated in a fibrin-based hydrogel to form engineered skeletal muscle tissues. Pre-adsorbing thrombin to the cellulose scaffolds facilitates in situ tissue polymerization, a critical modification that enables new users to rapidly acquire assay expertise. Following the generation of the 3D myotube template, muscle stem cells (MuSCs), enriched from digested mouse skeletal muscle tissue using an improved magnetic-activated cell sorting protocol, are engrafted within the engineered template. Murine MuSCs are fluorescently labeled, enabling co-evaluation of human and mouse Pax7+ cell responses to drug treatments. A regenerative milieu is introduced by injuring the muscle tissue with a myotoxin to initiate endogenous repair "in a dish". Phenotypic data is collected at endpoints with a high-content imaging system and is analyzed using ImageJ-based image analysis pipelines. Results: The miniaturized format and modified manufacturing protocol cuts reagent costs in half and hands-on seeding time ~ threefold, while the image analysis pipelines save 40 h of labour. By evaluating multiple commercially available human primary myoblast lines in 2D and 3D culture, we establish quality assurance metrics for cell line selection that standardizes myotube template quality. In vivo outcomes (enhanced muscle production and Pax7+ cell expansion) to a known modulator of MuSC mediated repair (p38/ß MAPK inhibition) are recapitulated in the miniaturized culture assay, but only in the presence of stem cells and the regenerative milieu. Discussion: The miniaturized predictive assay offers a simple, scaled platform to co-investigate human and mouse skeletal muscle endogenous repair molecular modulators, and thus is a promising strategy to accelerate the muscle endogenous repair discovery pipeline. Supplementary Information: The online version contains supplementary material available at 10.1186/s44330-024-00005-4.

11.
Blood ; 117(16): 4226-33, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21357764

ABSTRACT

The low frequency of hematopoietic stem and progenitor cells (HSPCs) in human BM has precluded analysis of the direct biochemical effects elicited by cytokines in these populations, and their functional consequences. Here, single-cell phospho-specific flow cytometry was used to define the signaling networks active in 5 previously defined human HSPC subsets. This analysis revealed that the currently defined HSC compartment is composed of biochemically distinct subsets with the ability to respond rapidly and directly in vitro to a broader array of cytokines than previously appreciated, including G-CSF. The G-CSF response was physiologically relevant-driving cell-cycle entry and increased proliferation in a subset of single cells within the HSC compartment. The heterogeneity in the single-cell signaling and proliferation responses prompted subfractionation of the adult BM HSC compartment by expression of CD114 (G-CSF receptor). Xenotransplantation assays revealed that HSC activity is significantly enriched in the CD114(neg/lo) compartment, and almost completely absent in the CD114(pos) subfraction. The single-cell analyses used here can be adapted for further refinement of HSPC surface immunophenotypes, and for examining the direct regulatory effects of other factors on the homeostasis of stem and progenitor populations in normal or diseased states.


Subject(s)
Cytokines/immunology , Flow Cytometry/methods , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Single-Cell Analysis/methods , Adult , Animals , Cell Cycle , Female , Granulocyte Colony-Stimulating Factor/immunology , Hematopoietic Stem Cell Transplantation , Humans , Mice , Mice, SCID , Receptors, Granulocyte Colony-Stimulating Factor/immunology , Transplantation, Heterologous
12.
Dev Cell ; 58(6): 489-505.e7, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36898377

ABSTRACT

Loss of muscle mass is a common manifestation of chronic disease. We find the canonical Wnt pathway to be activated in mesenchymal progenitors (MPs) from cancer-induced cachectic mouse muscle. Next, we induce ß-catenin transcriptional activity in murine MPs. As a result, we observe expansion of MPs in the absence of tissue damage, as well as rapid loss of muscle mass. Because MPs are present throughout the organism, we use spatially restricted CRE activation and show that the induction of tissue-resident MP activation is sufficient to induce muscle atrophy. We further identify increased expression of stromal NOGGIN and ACTIVIN-A as key drivers of atrophic processes in myofibers, and we verify their expression by MPs in cachectic muscle. Finally, we show that blocking ACTIVIN-A rescues the mass loss phenotype triggered by ß-catenin activation in MPs, confirming its key functional role and strengthening the rationale for targeting this pathway in chronic disease.


Subject(s)
Wnt Signaling Pathway , beta Catenin , Mice , Animals , beta Catenin/metabolism , Activins , Muscles/metabolism
13.
Elife ; 112022 12 20.
Article in English | MEDLINE | ID: mdl-36537758

ABSTRACT

Adult skeletal muscle harbours a population of muscle stem cells (MuSCs) that are required for repair after tissue injury. In youth, MuSCs return to a reversible state of cell-cycle arrest termed 'quiescence' after injury resolution. Conversely, some MuSCs in aged muscle remain semi-activated, causing a premature response to injuries that results in incomplete repair and eventual stem cell depletion. Regulating this balance between MuSC quiescence and activation may hold the key to restoring tissue homeostasis with age, but is incompletely understood. To fill this gap, we developed a simple and tractable in vitro method, to rapidly inactivate MuSCs freshly isolated from young murine skeletal muscle, and return them to a quiescent-like state for at least 1-week, which we name mini-IDLE (Inactivation and Dormancy LEveraged in vitro). This was achieved by introducing MuSCs into a 3D bioartificial niche comprised of a thin sheet of mouse myotubes, which we demonstrate provides the minimal cues necessary to induce quiescence. With different starting numbers of MuSCs, the assay revealed cellular heterogeneity and population-level adaptations that converged on a common niche repopulation density; behaviours previously observed only in vivo. Quiescence-associated hallmarks included a Pax7+CalcR+DDX6+MyoD-c-FOS- signature, quiescent-like morphologies, and polarized niche markers. Leveraging high-content bioimaging pipelines, we demonstrate a relationship between morphology and cell fate signatures for possible real-time morphology-based screening. When using MuSCs from aged muscle, they displayed aberrant proliferative activities and delayed inactivation kinetics, among other quiescence-associated defects that we show are partially rescued by wortmannin treatment. Thus, the assay offers an unprecedented opportunity to systematically investigate long-standing queries in areas such as regulation of pool size and functional heterogeneity within the MuSC population, and to uncover quiescence regulators in youth and age.


When our muscles are injured, stem cells in the tissue are activated to start the repair process. However, when there is no damage, these cells tend to stay in a protective, dormant state known as quiescence. If quiescence is not maintained, the stem cells cannot properly repair when the muscle is damaged. This happens in old age, when a proportion of the cells remain semi-activated, and become depleted. However, researchers still do not fully understand how quiescence is regulated. This is partly because in order to study quiescence, live animals must be used, because muscle stem cells immediately come out of quiescence when they are removed from muscle tissue. To overcome this experimental limitation, Jacques et al. developed a new method to study muscle stem cells by transferring them from mice into three-dimensional engineered muscle tissue grown in the lab. This tissue is made by infiltrating the pores of teabag paper with muscle progenitor cells, which then fuse with one another to make a thin muscle that contains three layers of contractile muscle cells. Introducing muscle stem cells from young healthy animals into this engineered muscle tissue allowed them to return to a quiescent-like state and to remain in that state for at least a week. Cells from older animals could also be returned to dormancy if they were chemically treated after placing them in the engineered muscle tissue. The approach works in a miniaturized fashion, with each engineered tissue requiring less than one per cent of the muscle stem cells collected from each mouse. This allows 100 times as many experiments compared to the current methods using live animals. This system could help researchers to study the genetic and chemical influences on muscle stem cell quiescence. Further understanding in this area could lead to treatments that restore healing abilities in older muscle tissue.


Subject(s)
Biomimetics , Muscle Fibers, Skeletal , Mice , Animals , Cell Division , Muscle, Skeletal/physiology , Stem Cells , Stem Cell Niche
14.
Cell Stem Cell ; 29(6): 933-947.e6, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35597234

ABSTRACT

Many tissues harbor quiescent stem cells that are activated upon injury, subsequently proliferating and differentiating to repair tissue damage. Mechanisms by which stem cells sense injury and transition from quiescence to activation, however, remain largely unknown. Resident skeletal muscle stem cells (MuSCs) are essential orchestrators of muscle regeneration and repair. Here, with a combination of in vivo and ex vivo approaches, we show that quiescent MuSCs have elaborate, Rac GTPase-promoted cytoplasmic projections that respond to injury via the upregulation of Rho/ROCK signaling, facilitating projection retraction and driving downstream activation events. These early events involve rapid cytoskeletal rearrangements and occur independently of exogenous growth factors. This mechanism is conserved across a broad range of MuSC activation models, including injury, disease, and genetic loss of quiescence. Our results redefine MuSC activation and present a central mechanism by which quiescent stem cells initiate responses to injury.


Subject(s)
Satellite Cells, Skeletal Muscle , rho GTP-Binding Proteins , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal , Myoblasts/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Stem Cells/metabolism , rho GTP-Binding Proteins/metabolism
15.
Biofabrication ; 14(4)2022 08 19.
Article in English | MEDLINE | ID: mdl-35896099

ABSTRACT

Obesity prevalence has reached pandemic proportions, leaving individuals at high risk for the development of diseases such as cancer and type 2 diabetes. In obesity, to accommodate excess lipid storage, adipocytes become hypertrophic, which is associated with an increased pro-inflammatory cytokine secretion and dysfunction of metabolic processes such as insulin signaling and lipolysis. Targeting adipocyte dysfunction is an important strategy to prevent the development of obesity-associated disease. However, it is unclear how accurately animal models reflect human biology, and the long-term culture of human hypertrophic adipocytes in anin vitro2D monolayer is challenging due to the buoyant nature of adipocytes. Here we describe the development of a human 3Din vitrodisease model that recapitulates hallmarks of obese adipocyte dysfunction. First, primary human adipose-derived mesenchymal stromal cells are embedded in hydrogel, and infiltrated into a thin cellulose scaffold. The thin microtissue profile allows for efficient assembly and image-based analysis. After adipocyte differentiation, the scaffold is stimulated with oleic or palmitic acid to mimic caloric overload. Using functional assays, we demonstrated that this treatment induced important obese adipocyte characteristics such as a larger lipid droplet size, increased basal lipolysis, insulin resistance and a change in macrophage gene expression through adipocyte-conditioned media. This 3D disease model mimics physiologically relevant hallmarks of obese adipocytes, to enable investigations into the mechanisms by which dysfunctional adipocytes contribute to disease.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Acids , Adipocytes , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Humans , Lipolysis , Obesity/complications , Obesity/metabolism
16.
J Vis Exp ; (168)2021 02 18.
Article in English | MEDLINE | ID: mdl-33682863

ABSTRACT

Three-dimensional (3D) in vitro models of skeletal muscle are a valuable advancement in biomedical research as they afford the opportunity to study skeletal muscle reformation and function in a scalable format that is amenable to experimental manipulations. 3D muscle culture systems are desirable as they enable scientists to study skeletal muscle ex vivo in the context of human cells. 3D in vitro models closely mimic aspects of the native tissue structure of adult skeletal muscle. However, their universal application is limited by the availability of platforms that are simple to fabricate, cost and user-friendly, and yield relatively high quantities of human skeletal muscle tissues. Additionally, since skeletal muscle plays an important functional role that is impaired over time in many disease states, an experimental platform for microtissue studies is most practical when minimally invasive calcium transient and contractile force measurements can be conducted directly within the platform itself. In this protocol, the fabrication of a 96-well platform known as 'MyoTACTIC', and en masse production of 3D human skeletal muscle microtissues (hMMTs) is described. In addition, the methods for a minimally invasive application of electrical stimulation that enables repeated measurements of skeletal muscle force and calcium handling of each microtissue over time are reported.


Subject(s)
Health , Muscle, Skeletal/physiology , Tissue Engineering , Calcium/metabolism , Cell Differentiation , Cell Line, Transformed , Dimethylpolysiloxanes/chemistry , Electric Stimulation , Humans , Muscle Contraction/physiology , Muscle Fibers, Skeletal/cytology , Myoblasts/cytology
17.
Elife ; 102021 01 18.
Article in English | MEDLINE | ID: mdl-33459593

ABSTRACT

Tension and mechanical properties of muscle tissue are tightly related to proper skeletal muscle function, which makes experimental access to the biomechanics of muscle tissue formation a key requirement to advance our understanding of muscle function and development. Recently developed elastic in vitro culture chambers allow for raising 3D muscle tissue under controlled conditions and to measure global tissue force generation. However, these chambers are inherently incompatible with high-resolution microscopy limiting their usability to global force measurements, and preventing the exploitation of modern fluorescence based investigation methods for live and dynamic measurements. Here, we present a new chamber design pairing global force measurements, quantified from post-deflection, with local tension measurements obtained from elastic hydrogel beads embedded in muscle tissue. High-resolution 3D video microscopy of engineered muscle formation, enabled by the new chamber, shows an early mechanical tissue homeostasis that remains stable in spite of continued myotube maturation.


Subject(s)
Biomimetics , Cell Differentiation , Homeostasis , Muscle Development/physiology , Muscle, Skeletal/physiology , Animals , Biomechanical Phenomena , Cell Line , Humans , Mice , Muscle, Skeletal/growth & development
18.
Nat Commun ; 12(1): 750, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531466

ABSTRACT

Muscle cell fusion is a multistep process involving cell migration, adhesion, membrane remodeling and actin-nucleation pathways to generate multinucleated myotubes. However, molecular brakes restraining cell-cell fusion events have remained elusive. Here we show that transforming growth factor beta (TGFß) pathway is active in adult muscle cells throughout fusion. We find TGFß signaling reduces cell fusion, regardless of the cells' ability to move and establish cell-cell contacts. In contrast, inhibition of TGFß signaling enhances cell fusion and promotes branching between myotubes in mouse and human. Exogenous addition of TGFß protein in vivo during muscle regeneration results in a loss of muscle function while inhibition of TGFßR2 induces the formation of giant myofibers. Transcriptome analyses and functional assays reveal that TGFß controls the expression of actin-related genes to reduce cell spreading. TGFß signaling is therefore requisite to limit mammalian myoblast fusion, determining myonuclei numbers and myofiber size.


Subject(s)
Muscle, Skeletal/cytology , Transforming Growth Factor beta/metabolism , Adolescent , Adult , Animals , Blotting, Western , Cell Fusion , Cells, Cultured , Computational Biology , Fibroblasts/cytology , Fibroblasts/metabolism , Fluorescent Antibody Technique , Humans , In Situ Nick-End Labeling , Male , Mice , Real-Time Polymerase Chain Reaction , Regeneration/genetics , Regeneration/physiology , Stem Cells/cytology , Stem Cells/metabolism , Transforming Growth Factor beta/genetics , Young Adult
19.
Acta Biomater ; 132: 227-244, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34048976

ABSTRACT

The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a ß1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. STATEMENT OF SIGNIFICANCE: Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this "DMD in a dish" system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action.


Subject(s)
Muscular Dystrophy, Duchenne , Dystrophin/genetics , Exons , Humans , Muscle Fibers, Skeletal , Muscle, Skeletal , Muscular Dystrophy, Duchenne/genetics
20.
Differentiation ; 78(2-3): 185-94, 2009.
Article in English | MEDLINE | ID: mdl-19751902

ABSTRACT

Satellite cells are skeletal muscle stem cells with a principal role in postnatal skeletal muscle regeneration. Satellite cells, like many tissue-specific adult stem cells, reside in a quiescent state in an instructive, anatomically defined niche. The satellite cell niche constitutes a distinct membrane-enclosed compartment within the muscle fiber, containing a diversity of biochemical and biophysical signals that influence satellite cell function. A major limitation to the study and clinical utility of satellite cells is that upon removal from the muscle fiber and plating in traditional plastic tissue culture platforms, their muscle stem cell properties are rapidly lost. Clearly, the maintenance of stem cell function is critically dependent on in vivo niche signals, highlighting the need to create novel in vitro microenvironments that allow for the maintenance and propagation of satellite cells while retaining their potential to function as muscle stem cells. Here, we discuss how emerging biomaterials technologies offer great promise for engineering in vitro microenvironments to meet these challenges. In engineered biomaterials, signaling molecules can be presented in a manner that more closely mimics cell-cell and cell-matrix interactions, and matrices can be fabricated with diverse rigidities that approximate in vivo tissues. The development of in vitro microenvironments in which niche features can be systematically modulated will be instrumental not only to future insights into muscle stem cell biology and therapeutic approaches to muscle diseases and muscle wasting with aging, but also will provide a paradigm for the analysis of numerous adult tissue-specific stem cells.


Subject(s)
Satellite Cells, Skeletal Muscle/cytology , Stem Cells/cytology , Tissue Engineering , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL