Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Eur J Haematol ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129130

ABSTRACT

INTRODUCTION: Elderly acute myeloid leukemia (AML) patients with poor-risk cytogenetics have a poor outcome with intensive chemotherapy (IC). While Venetoclax (VEN) has changed the outcomes of elderly unfit patients treatment, it is unknown whether it could be effective in poor-risk cytogenetics 60-75 years old patients. MATERIALS AND METHODS: We included 60-75-year-old AML patients eligible to allogenic stem cell transplantation (allo-SCT) treated with VEN (combined with azacitidine or with Cladribin and Aracytine) at Institut Paoli Calmettes, between 2020 and 2023 and compared this cohort with patients treated by IC between 2010 and 2019. RESULTS: Twenty six patients were treated with VEN (17 in combination with azacitidine and 9 with Cladribin and Aracytine) and 90 were treated with IC. Thirteen patients (50%) had a TP53 mutation. The median time for leucocyte and platelet counts recovery was 26 days (range 0-103) and 26 days (range, 0-63). The median duration of the first hospitalization was 32 days (ranges, 7-79). The composite response rate was 69% (CR = 50%, CRi = 4%, MLFS = 15%). Allo-SCT could be performed in 42% of cases. Median overall survival (OS) was 7.9 months (20.9 months in the group of patients who transitioned to allo-SCT). We found no difference with the historical cohort of patients treated with IC except a trend toward less lower and upper tract gastro-intestinal (GI) tract infections in the VEN group (respectively 8% vs 26%, p = .06; and 0% vs. 13% p = .06). CONCLUSION: VEN-based treatment was found to be effective in high risk AML can be considered as an alternative to IC in patients aged 60-75 with adverse cytogenetics.

2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762649

ABSTRACT

Even though male breast cancer (MBC) risk encompasses both genetic and environmental aetiologies, the primary risk factor is a germline pathogenic variant (PV) or likely pathogenic variant (LPV) in BRCA2, BRCA1 and/or PALB2 genes. To identify new potential MBC-specific predisposition genes, we sequenced a panel of 585 carcinogenesis genes in an MBC cohort without BRCA1/BRCA2/PALB2 PV/LPV. We identified 14 genes carrying rare PVs/LPVs in the MBC population versus noncancer non-Finnish European men, predominantly coding for DNA repair and maintenance of genomic stability proteins. We identified for the first time PVs/LPVs in PRCC (pre-mRNA processing), HOXA9 (transcription regulation), RECQL4 and WRN (maintenance of genomic stability) as well as in genes involved in other cellular processes. To study the specificity of this MBC PV/LPV profile, we examined whether variants in the same genes could be detected in a female breast cancer (FBC) cohort without BRCA1/BRCA2/PALB2 PV/LPV. Only 5/109 women (4.6%) carried a PV/LPV versus 18/85 men (21.2%) on these genes. FBC did not carry any PV/LPV on 11 of these genes. Although 5.9% of the MBC cohort carried PVs/LPVs in PALLD and ERCC2, neither of these genes were altered in our FBC cohort. Our data suggest that in addition to BRCA1/BRCA2/PALB2, other genes involved in DNA repair/maintenance or genomic stability as well as cell adhesion may form a specific MBC PV/LPV signature.

3.
Magn Reson Med ; 87(4): 1688-1699, 2022 04.
Article in English | MEDLINE | ID: mdl-34825724

ABSTRACT

PURPOSE: Proton magnetic resonance spectroscopic imaging (1H MRSI) is a noninvasive technique for assessing tumor metabolism. Manual inspection is still the gold standard for quality control (QC) of spectra, but it is both time-consuming and subjective. The aim of the present study was to assess automatic QC of glioblastoma MRSI data using random forest analysis. METHODS: Data for 25 patients, acquired prospectively in a preradiotherapy examination, were submitted to postprocessing with syngo.MR Spectro (VB40A; Siemens) or Java-based magnetic resonance user interface (jMRUI) software. A total of 28 features were extracted from each spectrum for the automatic QC. Three spectroscopists also performed manual inspections, labeling each spectrum as good or poor quality. All statistical analyses, with addressing unbalanced data, were conducted with R 3.6.1 (R Foundation for Statistical Computing; https://www.r-project.org). RESULTS: The random forest method classified the spectra with an area under the curve of 95.5%, sensitivity of 95.8%, and specificity of 81.7%. The most important feature for the classification was Residuum_Lipids_Versus_Fit, obtained with syngo.MR Spectro. CONCLUSION: The automatic QC method was able to distinguish between good- and poor-quality spectra, and can be used by radiation oncologists who are not spectroscopy experts. This study revealed a novel set of MRSI signal features that are closely correlated with spectral quality.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/radiotherapy , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Quality Control , Reproducibility of Results
4.
Haematologica ; 107(1): 221-230, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33327711

ABSTRACT

Follicular lymphoma (FL) is the most common indolent lymphoma. Despite the clear benefit of CD20-based therapy, a subset of FL patients still progress to aggressive lymphoma. Thus, identifying early biomarkers that incorporate PET metrics could be helpful to identify patients with a high risk of treatment failure with Rituximab. We retrospectively included a total of 132 untreated FL patients separated into training and validation cohorts. Optimal threshold of baseline SUVmax was first determined in the training cohort (n=48) to predict progression-free survival (PFS). The PET results were investigated along with the tumor and immune microenvironment, which were determined by immunochemistry and transcriptome studies involving gene set enrichment analyses and immune cell deconvolution, together with the tumor mutation profile. We report that baseline SUVmax >14.5 was associated with poorer PFS than baseline SUVmax ≤14.5 (HR=0.28; p=0.00046). Neither immune T-cell infiltration nor immune checkpoint expression were associated with baseline PET metrics. By contrast, FL samples with Ki-67 staining ≥10% showed enrichment of cell cycle/DNA genes (p=0.013) and significantly higher SUVmax values (p=0.007). Despite similar oncogenic pathway alterations in both SUVmax groups of FL samples, 4 out of 5 cases harboring the infrequent FOXO1 transcription factor mutation were seen in FL patients with SUVmax >14.5. Thus, high baseline SUVmax reflects FL tumor proliferation and, together with Ki-67 proliferative index, can be used to identify patients at risk of early relapse with R-chemotherapy.


Subject(s)
Lymphoma, Follicular , Lymphoma, Non-Hodgkin , Cell Proliferation , Humans , Lymphoma, Follicular/diagnosis , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/genetics , Retrospective Studies , Rituximab , Tumor Microenvironment
5.
Anal Chem ; 93(15): 6104-6111, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33825439

ABSTRACT

As key regulators of the actin cytoskeleton, RHO GTPase expression and/or activity are deregulated in tumorigenesis and metastatic progression. Nevertheless, the vast majority of experiments supporting this conclusion was conducted on cell lines but not on human tumor samples that were mostly studied at the expression level only. Up to now, the activity of RHO proteins remains poorly investigated in human tumors. In this article, we present the development of a robust nanobody-based ELISA assay, with a high selectivity that allows an accurate quantification of RHO protein GTP-bound state in the nanomolar range (1 nM; 20 µg/L), not only in cell lines after treatment but also in tumor samples. Of note, we present here a fine analysis of RHOA-like and RAC1 active state in tumor samples with the most comprehensive study of RHOA-GTP and RHOC-GTP levels performed on human breast tumor samples. We revealed increased GTP-bound RHOA and RHOC protein activities in tumors compared to normal tissue counterparts, and demonstrated that the RHO active state and RHO expression are two independent parameters among different breast cancer subtypes. Our results further highlight the regulation of RHO protein activation in tumor samples and the relevance of directly studying RHO GTPase activities involvement in molecular pathways.


Subject(s)
Breast Neoplasms , rhoA GTP-Binding Protein , rhoC GTP-Binding Protein , Cell Transformation, Neoplastic , Female , Guanosine Triphosphate , Humans , rhoA GTP-Binding Protein/metabolism , rhoC GTP-Binding Protein/metabolism
6.
Blood ; 133(26): 2741-2744, 2019 06 27.
Article in English | MEDLINE | ID: mdl-30967366

ABSTRACT

We previously reported a new form of light chain deposition disease (LCDD) presenting as diffuse cystic lung disorder that differs from the usual systemic form with respect to patient age, the male/female ratio, the involved organs, and the hematologic characteristics. We also demonstrated that the light chains were produced by an intrapulmonary B-cell clone and that this clone shared a stereotyped antigen receptor IGHV4-34/IGKV1. However, we only analyzed 3 patients. We conducted a retrospective study including lung tissue samples from 24 patients with pulmonary LCDD (pLCDD) matched with samples from 13 patients with pulmonary κ light chain amyloidosis (pAL amyloidosis) used as controls. Mass spectrometry-based proteomics identified immunoglobulin κ peptides as the main protein component of the tissue deposits in all patients. Interestingly, in pLCDD, IGKV1 was the most common κ family detected (86.4%), and IGKV1-8 was overrepresented compared with pAL amyloidosis (75% vs 11.1%, P = .0033). Furthermore, IGKV1-8 was predominantly associated with a diffuse cystic pattern (94%) in pLCDD. In conclusion, the high frequency of IGKV1-8 usage in cystic pLCDD constitutes an additional feature arguing for a specific entity distinct from the systemic form that preferentially uses IGKV4-1.


Subject(s)
Immunoglobulin Light Chains/genetics , Lung Diseases/genetics , Paraproteinemias/genetics , Adult , Female , Humans , Lung Diseases/pathology , Male , Middle Aged , Paraproteinemias/pathology , Proteomics , Retrospective Studies
7.
Int J Mol Sci ; 22(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671469

ABSTRACT

Bone metastasis remains the most frequent and the deadliest complication of prostate cancer (PCa). Mechanisms leading to the homing of tumor cells to bone remain poorly characterized. Role of chemokines in providing navigational cues to migrating cancer cells bearing specific receptors is well established. Bone is an adipocyte-rich organ since 50 to 70% of the adult bone marrow (BM) volume comprise bone marrow adipocytes (BM-Ads), which are likely to produce chemokines within the bone microenvironment. Using in vitro migration assays, we demonstrated that soluble factors released by human primary BM-Ads are able to support the directed migration of PCa cells in a CCR3-dependent manner. In addition, we showed that CCL7, a chemokine previously involved in the CCR3-dependent migration of PCa cells outside of the prostate gland, is released by human BM-Ads. These effects are amplified by obesity and ageing, two clinical conditions known to promote aggressive and metastatic PCa. In human tumors, we found an enrichment of CCR3 in bone metastasis vs. primary tumors at mRNA levels using Oncomine microarray database. In addition, immunohistochemistry experiments demonstrated overexpression of CCR3 in bone versus visceral metastases. These results underline the potential importance of BM-Ads in the bone metastatic process and imply a CCR3/CCL7 axis whose pharmacological interest needs to be evaluated.


Subject(s)
Adipocytes/metabolism , Adipocytes/pathology , Bone Marrow/pathology , Bone and Bones/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, CCR3/metabolism , Aging/pathology , Bone Marrow/drug effects , Bone and Bones/drug effects , Cell Line, Tumor , Chemokine CCL7/metabolism , Chemotaxis/drug effects , Culture Media, Conditioned/pharmacology , Humans , Male , Neoplasm Metastasis , Obesity/complications , Prostatic Neoplasms/complications
8.
Acta Derm Venereol ; 99(2): 206-210, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30393817

ABSTRACT

Antibodies targeting immune checkpoints were recently approved for metastatic melanoma. However, not all patients will respond to the treatment and some will experience grade III-IV immune-related adverse events. Therefore, early identification of non-responder patients would greatly aid clinical practice. Detection of circulating tumour DNA (ctDNA) is a non-invasive approach to monitor tumour response. Digital droplet PCR was used to quantify BRAF and NRAS mutations in the plasma of patients with metastatic melanoma treated with immunotherapy. In 16 patients, ctDNA variations mirrored tumour response (p = 0.034) and ctDNA augmentation during follow-up detected tumour progression with 100% specificity. In 13 patients, early ctDNA variation was associated with clinician decision at first evaluation (p = 0.0046), and early ctDNA increase with shorter progression-free survival (median 21 vs. 145 days; p = 0.001). Monitoring ctDNA variations early during immunotherapy may help clinicians rapidly to discriminate non-responder patients, allow early adaptation of therapeutic strategies, and reduce exposure to ineffective, expensive treatment.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Immunotherapy/methods , Melanoma/therapy , Skin Neoplasms/therapy , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Circulating Tumor DNA/blood , Disease Progression , Female , Humans , Male , Melanoma/blood , Melanoma/genetics , Melanoma/immunology , Middle Aged , Progression-Free Survival , Proof of Concept Study , Retrospective Studies , Skin Neoplasms/blood , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Time Factors
9.
Int J Mol Sci ; 20(15)2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31344837

ABSTRACT

The Rho GTPase family can be classified into classic and atypical members. Classic members cycle between an inactive Guanosine DiPhosphate -bound state and an active Guanosine TriPhosphate-bound state. Atypical Rho GTPases, such as RND1, are predominantly in an active GTP-bound conformation. The role of classic members in oncogenesis has been the subject of numerous studies, while that of atypical members has been less explored. Besides the roles of RND1 in healthy tissues, recent data suggest that RND1 is involved in oncogenesis and response to cancer therapeutics. Here, we present the current knowledge on RND1 expression, subcellular localization, and functions in healthy tissues. Then, we review data showing that RND1 expression is dysregulated in tumors, the molecular mechanisms involved in this deregulation, and the role of RND1 in oncogenesis. For several aggressive tumors, RND1 presents the features of a tumor suppressor gene. In these tumors, low expression of RND1 is associated with a bad prognosis for the patients. Finally, we highlight that RND1 expression is induced by anticancer agents and modulates their response. Of note, RND1 mRNA levels in tumors could be used as a predictive marker of both patient prognosis and response to anticancer agents.


Subject(s)
Carcinogenesis/genetics , Neoplasms/genetics , rho GTP-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/genetics , Genes, Tumor Suppressor , Humans , Neoplasms/pathology
10.
Haematologica ; 103(6): 1038-1046, 2018 06.
Article in English | MEDLINE | ID: mdl-29567785

ABSTRACT

Alteration in the DNA replication, repair or recombination processes is a highly relevant mechanism of genomic instability. Despite genomic aberrations manifested in hematologic malignancies, such a defect as a source of biomarkers has been underexplored. Here, we investigated the prognostic value of expression of 82 genes involved in DNA replication-repair-recombination in a series of 99 patients with chronic lymphocytic leukemia without detectable 17p deletion or TP53 mutation. We found that expression of the POLN gene, encoding the specialized DNA polymerase ν (Pol ν) correlates with time to relapse after first-line therapy with fludarabine. Moreover, we found that POLN was the only gene up-regulated in primary patients' lymphocytes when exposed in vitro to proliferative and pro-survival stimuli. By using two cell lines that were sequentially established from the same patient during the course of the disease and Pol ν knockout mouse embryonic fibroblasts, we reveal that high relative POLN expression is important for DNA synthesis and cell survival upon fludarabine treatment. These findings suggest that Pol ν could influence therapeutic resistance in chronic lymphocytic leukemia. (Patients' samples were obtained from the CLL 2007 FMP clinical trial registered at: clinicaltrials.gov identifer: 00564512).


Subject(s)
DNA-Directed DNA Polymerase/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Tumor Suppressor Protein p53/genetics , Vidarabine/analogs & derivatives , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , DNA-Directed DNA Polymerase/metabolism , Disease Progression , Gene Expression Profiling , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Mice , Mutation , Prognosis , Proportional Hazards Models , Vidarabine/pharmacology , Vidarabine/therapeutic use
11.
Am J Hematol ; 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29884994

ABSTRACT

Anti-PD-1 therapy provides high response rates in Hodgkin lymphoma (HL) patients who have relapsed or are refractory (R/R) to autologous stem cell transplantation (ASCT) and brentuximab vedotin (BV), but median progression free survival (PFS) is only one year. The efficacy of treatment following anti-PD-1 is not well known. We retrospectively investigated the efficacy of salvage therapies for unsatisfactory response to anti-PD-1 therapy, assessed by PET-CT according to the Lugano criteria, in 30 R/R HL patients. Patients were highly pre-treated before anti-PD-1 (70% received ASCT and 93% BV). Unsatisfactory responses to anti-PD1 therapy were progressive disease (PD) (n=24) and partial response (PR) (n=6). For the 24 PD patients, median anti-PD-1 related PFS was 7.5 months (95%CI, 5.7-11.6); 17 received subsequent CT alone (Group 1) and 7 received CT in addition to anti-PD-1 (Group 2). 16/24 patients (67%) obtained an objective response. In the 15 patients treated with the same CT, twelve obtained PR or complete response (CR). In Group 1, there were 7 CR (41%), 3 PR (18%), and 7 PD (41%). In Group 2, there were 4 CR (57%), 2 PR (29%), and 1 SD (14%). No unexpected toxicity was observed. Six patients who achieved response proceeded to allogeneic SCT. With a median follow-up of 12.1 months (7-14.7), the median PFS following the initiation of CT was 11 months (95%CI, 6.3; not reached) and the median of overall survival was not reached. These observations in highly pre-treated HL patients suggest that anti-PD-1 therapy might re-sensitize tumor cells to CT. This article is protected by copyright. All rights reserved.

14.
Cancers (Basel) ; 15(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37370678

ABSTRACT

BACKGROUND: IDH mutant and 1p/19q codeleted oligodendrogliomas are the gliomas associated with the best prognosis. However, despite their sensitivity to treatment, patient survival remains heterogeneous. We aimed to identify gene expressions associated with response to treatment from a national cohort of patients with oligodendrogliomas, all treated with radiotherapy +/- chemotherapy. METHODS: We extracted total RNA from frozen tumor samples and investigated enriched pathways using KEGG and Reactome databases. We applied a stability selection approach based on subsampling combined with the lasso-pcvl algorithm to identify genes associated with progression-free survival and calculate a risk score. RESULTS: We included 68 patients with oligodendrogliomas treated with radiotherapy +/- chemotherapy. After filtering, 1697 genes were obtained, including 134 associated with progression-free survival: 35 with a better prognosis and 99 with a poorer one. Eight genes (ST3GAL6, QPCT, NQO1, EPHX1, CST3, S100A8, CHI3L1, and OSBPL3) whose risk score remained statistically significant after adjustment for prognostic factors in multivariate analysis were selected in more than 60% of cases were associated with shorter progression-free survival. CONCLUSIONS: We found an eight-gene signature associated with a higher risk of rapid relapse after treatment in patients with oligodendrogliomas. This finding could help clinicians identify patients who need more intensive treatment.

15.
Radiother Oncol ; 183: 109665, 2023 06.
Article in English | MEDLINE | ID: mdl-37024057

ABSTRACT

BACKGROUND AND PURPOSE: All glioblastoma subtypes share the hallmark of aggressive invasion, meaning that it is crucial to identify their different components if we are to ensure effective treatment and improve survival. Proton MR spectroscopic imaging (MRSI) is a noninvasive technique that yields metabolic information and is able to identify pathological tissue with high accuracy. The aim of the present study was to identify clusters of metabolic heterogeneity, using a large MRSI dataset, and determine which of these clusters are predictive of progression-free survival (PFS). MATERIALS AND METHODS: MRSI data of 180 patients acquired in a pre-radiotherapy examination were included in the prospective SPECTRO-GLIO trial. Eight features were extracted for each spectrum: Cho/NAA, NAA/Cr, Cho/Cr, Lac/NAA, and the ratio of each metabolite to the sum of all the metabolites. Clustering of data was performed using a mini-batch k-means algorithm. The Cox model and logrank test were used for PFS analysis. RESULTS: Five clusters were identified as sharing similar metabolic information and being predictive of PFS. Two clusters revealed metabolic abnormalities. PFS was lower when Cluster 2 was the dominant cluster in patients' MRSI data. Among the metabolites, lactate (present in this cluster and in Cluster 5) was the most statistically significant predictor of poor outcome. CONCLUSION: Results showed that pre-radiotherapy MRSI can be used to reveal tumor heterogeneity. Groups of spectra, which have the same metabolic information, reflect the different tissue components representative of tumor burden proliferation and hypoxia. Clusters with metabolic abnormalities and high lactate are predictive of PFS.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Progression-Free Survival , Prospective Studies , Magnetic Resonance Imaging/methods , Lactates/therapeutic use , Choline/metabolism , Choline/therapeutic use , Aspartic Acid/metabolism , Aspartic Acid/therapeutic use
16.
Radiother Oncol ; 181: 109486, 2023 04.
Article in English | MEDLINE | ID: mdl-36706959

ABSTRACT

BACKGROUND AND PURPOSE: To investigate the feasibility of using a multiapproach analysis combining clinical data, diffusion- and perfusion-weighted imaging, and 3D magnetic resonance spectroscopic imaging to distinguish true tumor progression (TP) from pseudoprogression (PSP) in patients with glioblastoma. MATERIALS AND METHODS: Progression was suspected within 6 months of radiotherapy in 46 of the 180 patients included in the Phase-III SpectroGlio trial (NCT01507506). Choline/creatine (Cho/Cr), choline/N-acetyl aspartate (Cho/NAA) and lactate/N-acetyl aspartate (Lac/NAA) ratios were extracted. Apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) maps were calculated. ADC, relative CBV values and tumor volume (TV) were collected at relapse. Differences between TP and PSP were evaluated using Mann-Whitney tests, and p values were adjusted with Bonferroni correction. RESULTS: Patients with suspected progression underwent a new MRI scan 1 month after the first one. Of these, 28 were classified as PSP, and 18 as TP. After a median follow-up of 41 months, median overall survival was higher in PSP than in TP (25.2 vs 20.3 months; p = 0.0092). Lac/NAA and Cho/Cr ratios were higher in TP than in PSP (1.2 vs 0.5; p = 0.006; and 3 vs 2.2; p = 0.021). After multivariate regression analysis, TV was the most significant predictor of TP vs PSP, and the only one retained in the model (p = 0.028). CONCLUSION: Three spectroscopic ratios could be used to differentiate PSP from TP. TV at relapse was the most predictive factor in the multivariate analysis, and overall survival was higher in PSP than in TP.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Choline , Disease Progression , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Magnetic Resonance Imaging/methods , Neoplasm Recurrence, Local
17.
Cancers (Basel) ; 14(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35053450

ABSTRACT

In this study, a radiomics analysis was conducted to provide insights into the differentiation of radionecrosis and tumor progression in multiparametric MRI in the context of a multicentric clinical trial. First, the sensitivity of radiomic features to the unwanted variability caused by different protocol settings was assessed for each modality. Then, the ability of image normalization and ComBat-based harmonization to reduce the scanner-related variability was evaluated. Finally, the performances of several radiomic models dedicated to the classification of MRI examinations were measured. Our results showed that using radiomic models trained on harmonized data achieved better predictive performance for the investigated clinical outcome (balanced accuracy of 0.61 with the model based on raw data and 0.72 with ComBat harmonization). A comparison of several models based on information extracted from different MR modalities showed that the best classification accuracy was achieved with a model based on MR perfusion features in conjunction with clinical observation (balanced accuracy of 0.76 using LASSO feature selection and a Random Forest classifier). Although multimodality did not provide additional benefit in predictive power, the model based on T1-weighted MRI before injection provided an accuracy close to the performance achieved with perfusion.

18.
J Clin Med ; 10(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917590

ABSTRACT

BACKGROUND: This systematic review aimed at comparing performances of ultrasonography (US), magnetic resonance imaging (MRI), and fluorodeoxyglucose positron emission tomography (PET) for axillary staging, with a focus on micro- or micrometastases. METHODS: A search for relevant studies published between January 2002 and March 2018 was conducted in MEDLINE database. Study quality was assessed using the QUality Assessment of Diagnostic Accuracy Studies checklist. Sensitivity and specificity were meta-analyzed using a bivariate random effects approach; Results: Across 62 studies (n = 10,374 patients), sensitivity and specificity to detect metastatic ALN were, respectively, 51% (95% CI: 43-59%) and 100% (95% CI: 99-100%) for US, 83% (95% CI: 72-91%) and 85% (95% CI: 72-92%) for MRI, and 49% (95% CI: 39-59%) and 94% (95% CI: 91-96%) for PET. Interestingly, US detects a significant proportion of macrometastases (false negative rate was 0.28 (0.22, 0.34) for more than 2 metastatic ALN and 0.96 (0.86, 0.99) for micrometastases). In contrast, PET tends to detect a significant proportion of micrometastases (true positive rate = 0.41 (0.29, 0.54)). Data are not available for MRI. CONCLUSIONS: In comparison with MRI and PET Fluorodeoxyglucose (FDG), US is an effective technique for axillary triage, especially to detect high metastatic burden without upstaging majority of micrometastases.

19.
Cancers (Basel) ; 13(3)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498676

ABSTRACT

Biological and histopathological techniques identified osteoclasts and macrophages as targets of zoledronic acid (ZA), a therapeutic agent that was detrimental for patients in the French OS2006 trial. Conventional and multiplex immunohistochemistry of microenvironmental and OS cells were performed on biopsies of 124 OS2006 patients and 17 surgical ("OSNew") biopsies respectively. CSF-1R (common osteoclast/macrophage progenitor) and TRAP (osteoclast activity) levels in serum of 108 patients were correlated to response to chemotherapy and to prognosis. TRAP levels at surgery and at the end of the protocol were significantly lower in ZA+ than ZA- patients (padj = 0.0011; 0.0132). For ZA+-patients, an increase in the CSF-1R level between diagnosis and surgery and a high TRAP level in the serum at biopsy were associated with a better response to chemotherapy (p = 0.0091; p = 0.0251). At diagnosis, high CD163+ was associated with good prognosis, while low TRAP activity was associated with better overall survival in ZA- patients only. Multiplex immunohistochemistry demonstrated remarkable bipotent CD68+/CD163+ macrophages, homogeneously distributed throughout OS regions, aside osteoclasts (CD68+/CD163-) mostly residing in osteolytic territories and osteoid-matrix-associated CD68-/CD163+ macrophages. We demonstrate that ZA not only acts on harmful osteoclasts but also on protective macrophages, and hypothesize that the bipotent CD68+/CD163+ macrophages might present novel therapeutic targets.

20.
Cancer Immunol Res ; 9(5): 568-582, 2021 05.
Article in English | MEDLINE | ID: mdl-33727246

ABSTRACT

Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by SMPD3, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8+ tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity. In vitro, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing SMPD3 expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8+ T-cell-dependent immune responses and overcome resistance to anti-PD-1.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Melanoma/immunology , Melanoma/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Immunity , Immunotherapy , Melanoma/drug therapy , Melanoma/pathology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/genetics , Th1 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL