Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Blood ; 136(3): 299-312, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32325489

ABSTRACT

Coordination of a number of molecular mechanisms including transcription, alternative splicing, and class switch recombination are required to facilitate development, activation, and survival of B cells. Disruption of these pathways can result in malignant transformation. Recently, next-generation sequencing has identified a number of novel mutations in mantle cell lymphoma (MCL) patients including mutations in the ubiquitin E3 ligase UBR5. Approximately 18% of MCL patients were found to have mutations in UBR5, with the majority of mutations within the HECT domain of the protein that can accept and transfer ubiquitin molecules to the substrate. Determining if UBR5 controls the maturation of B cells is important to fully understand malignant transformation to MCL. To elucidate the role of UBR5 in B-cell maturation and activation, we generated a conditional mutant disrupting UBR5's C-terminal HECT domain. Loss of the UBR5 HECT domain leads to a block in maturation of B cells in the spleen and upregulation of proteins associated with messenger RNA splicing via the spliceosome. Our studies reveal a novel role of UBR5 in B-cell maturation by stabilization of spliceosome components during B-cell development and suggests UBR5 mutations play a role in MCL transformation.


Subject(s)
B-Lymphocytes/enzymology , Lymphoma, Mantle-Cell/enzymology , Mutation , Neoplasm Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Humans , Lymphoma, Mantle-Cell/genetics , Mice , Mice, Mutant Strains , Neoplasm Proteins/genetics , Protein Domains , Ubiquitin-Protein Ligases/genetics
2.
Leukemia ; 36(5): 1296-1305, 2022 05.
Article in English | MEDLINE | ID: mdl-35177813

ABSTRACT

Acute myeloid leukemia (AML) is a devastating cancer affecting the hematopoietic system. Previous research has relied on RNA sequencing and microarray techniques to study the downstream effects of genomic alterations. While these studies have proven efficacious, they fail to capture the changes that occur at the proteomic level. To interrogate the effect of protein expression alterations in AML, we performed a quantitative mass spectrometry in parallel with RNAseq analysis using AML mouse models. These combined results identified 34 proteins whose expression was upregulated in AML tumors, but strikingly, were unaltered at the transcriptional level. Here we focus on mitochondrial electron transfer proteins ETFA and ETFB. Silencing of ETFA and ETFB led to increased mitochondrial activity, mitochondrial stress, and apoptosis in AML cells, but had little to no effect on normal human CD34+ cells. These studies identify a set of proteins that have not previously been associated with leukemia and may ultimately serve as potential targets for therapeutic manipulation to hinder AML progression and help contribute to our understanding of the disease.


Subject(s)
Leukemia, Myeloid, Acute , Mitochondrial Proteins , Animals , Apoptosis , Drug Discovery , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/pharmacology , Proteomics
3.
Cell Rep ; 40(3): 111097, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858551

ABSTRACT

Neuroendocrine (NE)-like tumors secrete various signaling molecules to establish paracrine communication within the tumor milieu and to create a therapy-resistant environment. It is important to identify molecular mediators that regulate this secretory phenotype in NE-like cancer. The current study highlights the importance of a cell surface molecule, Neuropilin-2 (NRP2), for the secretory function of NE-like prostate cancer (PCa). Our analysis on different patient cohorts suggests that NRP2 is high in NE-like PCa. We have developed cell line models to investigate NRP2's role in NE-like PCa. Our bioinformatics, mass spectrometry, cytokine array, and other supporting experiments reveal that NRP2 regulates robust secretory phenotype in NE-like PCa and controls the secretion of factors promoting cancer cell survival. Depletion of NRP2 reduces the secretion of these factors and makes resistant cancer cells sensitive to chemotherapy in vitro and in vivo. Therefore, targeting NRP2 can revert cellular secretion and sensitize PCa cells toward therapy.


Subject(s)
Neuropilin-2 , Prostatic Neoplasms , Cell Line, Tumor , Humans , Male , Neuropilin-2/metabolism , Phenotype , Prostate/metabolism , Prostatic Neoplasms/genetics , Signal Transduction/physiology
4.
J Mol Biol ; 430(7): 935-947, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29458127

ABSTRACT

Nitric oxide synthase (NOS) is the primary generator of nitric oxide signals controlling diverse physiological processes such as neurotransmission and vasodilation. NOS activation is contingent on Ca2+/calmodulin binding at a linker between its oxygenase and reductase domains to induce large conformational changes that orchestrate inter-domain electron transfer. However, the structural dynamics underlying activation of full-length NOS remain ambiguous. Employing hydrogen-deuterium exchange mass spectrometry, we reveal mechanisms underlying neuronal NOS activation by calmodulin and regulation by phosphorylation. We demonstrate that calmodulin binding orders the junction between reductase and oxygenase domains, exposes the FMN subdomain, and elicits a more dynamic oxygenase active site. Furthermore, we demonstrate that phosphorylation partially mimics calmodulin activation to modulate neuronal NOS activity via long-range allostery. Calmodulin binding and phosphorylation ultimately promote a more dynamic holoenzyme while coordinating inter-domain communication and electron transfer.


Subject(s)
Calmodulin/metabolism , Nitric Oxide Synthase Type I/chemistry , Nitric Oxide Synthase Type I/metabolism , Allosteric Regulation , Catalytic Domain , Deuterium Exchange Measurement , Enzyme Activation , Humans , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL